高三数学期末复习解答题2
- 格式:doc
- 大小:713.00 KB
- 文档页数:4
专题三 压轴解答题第二关 椭圆相关的综合问题【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,且椭圆考查的最多,,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.【考点方向标】 方向一 中点问题典例1.(2020·山东高三期末)已知椭圆(222:12x y C a a +=>的右焦点为F ,P 是椭圆C 上一点,PF x ⊥轴,2PF =. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 交于A 、B 两点,线段AB 的中点为M ,O 为坐标原点,且OM ,求AOB ∆面积的最大值.【举一反三】(2020·河南南阳中学高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与抛物线2y =的焦点重合,且椭圆C (1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A 、B 两点,线段AB 的中点为(1,)M t ,直线m 是线段AB 的垂直平分线,求证:直线m 过定点,并求出该定点的坐标.方向二 垂直问题典例2.(2020·安徽期末)已知椭圆C :22221(0)x y a b a b +=>>的离心率2e =,且过点(22.(1)求椭圆C 的方程;(2)如图,过椭圆C 的右焦点F 作两条相互垂直的直线,AB DE 交椭圆分别于,,,A B D E ,且满足12AM AB =,12DN DE =,求MNF ∆面积的最大值.【举一反三】(2020·吉林东北师大附中高三月考)已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,P 是C 上一点,且PF 与x 轴垂直,A ,B 分别为椭圆的右顶点和上顶点,且AB OP ,且POB ∆的面积是12,其中O 是坐标原点. (1)求椭圆C 的方程.(2)若过点F 的直线1l ,2l 互相垂直,且分别与椭圆C 交于点M ,N ,S ,T 四点,求四边形MSNT 的面积S 的最小值.方向三 面积问题典例3.(2020·安徽高三月考)已知椭圆()2222:10x y E a b a b+=>>的左焦点为()1,0F -,经过点F 的直线与椭圆相交于M ,N 两点,点P 为线段MN 的中点,点O 为坐标原点.当直线MN 的斜率为1时,直线OP 的斜率为12-.(1)求椭圆C 的标准方程;(2)若点A 为椭圆的左顶点,点B 为椭圆的右顶点,过F 的动直线交该椭圆于C ,D 两点,记ACD ∆的面积为1S ,BCD ∆的面积为2S ,求21S S -的最大值.典例4.(2020·河南高三月考)已知椭圆()2222:10x y C a b a b +=>>的离心率2e =,且椭圆过点)(1)求椭圆C 的标准方程;(2)设直线l 与C 交于M 、N 两点,点D 在椭圆C 上,O 是坐标原点,若OM ON OD +=,判定四边形OMDN 的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.【举一反三】(2020·全国高三专题练习)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>线E :22x y =的焦点F 是C 的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅰ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.(2020·重庆高三月考)已知椭圆2222:1x y C a b +=(0)a b >>的离心率e =且圆221x y +=经过椭圆C的上、下顶点.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,且与椭圆22122:144x y C a b+=相交于M ,N 两点,证明:OMN 的面积为定值(O 为坐标原点).方向四 范围与定值问题典例5.(2020·内蒙古高三期末)已知椭圆C :()222210x y a b a b +=>>的离心率32e =,且圆222x y +=过椭圆C 的上,下顶点. (1)求椭圆C 的方程. (2)若直线l 的斜率为12,且直线l 交椭圆C 于P 、Q 两点,点P 关于点的对称点为E ,点()2,1A -是椭圆C 上一点,判断直线AE 与AQ 的斜率之和是否为定值,如果是,请求出此定值:如果不是,请说明理.典例6.(2020·全国高三专题练习)已知顶点为原点的抛物线C 的焦点与椭圆2221y x a+=的上焦点重合,且过点(22,1).(1)求椭圆的标准方程;(2)若抛物线上不同两点A ,B 作抛物线的切线,两切线的斜率121k k =-,若记AB 的中点的横坐标为m ,AB 的弦长()g m ,并求()g m 的取值范围.【举一反三】(2020·全国高三专题练习(理))已知椭圆C :()222210x y a b a b +=>>的长轴长是离心率的两倍,直线l :4430x y -+=交C 于A ,B 两点,且AB 的中点横坐标为12-. (1)求椭圆C 的方程;(2)若M ,N 是椭圆C 上的点,O 为坐标原点,且满足2234OM ON +=,求证:OM ,ON 斜率的平方之积是定值.(2020·四川石室中学高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>的长轴长是短轴长的两倍,焦距(1)求椭圆C 的标准方程;(2)设不过原点O 的直线l 与椭圆C 交于两点M 、N ,且直线OM 、MN 、ON 的斜率依次成等比数列,求ⅠOMN 面积的取值范围.【压轴选编】1.(2020·全国高三专题练习)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0a b >>)的离心率e =C 上的点到点()0,2Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅰ)在椭圆C 上,是否存在点(),M m n ,使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点A 、B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.2.【福建省龙岩市2019届高三第一学期期末教学质量检查】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线与椭圆C 交于M,N 两点,ΔF 2MN 的周长为8,直线y =x 被椭圆C 截得的线段长为4√427.(1)求椭圆C 的方程;(2)设A,B 是椭圆上两动点,线段AB 的中点为P ,OA,OB 的斜率分别为k 1,k 2(O 为坐标原点),且4k 1k 2=−3,求|OP |的取值范围.3.【2019湖北省重点中学联考】已知椭圆22221(0)x y a b a b +=>>的离心率e =,且经过点1,2⎛ ⎝⎭.(1)求椭圆方程;(2)过点()0,2P 的直线与椭圆交于M N 、两个不同的点,求线段MN 的垂直平分线在x 轴截距的范围.4.【湖南省湘潭市2019届高三上学期第一次模拟检测】已知点F(√3,0)是椭圆C:x 2a2+y 2b 2=1(a >b >0)的一个焦点,点M (√3,12)在椭圆C 上. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于不同的A,B 两点,且k OA +k OB =−12(O 为坐标原点),求直线l 斜率的取值范围.5.【北京市海淀区2019届高三上学期期末考试】已知点B(0,−2)和椭圆M:x 24+y 22=1. 直线l:y =kx +1与椭圆M 交于不同的两点P,Q . (Ⅰ) 求椭圆M 的离心率; (Ⅰ) 当k =12时,求ΔPBQ 的面积;(Ⅰ)设直线PB 与椭圆M 的另一个交点为C ,当C 为PB 中点时,求k 的值 .6. 【宁夏六盘山高级中学2019届高三上学期期末考试】已知椭圆C:x 2a2+y 2b 2=1(a >0,b >0)的离心率为√32,长轴长为4,直线y =kx +m 与椭圆C 交于A,B 两点且∠AOB 为直角,O 为坐标原点. (Ⅰ)求椭圆C 的方程; (Ⅰ)求AB 长度的最大值.7.(2020·河南鹤壁高中高三月考)已知椭圆2222:1(0)x y E a b a b+=>>的左右焦点分别为12,F F ,P 是椭圆短轴的一个顶点,并且12PF F ∆是面积为1的等腰直角三角形. (1)求椭圆E 的方程;(2)设直线1:1l x my =+与椭圆E 相交于,M N 两点,过M 作与y 轴垂直的直线2l ,已知点3(,0)2H ,问直线NH 与2l 的交点的横坐标是否为定值?若是,则求出该定值;若不是,请说明理由.8.(2020·江西高三)已知椭圆C :22221(0)x y a b a b+=>>过点1)2-.(1)求椭圆C 的方程.(2)若A ,B 是椭圆C 上的两个动点(A ,B 两点不关于x 轴对称),O 为坐标原点,OA ,OB 的斜率分别为1k ,2k ,问是否存在非零常数λ,使当12k k λ=时,AOB ∆的面积S 为定值?若存在,求λ的值;若不存在,请说明理由.9.(2020·甘肃省岷县第一中学期末)已知椭圆C :22221x y a b +=(0a b >>)(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.10.(2020·江苏高三期末)已知椭圆2222:1x y C a b+=(0)a b >>的左右焦点分别为12,F F ,焦距为4,且椭圆过点5(2,)3,过点2F 且不平行于坐标轴的直线l 交椭圆与,P Q 两点,点Q 关于x 轴的对称点为R ,直线PR 交x 轴于点M .(1)求1PFQ 的周长; (2)求1PF M 面积的最大值.11.(2020·河南高三期末)已知椭圆C :()222210x y a b a b+=>>过点31,2⎛⎫ ⎪⎝⎭,过坐标原点O 作两条互相垂直的射线与椭圆C 分别交于M ,N 两点.(1)证明:当229a b +取得最小值时,椭圆C . (2)若椭圆C 的焦距为2,是否存在定圆与直线MN 总相切?若存在,求定圆的方程;若不存在,请说明理由.12.(2020·四川高三月考)已知椭圆()2222:10x y C a b a b+=>>的短轴顶点分别为,A B ,且短轴长为2,T 为椭圆上异于,A B 的任意-一点,直线,TA TB 的斜率之积为13- (1)求椭圆C 的方程;(2)设O 为坐标原点,圆223:4O x y +=的切线l 与椭圆C 相交于,P Q 两点,求POQ △面积的最大值.13.(2020·内蒙古高三)已知椭圆()2222:10x y C a b a b +=>>的离心率为3,以原点O 为圆心,椭圆C 的长半轴长为半径的圆与直线260x -+=相切. (1)求椭圆C 的标准方程;(2)已知点A ,B 为动直线()()20y k x k =-≠与椭圆C 的两个交点,问:在x 轴上是否存在定点E ,使得2EA EA AB +⋅为定值?若存在,试求出点E 的坐标和定值;若不存在,请说明理由.14.(2020·河北高三期末)设椭圆2222:1(0)x y C a b a b+=>>的一个焦点为0),四条直线x a =±,y b =±所围成的区域面积为(1)求C 的方程;(2)设过(0,3)D 的直线l 与C 交于不同的两点,A B ,设弦AB 的中点为M ,且1||||2OM AB =(O 为原点),求直线l 的方程.15.(2020·山东高三期末)已知椭圆C :22221x y a b +=(0a b >>)的短轴长和焦距相等,左、右焦点分别为1F 、2F ,点1,2Q ⎛ ⎝⎭满足:122QF QF a +=.已知直线l 与椭圆C 相交于A ,B 两点.(1)求椭圆C 的标准方程;(2)若直线l 过点2F ,且222AF F B =,求直线l 的方程;(3)若直线l 与曲线ln y x =相切于点(),ln T t t (0t >),且AB 中点的横坐标等于23,证明:符合题意的点T 有两个,并任求出其中一个的坐标.16.(2020·安徽高三)已知椭圆2222:1(0)x y a b a b Γ+=>>过点(1,1)M 离心率为2.(1)求Γ的方程;(2)如图,若菱形ABCD 内接于椭圆Γ,求菱形ABCD 面积的最小值.17.(2020·福建省福州第一中学高三开学考试)已知O 为坐标原点,椭圆E :()222210x y a b a b+=>>的焦距为y x =截圆O :222x y a +=与椭圆E 所得的弦长之比为2,椭圆E 与y 轴正半轴的交点分别为A .(1)求椭圆E 的标准方程;(2)设点()00,B x y (00y ≠且01y ≠±)为椭圆E 上一点,点B 关于x 轴的对称点为C ,直线AB ,AC分别交x 轴于点M ,N .试判断OM ON ⋅是否为定值?若是求出该定值,若不是定值,请说明理由.18.(2020·江西高三期末)已知椭圆2222:1(0)x y C a b a b+=>>过点31,2P ⎛⎫ ⎪⎝⎭,且离心率为12.(1)求椭圆C 的方程;(2)已知点31,2Q ⎛⎫- ⎪⎝⎭是椭圆上的点,,A B 是椭圆上位于直线PQ 两侧的动点,当,A B 运动时,满足APQ BPQ ∠=∠,试问直线AB 的斜率是否为定值?请说明理由.19.(2020·甘肃高三期末)设椭圆2222:1y x C a b +=(0)a b >>的离心率是2,直线1x =被椭圆C 截得的弦长为(1)求椭圆C 的方程;(2)已知点M 的直线l 与椭圆C 交于不同的两点A ,B ,当MAB △的面积最大时,求直线l 的方程.20.(2020·江西高三期末)已知椭圆2222:1(0)x y C a b a b +=>>,F 为椭圆C 的右焦点,2D ⎛ ⎝⎭为椭圆上一点,C 的离心率2e =(1)求椭圆C 的标准方程;(2)斜率为k 的直线l 过点F 交椭圆C 于,M N 两点,线段MN 的中垂线交x 轴于点P ,试探究||||PF MN 是否为定值,如果是,请求出该定值;如果不是,请说明理由.21.(2020·青海高三期末)已知椭圆22221(0)x y a b a b+=>>的离心率为,短轴的一个端点到右焦点的距离为2,(1)试求椭圆M 的方程; (2)若斜率为12的直线l 与椭圆M 交于C 、D 两点,点3(1)2P ,为椭圆M 上一点,记直线PC 的斜率为1k ,直线PD 的斜率为2k ,试问:12k k +是否为定值?请证明你的结论22.(2020·四川高三期末)在平面直角坐标系中,已知点(2,0)A -,(2,0)B ,动点(,)P x y 满足直线AP 与BP 的斜率之积为34-.记点P 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)若M ,N 是曲线C 上的动点,且直线MN 过点10,2D ⎛⎫⎪⎝⎭,问在y 轴上是否存在定点Q ,使得MQO NQO ∠=∠若存在,请求出定点Q 的坐标;若不存在,请说明理由.23.(2020·山西高三期末)已知()()122,0,2,0F F -是椭圆()2222:10x y C a b a b+=>>的两个焦点,M 是椭圆C 上一点,当112MF F F ⊥时,有213MF MF =. (1)求椭圆C 的标准方程;(2)设过椭圆右焦点2F 的动直线l 与椭圆交于,A B 两点,试问在x 铀上是否存在与2F 不重合的定点T ,使得22ATF BTF ∠=∠恒成立?若存在,求出定点T 的坐标,若不存在,请说明理由.专题三 压轴解答题第二关 椭圆相关的综合问题【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,且椭圆考查的最多,,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.【考点方向标】 方向一 中点问题典例1.(2020·山东高三期末)已知椭圆(222:12x y C a a +=>的右焦点为F ,P 是椭圆C 上一点,PF x ⊥轴,PF =(1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 交于A 、B 两点,线段AB 的中点为M ,O 为坐标原点,且OM ,求AOB ∆面积的最大值.【答案】(1)22182x y +=;(2)2. 【解析】(1)设椭圆C 的焦距为()20c c >,由题知,点,2P c ⎛⎫±⎪ ⎪⎝⎭,b =则有222212c a ⎛⎫⎪⎝⎭+=,2234c a ∴=,又22222a b c c =+=+,28a ∴=,26c =, 因此,椭圆C 的标准方程为22182x y +=;(2)当AB x ⊥轴时,M 位于x 轴上,且OMAB ⊥,由OM =AB12AOB S OM AB ∆=⋅=; 当AB 不垂直x 轴时,设直线AB 的方程为y kx t =+,与椭圆交于()11,A x y ,()22,B x y ,由22182x y y kx t ⎧+=⎪⎨⎪=+⎩,得()222148480k x ktx t +++-=. 122814kt x x k -∴+=+,21224814t x x k-=+,从而224,1414kt t M k k -⎛⎫ ⎪++⎝⎭已知OM =()2222214116k t k+=+.()()()22222212122284814141414kt t AB k x x x x k k k ⎡⎤--⎛⎫⎡⎤=++-=+-⨯⎢⎥ ⎪⎣⎦++⎝⎭⎢⎥⎣⎦()()()222221682114k t k k -+=++. 设O 到直线AB 的距离为d ,则2221t d k=+, ()()()222222221682114114AOBk t t S k k k ∆-+=+⋅++. 将()2222214116k t k+=+代入化简得()()2222219241116AOB k k S k ∆+=+.令2116k p +=,则()()()22222211211192414116AOBp p k k S p k ∆-⎛⎫-+ ⎪+⎝⎭==+211433433p ⎡⎤⎛⎫=--+≤⎢⎥ ⎪⎢⎥⎝⎭⎣⎦.当且仅当3p =时取等号,此时AOB ∆的面积最大,最大值为2. 综上:AOB ∆的面积最大,最大值为2. 【举一反三】(2020·河南南阳中学高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与抛物线2y =的焦点重合,且椭圆C 的离心率为2. (1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A 、B 两点,线段AB 的中点为(1,)M t ,直线m 是线段AB 的垂直平分线,求证:直线m 过定点,并求出该定点的坐标.【答案】(1)2214x y +=;(2)直线m 过定点3,04⎛⎫ ⎪⎝⎭,详见解析.【解析】(1)抛物线2y =的焦点为,则c =椭圆C 的离心率c e a ==2222,1a b a c ==-=. 故椭圆C 的标准方程为2214x y +=.(2)方法一:显然点(1,)M t 在椭圆C 内部,故t <<,且直线l 的斜率不为0. 当直线l 的斜率存在且不为0时,易知0t ≠,设直线l 的方程为(1)y k x t =-+, 代入椭圆方程并化简得22222(14)(88)48440k x kt k x k kt t ++-+-+-=.设11(,)A x y ,22(,)B x y ,则212288214kt k x x k -+=-=+,解得14k t =-. 因为直线m 是线段AB 的垂直平分线,故直线:4(1)m y t t x -=-,即(43)y t x =-.令430x -=,此时3,04x y ==,于是直线m 过定点3,04⎛⎫⎪⎝⎭.当直线l 的斜率不存在时,易知0t =,此时直线:0m y =,故直线m 过定点3,04⎛⎫⎪⎝⎭.综上所述,直线m 过定点3,04⎛⎫ ⎪⎝⎭.方法二:显然点(1,)M t 在椭圆C 内部,故t <<,且直线l 的斜率不为0. 当直线l 的斜率存在且不为0时,设11(,)A x y ,22(,)B x y ,则有221114x y +=,222214x y +=,两式相减得12121212()()()()04x x x x y y y y +-++-=.由线段AB 的中点为(1,)M t ,则12122,2x x y y t +=+=, 故直线l 的斜率121214y y k x x t-==--.因为直线m 是线段AB 的垂直平分线,故直线:4(1)m y t t x -=-,即(43)y t x =-. 令430x -=,此时3,04x y ==,于是直线m 过定点3,04⎛⎫⎪⎝⎭. 当直线l 的斜率不存在时,易知0t =,此时直线:0m y =,故直线m 过定点3,04⎛⎫ ⎪⎝⎭.综上所述,直线m 过定点3,04⎛⎫ ⎪⎝⎭.方向二 垂直问题典例2.(2020·安徽期末)已知椭圆C :22221(0)x y a b a b +=>>的离心率2e =,且过点(22.(1)求椭圆C 的方程;(2)如图,过椭圆C 的右焦点F 作两条相互垂直的直线,AB DE 交椭圆分别于,,,A B D E ,且满足12AM AB =,12DN DE =,求MNF ∆面积的最大值. 【答案】(1)2212x y +=;(2)19.【解析】(1)根据条件有22222{13124a b a b=+=,解得222,1a b ==,所以椭圆22:12x C y +=. (2)根据12AM AB =,12CN CD =可知,,M N 分别为,AB DE 的中点, 且直线,AB DE 斜率均存在且不为0,现设点()()1122,,,A x y B x y ,直线AB 的方程为1x my =+,不妨设0m >, 联立椭圆C 有()222210m y my ++-=, 根据韦达定理得:12222m y y m +=-+,()12122422x x m y y m +=++=+, 222,22m M m m -⎛⎫ ⎪++⎝⎭,MF =,同理可得12NF m =⎛⎫-+ ⎪⎝⎭, 所以MNF ∆面积2112142MNFm m S MF NF m m ∆+==⎛⎫++ ⎪⎝⎭,现令12t m m =+≥, 那么21124294MNF t S t t t∆==≤++,所以当2t =,1m =时,MNF ∆的面积取得最大值19. 【举一反三】(2020·吉林东北师大附中高三月考)已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,P 是C 上一点,且PF 与x 轴垂直,A ,B 分别为椭圆的右顶点和上顶点,且AB OP ,且POB ∆的面积是12,其中O 是坐标原点. (1)求椭圆C 的方程.(2)若过点F 的直线1l ,2l 互相垂直,且分别与椭圆C 交于点M ,N ,S ,T 四点,求四边形MSNT 的面积S 的最小值.【答案】(1)2212x y +=;(2)169【解析】(1)依题意画出下图可设2(,)b P c a-,(,0)A a ,(0,)B b ,则有:22221122OPAB POB b b k k ac a S bc b c a∆⎧-===⎪-⎪⎪==⎨⎪+=⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩,Ⅰ椭圆C 的标准方程为2212x y +=;(2)Ⅰ当1l x ⊥,2//l x 时,22122222MSNTb S a b a===; Ⅰ当1l ,2l 斜率存在时,设1l :1x ky =-,2l :11x y k=-,分别联立椭圆方程2212x y +=,联立22112x ky x y =-⎧⎪⎨+=⎪⎩得()222210k y ky +--=, Ⅰ12222k y y k +=+,12212y y k -=+, ⅠMN==)2212k k +=+,同理)22221111122k k ST k k⎫+⎪+⎝⎭==++, Ⅰ12S MN ST =()()()22228112221k k k +=++()()()222241221k k k +=++()2222241221()2k k k +≥+++()22224(1)169914k k +==+,当且仅当22221k k +=+即21k =即1k =±时等号成立, 故四边形MSNT 的面积S 的最小值min 169S =.方向三 面积问题典例3.(2020·安徽高三月考)已知椭圆()2222:10x y E a b a b+=>>的左焦点为()1,0F -,经过点F 的直线与椭圆相交于M ,N 两点,点P 为线段MN 的中点,点O 为坐标原点.当直线MN 的斜率为1时,直线OP 的斜率为12-.(1)求椭圆C 的标准方程;(2)若点A 为椭圆的左顶点,点B 为椭圆的右顶点,过F 的动直线交该椭圆于C ,D 两点,记ACD ∆的面积为1S ,BCD ∆的面积为2S ,求21S S -的最大值.【答案】(1)2212x y +=(2【解析】(1)设()11,M x y ,()22,N x y ,则点1212,22x x y y P ++⎛⎫⎪⎝⎭,由条件知直线MN 的斜率为12121y y x x -=-,直线OP 的斜率为121212y y x x +=-+,而22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差得,22221212220x x y y a b --+=, 所以()()()()22212121222212121212y y y y y y b a x x x x x x -+--===---+,即222a b =, 又左焦点为()1,0F -,所以22222221c a b b b b =-=-==,所以椭圆E 的标准方程为2212x y +=.(2)设直线CD 的方程为1x my =-,记C ,D 过标为()11,x y ,()22,x y ,则1121212S AF y y y y =⋅-=-,2121212S BF y y y y =⋅-=-, 所以2112S S y y -=-.联立方程,22221x y x my ⎧+=⎨=-⎩,消去x ,得()222210m y my +--=,所以12222m y y m +=+,12212y y m =-+,12y y -==,令21tm =+,则1t ≥,且()()()2222818882122122m tt mt t+==≤=+++++,当且仅当1t =时等号成立, 所以2112S S y y -=-21S S -.典例4.(2020·河南高三月考)已知椭圆()2222:10x y C a b ab +=>>的离心率2e =,且椭圆过点)(1)求椭圆C 的标准方程;(2)设直线l 与C 交于M 、N 两点,点D 在椭圆C 上,O 是坐标原点,若OM ON OD +=,判定四边形OMDN 的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.【答案】(1)22142x y+=;(2. 【解析】(1)设椭圆C 的焦距为()20c c >,由题意可得222222211c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得24a =,22b =,因此,椭圆C 的标准方程为22142x y +=;(2)当直线l 的斜率不存在时,直线MN 的方程为1x =-或1x =.若直线l 的方程为1x =,联立221142x x y =⎧⎪⎨+=⎪⎩,可得1x y =⎧⎪⎨=⎪⎩此时,MN =OMDN的面积为122=同理,当直线l 的方程为1x =-时,可求得四边形OMDN; 当直线l 的斜率存在时,设直线l 方程是y kx m =+,代人到22142x y +=,得()222124240k x kmx m +++-=,122412km x x k -∴+=+,21222412m x x k -=+,()228420k m ∆=+->, ()12122221my y k x x m k∴+=++=+,12MN x x =-==,点O 到直线MN的距离d =,由OM OC OD +=,得122421D km x x x k =+=-+,122212D my y y k =+=+, 点D 在椭圆C 上,所以有222421212142km m k k -⎛⎫⎛⎫⎪ ⎪++⎝⎭⎝⎭+=,整理得22122k m +=,由题意知,四边形OMDN 为平行四边形,∴平行四边形OMDN的面积为1222OMDN OMNS S MN d ∆==⨯⨯=()222121k k +====+故四边形OMDN . 【举一反三】(2020·全国高三专题练习)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>线E :22x y =的焦点F 是C 的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅰ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.【答案】(Ⅰ)2241x y +=;(Ⅰ)(Ⅰ)见解析;(Ⅰ)12S S 的最大值为94,此时点P的坐标为1,)24【解析】(Ⅰ=,解得2a b =. 因为抛物线的焦点为10,2F ⎛⎫ ⎪⎝⎭,所以11,2a b ==,所以椭圆的方程为2241x y +=.(Ⅰ)(1)设2,(0)2m m P m ⎛⎫> ⎪⎝⎭,由22x y =可得y x '=,所以直线l 的斜率为m ,其直线方程为2()2m y m x m -=-,即22my mx =-. 设()()()112200,,,,,A x y B x y D x y ,联立方程组2222m y mx x y ⎧=-⎪⎨⎪=⎩消去y 并整理可得()223441410m x m x m +-+-=,故由其判别式>0∆可得0m <<3122441m x x m +=+, 故312022241x x m x m +==+,代入22m y mx =-可得()202241m y m =-+, 因为0014y x m =-,所以直线OD 的方程为14y x m=-. 联立14y x m x m⎧=-⎪⎨⎪=⎩可得点的纵坐标为14y =-,即点M 在定直线14y =-上. (2)由(1)知直线l 的方程为22m y mx =-,令0x =得22m y =-,所以20,2m G ⎛⎫- ⎪⎝⎭,又()2322212,,,0,,2241241m m m P m F D m m ⎛⎫⎛⎫-⎛⎫ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 所以()2111||124S GF m m m ==+,()()22202211||2841m m S PM m x m +=⋅-=+, 所以()()()221222241121m m S S m ++=+,令221t m =+,则1222(21)(1)112S t t S t t t -+==-++, 因此当112t =,即2t =时,12S S 最大,其最大值为94,此时2m =满足>0∆,所以点P 的坐标为1,24⎛⎫ ⎪⎪⎝⎭,因此12S S 的最大值为94,此时点P 的坐标为1,24⎛⎫ ⎪ ⎪⎝⎭. (2020·重庆高三月考)已知椭圆2222:1x y C a b +=(0)a b >>的离心率2e =,且圆221x y +=经过椭圆C的上、下顶点.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,且与椭圆22122:144x y C a b+=相交于M ,N 两点,证明:OMN 的面积为定值(O 为坐标原点).【答案】(1)2214x y +=;(2)见解析.【解析】(1)解:因为圆221x y +=过椭圆C 的上、下顶点,所以1b =.又离心率2e ==,所以21314a -=,则24a =. 故椭圆C 的方程为2214x y +=.(2)证明:椭圆221:1164x y C +=,当直线l 的斜率不存在时,这时直线l 的方程为2x =±,联立2221164x x y =±⎧⎪⎨+=⎪⎩,得y =||MN =则12||2OMN S MN ∆=⨯⨯= 当直线l 的斜率存在时,设:l y kx m =+,联立2214y kx m x y =+⎧⎪⎨+=⎪⎩,得()()222418410k x kmx m +++-=,由0∆=,可得2241m k =+. 联立221164y kx m x y =+⎧⎪⎨+=⎪⎩,得()()222418440k x kmx m +++-=.设()11,,M x y ()22,N x y ,所以1228,41km x x k +=-+()21224441m x x k -=+,则||MN ==.因为原点到直线l的距离d ==1||2OMNS MN d =⋅=. 综上所述,OMN ∆的面积为定值方向四 范围与定值问题典例5.(2020·内蒙古高三期末)已知椭圆C :()222210x y a b a b +=>>的离心率e =且圆222x y +=过椭圆C 的上,下顶点. (1)求椭圆C 的方程. (2)若直线l 的斜率为12,且直线l 交椭圆C 于P 、Q 两点,点P 关于点的对称点为E ,点()2,1A -是椭圆C 上一点,判断直线AE 与AQ 的斜率之和是否为定值,如果是,请求出此定值:如果不是,请说明理.【答案】(1)22182x y +=;(2)是,0. 【解析】(1)因为圆222x y +=过椭圆C的上,下顶点,所以b =又离心率2e =3a c =,于是有222b a a bc ⎧=⎪⎪=⎨⎪=+⎪⎩,解得a =b =所以椭圆C 的方程为22182x y +=; (2)由于直线l 的斜率为12,可设直线l 的方程为12y x t =+,代入椭圆C :2248x y +=, 可得222240x tx t ++-=.由于直线l 交椭圆C 于P 、Q 两点,所以()2244240t t ∆=-->, 整理解得22t -<<设点()11,P x y 、()22,Q x y ,由于点P 与点E 关于原点的对称,故点()11,E x y --,于是有122x x t +=-,21224x x t =-.若直线AE 与AQ 的斜率分别为AE k ,AQ k ,由于点()2,1A -,则21211122AE AQ y y k k x x ---+=++-+()()()()()()122121212122x y x y x x ---++=+-, 又Ⅰ1112y x t =+,2212y x t =+. 于是有()()()()12212121x y x y ---++()()2112211224y y x y x y x x =--++--()211212124x x x x tx tx x x =--+++--()12124x x t x x =-+--()()224240t t t =-----=,故直线AE 与AQ 的斜率之和为0,即0AE AQ k k +=.典例6.(2020·全国高三专题练习)已知顶点为原点的抛物线C 的焦点与椭圆2221y x a+=的上焦点重合,且过点.(1)求椭圆的标准方程;(2)若抛物线上不同两点A ,B 作抛物线的切线,两切线的斜率121k k =-,若记AB 的中点的横坐标为m ,AB 的弦长()g m ,并求()g m 的取值范围.【答案】(1)2215y x +=;(2)[)8,+∞. 【解析】(1)由题意可知,设抛物线方程为:22x py =点在抛物线C 上,所以抛物线C 的方程为28x y =,所以椭圆的上焦点为(0,2),所以椭圆的标准方程为2215y x +=;(2)设211,,8x A x ⎛⎫ ⎪⎝⎭222,8x B x ⎛⎫ ⎪⎝⎭,在A 点处的切线的斜率114x k =,在B 点处的切线的斜率224x k =,又1212116x xk k ⋅==-,所以 22212188ABx x k x x -=-218x x +=,4m =212x x m +=,而12|||AB x =-===所以g()m =20m ≥,所以()8g m ≥.【举一反三】(2020·全国高三专题练习(理))已知椭圆C :()222210x y a b a b+=>>的长轴长是离心率的两倍,直线l :4430x y -+=交C 于A ,B 两点,且AB 的中点横坐标为12-. (1)求椭圆C 的方程;(2)若M ,N 是椭圆C 上的点,O 为坐标原点,且满足2234OM ON +=,求证:OM ,ON 斜率的平方之积是定值.【答案】(1)22241x y +=(2)证明见解析【解析】由椭圆C :22221(0)x y a b a b+=>>的长轴长是离心率的两倍得22a e =,即2a c =………..Ⅰ 设1122(,),(,)A x y B x y联立22221x y a b+=和4430x y -+=整理得222222239()0216a b x a x a a b +++-=; 所以2122232ax x a b +=-+, 依题意得:22232=1aa b--+,即222a b =……..Ⅰ· 由ⅠⅠ得依题意得:2211,24a b ==,所以椭圆C 的方程为22241x y +=.(2)设3344(,),(,)M x y N x y ,由223||||4OM ON +=得2222334434x y x y +++= 因为3344(,),(,)M x y N x y 在椭圆C 上,所以22332244241,241,x y x y ⎧+=⇒⎨+=⎩223412x x +=, 22223422342222343411(12)(12)44OM ON x x y y K K x x x x -⋅-⋅===222234342234112()4)1164x x x x x x -++=( (2020·四川石室中学高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>的长轴长是短轴长的两倍,焦距(1)求椭圆C 的标准方程;(2)设不过原点O 的直线l 与椭圆C 交于两点M 、N ,且直线OM 、MN 、ON 的斜率依次成等比数列,求ⅠOMN 面积的取值范围.【答案】(1)2214x y +=;(2) (0,1).【解析】(1)由已知得222222{2a bc a c a b =⨯==-⇒2{1a b ==ⅠC 方程:2214x y += (2)由题意可设直线l 的方程为:y kx m =+(0,0)k m ≠≠联立2214y kx m x y =+⎧⎪⎨+=⎪⎩消去y 并整理,得:222(14)84(1)0k x kmx m +++-= 则Ⅰ22226416(14)(1)k m k m =-+-2216(41)0k m =-+>,此时设11(,)M x y 、22(,)N x y Ⅰ212122284(1),1414km m x x x x k k-+=-=++ 于是2212121212()()()y y kx m kx m k x x km x x m =++=+++又直线OM 、MN 、ON 的斜率依次成等比数列,Ⅰ2221211121212()y y k x x km x x m k x x x x +++⋅==⇒22228014k m m k-+=+ 由0m ≠得:214k =⇒12k =±.又由Ⅰ0>得:202m << 显然21m ≠(否则:120x x =,则12,x x 中至少有一个为0,直线OM 、ON 中至少有一个斜率不存在,矛盾!)设原点O 到直线l 的距离为d ,则1212OMNSMN d x ==-12== 故由m 得取值范围可得ⅠOMN 面积的取值范围为(0,1)【压轴选编】1.(2020·全国高三专题练习)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0a b >>)的离心率e =C 上的点到点()0,2Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅰ)在椭圆C 上,是否存在点(),M m n ,使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点A 、B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由. 【答案】(1);(2)存在,M 的坐标为62,22⎛⎫ ⎪ ⎪⎝⎭、62,22⎛⎫- ⎪ ⎪⎝⎭、62,22⎛⎫- ⎪ ⎪⎝⎭、62,22⎛⎫-- ⎪ ⎪⎝⎭,最大值为.【解析】(Ⅰ)因为e =2223c a =,于是223a b .设椭圆C 上任一点,椭圆方程为,,=Ⅰ当,即时,(此时舍去;Ⅰ当即时,综上椭圆C 的方程为.(Ⅰ)圆心到直线l 的距离为221d m n=+,弦长,所以OAB ∆的面积为点,当时,由得综上所述,椭圆上存在四个点2⎫⎪⎪⎝⎭、⎛⎝⎭、⎝⎭、⎛ ⎝⎭,使得直线与圆相交于不同的两点A 、B ,且OAB ∆的面积最大,且最大值为12. 2.【福建省龙岩市2019届高三第一学期期末教学质量检查】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线与椭圆C 交于M,N 两点,ΔF 2MN 的周长为8,直线y =x 被椭圆C 截得的线段长为4√427.(1)求椭圆C 的方程;(2)设A,B 是椭圆上两动点,线段AB 的中点为P ,OA,OB 的斜率分别为k 1,k 2(O 为坐标原点),且4k 1k 2=−3,求|OP |的取值范围.【解析】(1)根据题意4a =8,∴a =2. 把y =x 代入椭圆方程x 24+y 2b 2=1得,x 2=4b 24+b 2, 因为直线y =x 被椭圆C 截得的线段长为4√427, 所以2√4b 24+b 2+4b 24+b 2=4√427,解得b 2=3, 所以椭圆C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由k 1k 2=−34,得3x 1x 2+4y 1y 2=0,当AB 的斜率不存在时,x 1=x 2,y 1=−y 2,3x 12−4y 12=0,又3x 12+4y 12=12, ∴x 12=2,这时|OP |=√2.当AB 的斜率存在时,设直线AB:y =kx +m ,由得{3x 2+4y 2=12y =kx +m :(3+4k 2)x 2+8kmx +4m 2−12=0, 由Δ>0得m 2<4k 2+3Ⅰx 1+x 2=−8km 3+4k 2,x 1x 2=4m 2−123+4k 2,结合3x 1x 2+4y 1y 2=0得2m 2=4k 2+3≥3Ⅰ 由ⅠⅠ知m ≠0且m 2≥32,x 0=x 1+x 22=−2k m ,y 0=kx 0+m =32m ,∴|OP|2=x 02+y 02=4k 2m 2+94m 2=2m 2−3m 2+94m 2=2−34m 2≥32∴√2>|OP |≥√62综上|OP |的取值范围为[√62,√2]. 3.【2019湖北省重点中学联考】已知椭圆22221(0)x y a b a b +=>>的离心率2e =,且经过点1,2⎛ ⎝⎭. (1)求椭圆方程;(2)过点()0,2P 的直线与椭圆交于M N 、两个不同的点,求线段MN 的垂直平分线在x 轴截距的范围.【解析】(1)2212x y += (2)PM 的斜率不存在时, MN 的垂直平分线与x 轴重合,没有截距,故PM 的斜率存在. 设PM 的方程为2y kx =+,代入椭圆方程 得: ()2212860k x kx +++=PM 与椭圆有两个不同的交点()()22841260k k ∴∆=-+⨯>,即232k >,即2k >或2k <-设()()1122,,,,M x y N x y MN 的中点()0,0Q x y 则120002242,221212x x k x y kx k k +==-=+=++ MN ∴的垂直平分线的方程为222141212k y x k k k ⎛⎫-=-+ ⎪++⎝⎭∴在x 轴上的截距为222242121212k k kk k k -=-+++ 设()2212xf x x =-+,则()()()22222112x f x x-+'=, 232x ∴>时, ()0f x '>恒成立x ∴>()0;f x x <<<时()0f x <<MN ∴的垂直平分线在x 轴上的截距的范围是⎛⎫⎛⋃ ⎪ ⎪ ⎝⎭⎝⎭4.【湖南省湘潭市2019届高三上学期第一次模拟检测】已知点F(√3,0)是椭圆C:x 2a 2+y 2b 2=1(a >b >0)的一个焦点,点M (√3,12)在椭圆C 上.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于不同的A,B 两点,且k OA +k OB =−12(O 为坐标原点),求直线l 斜率的取值范围. 【解析】(1)由题可知,椭圆的另一个焦点为(−√3,0),所以点M 到两焦点的距离之和为√(2√3)2+(12)2+12=4.所以a =2.又因为c =√3,所以b =1,则椭圆C 的方程为x 24+y 2=1.(2)当直线l 的斜率不存在时,结合椭圆的对称性可知,k OA +k OB =0,不符合题意. 故设l 直线的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2), 联立{y =kx +m x 24+y 2=1,可得(4k 2+1)x 2+8kmx +4(m 2−1)=0.所以{x 1+x 2=−8km4k 2+1,x 1x 2=4(m 2−1)4k 2+1, 而k OA +k OB =y 1x 1+y 2x 2=(kx 1+m )x 2+(kx 2+m )x 1x 1x 2=2k +m (x 1+x 2)x 1x 2=2k +−8km 24(m 2−1)=−2km 2−1,由k OA +k OB =−12,可得m 2=4k +1.所以k ≥−14,又因为16(4k 2−m 2+1)>0,所以4k 2−4k >0.综上,k ∈[−14,0)∪(1,+∞).5.【北京市海淀区2019届高三上学期期末考试】已知点B(0,−2)和椭圆M:x 24+y 22=1. 直线l:y =kx +1与椭圆M 交于不同的两点P,Q . (Ⅰ) 求椭圆M 的离心率;(Ⅰ) 当k =12时,求ΔPBQ 的面积;(Ⅰ)设直线PB 与椭圆M 的另一个交点为C ,当C 为PB 中点时,求k 的值 . 【解析】(Ⅰ)因为a 2=4,b 2=2,所以a =2,b =√2,c =√2 所以离心率e =c a=√22(Ⅰ)设P(x 1,y 1),Q(x 2,y 2)若k =12,则直线l 的方程为y =12x +1由{x 24+y 22=1y =12x +1 ,得3x 2+4x −4=0 解得 x 1=−2,x 2=23设A(0,1),则 S ΔPBQ =12|AB|(|x 1|+|x 2|)=12×3×(23+2)=4(Ⅰ)法一: 设点C(x 3,y 3),因为P(x 1,y 1),B(0,−2),所以{x 3=x 12y 3=−2+y 12又点P(x 1,y 1),C(x 3,y 3)都在椭圆上,所以{x 124+y 122=1(x 12)24+(−2+y 12)22=1解得{x 1=√142y 1=−12 或{x 1=−√142y 1=−12 所以 k =−3√1414或k =3√1414法二:设C(x 3,y 3)显然直线PB 有斜率,设直线PB 的方程为y =k 1x −2 由{x 24+y 22=1y =k 1x −2, 得 (2k 12+1)x 2−8k 1x +4=0所以{Δ=16(2k 12−1)>0x 1+x 3=8k12k 12+1x 1x 3=42k 12+1又x 3=12x 1 解得{x 1=−√142k 1=−3√1414 或 {x 1=√142k 1=3√1414所以{x 1=−√142y 1=−12或 {x 1=√142y 1=−12所以k =3√1414或k =−3√14146. 【宁夏六盘山高级中学2019届高三上学期期末考试】已知椭圆C:x 2a 2+y 2b 2=1(a >0,b >0)的离心率为√32,长轴长为4,直线y =kx +m 与椭圆C 交于A,B 两点且∠AOB 为直角,O 为坐标原点. (Ⅰ)求椭圆C 的方程; (Ⅰ)求AB 长度的最大值. 【解析】(I )由2a =4,Ⅰa =2,e =√32,Ⅰc =√3,b =1所以椭圆方程为x 24+y 2=1(II )设A(x 1,y 1) B(x 2,y 2),把y =kx +m 代入x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2−4=0 x 1+x 2=−8km4k 2+1,x 1x 2=4m 2−44k 2+1,∠AOB =90°,OA⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2=0, x 1x 2+(kx 1+m)(kx 2+m)=04k 2+4=5m 2,Δ=16(4k 2+1−m 2)>0 Ⅰ4k 2+1−m 2=4k 2+1−4k 2+45>0 Ⅰ16k 2+1>0,则|AB |=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=4√1+k 2√4k 2+1−m 24k 2+1=4√1+k 2√4k 2+1−4k 2+454k 2+1=45√5⋅√16k 4+17k 2+116k 4+8k 2+1。
孝义市2023届高三上学期期末考试数学试卷注意事项1. 考生要认真填写考场号和座位序号。
2. 试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3. 考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知定义在[1,+∞)上的函数f (x )满足()()33f x f x =,且当13x ≤≤时,()12f x x =--,则方程()()2019f x f =的最小实根的值为( )A . 168B . 249C . 411D . 5612. 若[x]表示不超过x 的最大整数(如[][][]2.52,44, 2.53==-=-),已知11210,,7⎡⎤=⨯=⎢⎥⎣⎦n a n b a ()*110,2-=-∈≥n n n b a a n N n ,则2019b =( )A . 2B . 5C . 7D . 83. 在长方体ABCD-1111A B C D 中,1AB =,1=AD AA ,则直线1DD 与平面1ABC 所成角的余弦值为( )A.B.C.D.4. 设()ln f x x =,若函数()()g x f x ax=-在区间(0,e 2)上有三个零点,则实数a 的取值范围是( )A . (0,1e )B . (21e,1e )C . (22e,2e )D . (22e,1e )5. 设,0a R b ∈>,则“32a b >”是“3log a b>”的,A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件6. 如图是一个几何体的三视图,则该几何体的体积为( )A .B .C.3D.37. 下列函数中,值域为R 且为奇函数的是( ) A .2y x =+B .sin y x =C .3=-y x xD .2y x =8. 如图,平面四边形ACBD 中,AB BC ⊥,1,,⊥===AB DA AB AD BC ,现将△ABD 沿AB翻折,使点D 移动至点P ,且PA AC ⊥,则三棱锥P ABC -的外接球的表面积为( )A . 8πB . 6πC . 4πD.3π 9. 已知函()()22sin cos 2cos ,,44ππ⎡⎤=++∈-⎢⎥⎣⎦f x x x x x ,则f (x )的最小值为( ) A.2 B . 1C . 0D.10. 已知随机变量iξ满足()()221,1,2,0,1,2ξ-==-==kkk i i i P k C p p i k ,若12112<<<p p ,则( )A .1212()(),()()ξξξξ<<E E D DB .1212()(),()()ξξξξ<>E E D DC .1212()(),()()ξξξξ><E ED DD .1212()(),()()ξξξξ>>E E D D11. 已知函数()2f x x bx c =++,其中0404,≤≤≤≤b c ,记函数f (x )满足条件:()()21224f f ⎧≤⎪⎨-≤⎪⎩为事件A ,则事件A 发生的概率为A .14B .58C .38D .1212. 将函数()22cos2f x x x=-图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移8π个单位长度,则所得函数图象的一个对称中心为( )A . (38π,0)B . (38π-,-1)C . (38π-,0) D . (38π,-1)二、填空题:本题共4小题,每小题5分,共20分。
2022-2023学年高三上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知三棱锥D ABC -的外接球半径为2,且球心为线段BC 的中点,则三棱锥D ABC -的体积的最大值为( )A .23B .43C .83D .163 2.若不等式32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,则实数a 的取值范围是( )A .932,2ln 2ln 5⎡⎤⎢⎥⎣⎦B .932,2ln 2ln 5⎛⎫ ⎪⎝⎭C .932,2ln 2ln 5⎛⎤ ⎥⎝⎦D .9,2ln 2⎛⎫+∞ ⎪⎝⎭ 3.双曲线﹣y 2=1的渐近线方程是( )A .x±2y=0B .2x±y=0C .4x±y=0D .x±4y=04.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .140D .120 5.设1,0(){2,0x x x f x x ≥=<,则((2))f f -=( ) A .1- B .14 C .12 D .326.设x ,y 满足约束条件34100640280x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则2z x y =+的最大值是( )A .4B .6C .8D .107.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( ).A .15B .25C .310D .148.四人并排坐在连号的四个座位上,其中A 与B 不相邻的所有不同的坐法种数是( )A .12B .16C .20D .89.如图,在正方体1111ABCD A B C D -中,已知E 、F 、G 分别是线段11A C 上的点,且11A E EF FG GC ===.则下列直线与平面1A BD 平行的是( )A .CEB .CFC .CGD .1CC 10.函数||1()e sin 28x f x x =的部分图象大致是( )A .B .C .D .11.如图,在圆锥SO 中,AB ,CD 为底面圆的两条直径,AB ∩CD =O ,且AB ⊥CD ,SO =OB =3,SE 14SB =.,异面直线SC 与OE 所成角的正切值为( ) A .222 B .53C .1316 D .11312.已知符号函数sgnx 100010x x x ⎧⎪==⎨⎪-⎩,>,,<f (x )是定义在R 上的减函数,g (x )=f (x )﹣f (ax )(a >1),则( )A .sgn [g (x )]=sgn xB .sgn [g (x )]=﹣sgnxC .sgn [g (x )]=sgn [f (x )]D .sgn [g (x )]=﹣sgn [f (x )] 二、填空题:本题共4小题,每小题5分,共20分。
题1-2 指对同构(朗博同构)【常见同构形式】(1)乘积模型:ln ln ()ln ln ln ()ln ln ln ln(ln )()ln a b x aa a aeb e f x xe ae b b e e b b f x x x a a b b f x x x ⎧<⋅⇒=⎪<⇒<⇒=⎨⎪+<+⇒=+⎩(2)商式模型:ln ()ln ln ln ()ln ln ln ln ln(ln )()ln a aa ab x e b xf x e b x e b e e e f x a b a b x a a b b f x x x ⎧<⇒=⎪⎪⎪<⇒<⇒=⎨⎪−<−⇒=−⎪⎪⎩(3)和差模型:ln ln ln ()ln ln ln ln ()ln a a aaa b xe e b bf x x xe a b b e e e bf x e x ⎧±<±⇒=±±<±⇒⎨±<±⇒=±⎩【六大超越函数图像】(6)2020新高考1卷21(2)1.已知函数1()ln x f x ae x lna −=−+,若f (x )≥1,求a 的取值范围.2022新高考1卷第22题2.已知函数()x f x e x =−和()ln g x x x =−,证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2022全国甲卷(理)21题3.已知函数()ln xf x x a xx e −=+−.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <.2023新高考1卷T19(2) 同构+切线放缩或2次求导4.已知函数()()x f x a e a x =+−,证明:当a >0时,3()2ln 2f x a >+.2022全国乙卷(理)16题5.已知1x x =和2x x =分别是函数2()2e x f x a x =−(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a的取值范围是 .题型一 一元同构2023深圳高二下期末·21(2)1.已知2()()x f x axe a R =∈,若关于x 的()2ln 0f x x x −−≥恒成立,求实数a 的取值范围.重点题型·归类精讲2.若关于x 的不等式ln ln 0e xx a a xx+−>对()0,1x ∀∈恒成立,则实数a 的取值范围为( ) A .1,e ⎛⎤−∞ ⎥⎝⎦B .1,e ∞⎡⎫+⎪⎢⎣⎭C .1,1e ⎡⎫⎪⎢⎣⎭D .10,e ⎛⎤ ⎥⎝⎦宁波九校高三上期末·22(2) 3.已知函数1()ln 2f x x x x x ⎛⎫=+− ⎪⎝⎭,e 是自然对数的底数.若不等式2()(1)4axf x a e x ≤+−对0x ∀>恒成立,求实数a 的取值范围.江苏盐城2023届高三5月三模·22 4.已知函数()(ln ).x a f x e e a x =−+ (1)当a =1时,求()f x 的单调递增区间; (2)()0f x ≥恒成立,求a 的取值范围.湖南九校联盟第二次联考·16 5.已知不等式))(1ln (0xa x e a a e −⎡⎤≥>⎢⎥⎣⎦恒成立,则实数a 的最大值为_______湖南省2023届高三下3月考试·16 6.已知e 是自然对数的底数.若()0x ∀∈+∞,,e ln mx m x ≥成立,则实数m 的最小值是 .7.若不等式0x ae lnx lna −+恒成立,则a 的取值范围是( )A .1[,)e +∞B .2[,)e +∞C .[,)2e+∞D .[e ,)+∞湖北鄂东南联考 ·88.已知函数()ln x f x x x xe k −=−−−恒有零点,则实数k 的取值范围是( )A .(],1−∞−B .1,1e⎛⎤−∞−− ⎥⎝⎦C .11,1e⎡⎤−−−⎢⎥⎣⎦D .11,0e⎡⎫−−⎪⎢⎣⎭福建龙岩九校联考·16 9.已知函数mx x m x f −+=)1ln()(,若不等式x e x x f −+>1)(在()+∞,0上恒成立,则实数m 的取值范围是____________ .湖南常德3月模拟10.已知不等式ln()x x a e a +≤−对[1,)x ∀∈+∞恒成立,则a 的取值范围为 .浙江省衢州、丽水、湖州三地市2023高三下学期4月教学质量检测·8 11.对任意的实数0x >,不等式22ln ln 0x ae x a −+≥恒成立,则实数a 的最小值为( )e2eC.2eD.12e2022湖北四地七校高二下期中·712.已知实数a >0,不等式()0x e aln ax ->恒成立,则a 的取值范围是( ) A .1<<a e eB .0<a <1C .0<a <eD .a >e湖南郴州高二下期末·16 13.函数.若对任意,都有,则实数m 的取值范围为_________.2023湖南邵阳二模·8 14.若不等式()1e 1ln 10txt x x ⎛⎫−−−≥ ⎪⎝⎭对任意[)2e 1,x ∞∈++恒成立,则正实数t 的取值范围是( )A. ln2,2e 1∞⎡⎫+⎪⎢+⎣⎭B. ln21,2e 1∞+⎡⎫+⎪⎢+⎣⎭C. ln210,2e 1+⎛⎫ ⎪+⎝⎭ D. ln2ln21,2e 12e 1+⎡⎤⎢⎥++⎣⎦15.已知函数ln 0x f xe a ax a a a ,若关于x 的不等式0f x恒成立,则实数a 的取值范围为( ) A .],0(eB .],0(2eC .],1[2eD .),1(2e()()()e1ln R mxf x m x x m =+−−∈0x >()0f x ≥16.关于x 的不等式ln 1axx e xe a x x−≤−−恒成立,则a 的取值范围为 .2022衡阳市八中高二期末·16 17.已知函数1()(0)a x f x x alnx x a e=++−<,若()0f x 在[2x ∈,)+∞上恒成立,则实数a 的取值范围为 . 2023届郴州三模·1618.设实数0m >,若对任意的21x e ∞⎛⎫∈+ ⎪⎝⎭,,不等式ln 1mx mx x e e m m mx−≥−恒成立,则实数m 的取值范围为 .湖北省部分学校高三下5月适应性考试·14 19.对于任意实数0x >,不等式22e ln ln 0x a x a −+≥恒成立,则a 取值范围是__________.2023·广东惠州·一模T22(2)20.已知函数()2ln f x x a x =−,若函数()(2)e x f x a x x ≥+−恒成立,求实数a 的取值范围.2023·广东深圳·南山区高三上期末联考·22 21.已知定义在()0,∞+上的函数()e ax f x x =. (1)若R a ∈,讨论()f x 的单调性;(2)若0a >,且当()0,x ∈+∞时,不等式2e ln aax xx ax ⎛⎫≥⎪⎝⎭恒成立,求实数a 的取值范围.2023·广东汕头·一模T2222.已知函数()e ln(2)ln 2x f x a x a =−++−.(1)若函数()f x 在2023x =处取得极值,求a 的值及函数的单调区间; (2)若函数()f x 有两个零点,求a 的取值范围.的题型二 二元同构2022届山东聊城一模·823.已知正数x ,y 满足ylnx +ylny =e x ,则xy ﹣2x 的最小值为( ) A .1122n B .222ln ﹣ C .1122n −D .222ln +24.实数x ,y 满足ln ln xe y x y y =+,则2ln xe y x−的最小值为________2022届T8第一次联考·825.设a ,b 都为正数,e 为自然对数的底数,若1a ae b blnb ++<,则( ) A .ab e >B .1a b e +>C .ab e <D .1a b e +<2023茂名市高三一模·1226.(多选)e 是自然对数的底数,,m n ∈R ,已知e ln ln m m n n n m +>+,则下列结论一定正确的是( ) A .若0m >,则0m n −> B .若0m >,则e 0m n −> C .若0m <,则ln 0m n +< D .若0m <,则e 2m n +>河北省衡水中学2023届高三下学期第三次综合素养评价·16 27.若正实数a ,b 满足()1ln ln e a a b a a b −−+≥,则1ab的最小值为 .28.设11110e ,11ln1.111a b ==,则( )A .1ab a <<B .1ab b <<C .1a ab <<D .1b ab <<题型三 局部同构华大新高考五月押题卷·1229.(多选)已知0λ>,若关于x 的方程()1ln 0x e x x xλλλ−−+=存在正零点,则实数λ的值可能为A .1eB .12C .eD .230.已知函数1ln )(−−=x ae x f x ,若0)(≥x f 恒成立,则实数a 的取值范围是 .2023·广东·海珠区高三2月联考·22 31.已知函数()()1e 02x f x ax a =−≠. (1)讨论函数()f x 的单调性; (2)已知函数()()ln xg x f x x=−有两个零点,求实数a 的取值范围.2023·广东3月·中学生标准学术能力诊断测试联考模拟预测T22(2) 部分同构+放缩 32.设()()e xxf x x =∈R ,若(e )()(ln 1)x f x k x ⋅≤⋅+在()1,x ∈+∞上恒成立,求k 的取值范围.2023·广东·深圳中学5月适应性测试T22(1) 部分同构33.已知函数()e ln xf x ax a x x =−−,若不等式()0f x <恒成立,求实数a 的取值范围.题型四 同构+切线放缩2023佛山一模T1134.(多选)若正实数x ,y 满足()1e 1ln x x y y −=+,则下列不等式中可能成立的是( )A .1x y <<B .1y x <<C .1x y <<D .1y x <<巴蜀中学2023届高考适应性月考卷(八)T8——局部构造+切线放缩35.已知函数22ln 1()e x x f x x a x+=−−,当()0,x ∈+∞时,()0f x ≥恒成立,则实数a 的取值范围是( ) A .(2,e 1⎤−∞−⎦B .(],e −∞C .(],2−∞D .(],1−∞2023届湖南四大名校5月“一起考”T736.若当π0,2x ⎛⎫∈ ⎪⎝⎭时,关于x 的不等式2e cos cos lncos 1x x x x x ax −++≥恒成立,则满足条件的a 的最小整数为( ) A. 1 B. 2 C. 3 D. 437.(2023·广东珠海·高三联考模拟考试)已知函数()()()()ln 2R ,e 1xf x x ax ag x x x a x =−−∈=−−+.(1)求函数()f x 的单调区间;(2)若不等式()()f x g x ≤恒成立,求实数a 的取值范围.38.(2023·广东·统考一模)已知函数()1e x f x x +=.(1)求()f x 的极值; (2)当0x >时,()()1ln 2f x a x x ≥+++,求实数a 的取值范围.补充练习杭州一模(高三上期末)T16——同构有一定难度,函数分析也比较麻烦1.已知不等式()ln ln 10,1()xa a a x a a >−>≠对)1,(x ∀∈+∞恒成立,a 的取值范围是________.2023湖北高三九师联盟1月·82.已知a >b >1,若1a a b e be ae a ++=+,则 A .ln(a +b )>1B .ln(a -b )<0C .333a b −+<D .133a b −<湖北名校联合体高三下学期开学考·163.已知关于x 的不等式()1ln 2x e a a ax a −+>−(0)a >恒成立,则实数a 的取值范围为________.4.对0x ∀>,恒有()112ln axa e x x x ⎛⎫+≥+⎪⎝⎭,则实数a 的最小值为________.专题1-2 指对同构(朗博同构)【常见同构形式】(1)乘积模型:ln ln ()ln ln ln ()ln ln ln ln(ln )()ln a b x aa a aeb e f x xe ae b b e e b b f x x x a a b b f x x x ⎧<⋅⇒=⎪<⇒<⇒=⎨⎪+<+⇒=+⎩(2)商式模型:ln ()ln ln ln ()ln ln ln ln ln(ln )()ln a aa ab x e b xf x e b x e b e e e f x a b a b x a a b b f x x x ⎧<⇒=⎪⎪⎪<⇒<⇒=⎨⎪−<−⇒=−⎪⎪⎩(3)和差模型:ln ln ln ()ln ln ln ln ()ln a a aaa b xe e b bf x x xe a b b e e e bf x e x⎧±<±⇒=±±<±⇒⎨±<±⇒=±⎩【六大超越函数图像】(6)2020新高考1卷21(2)1.已知函数1()ln x f x ae x lna −=−+,若f (x )≥1,求a 的取值范围.【答案】[)1+∞, [方法一]:【最优解】:同构由()1f x ≥得1e ln ln 1x a x a −−+≥,即ln 1ln 1ln a x e a x x x +−++−≥+,而ln ln ln x x x e x +=+,所以ln 1ln ln 1ln a x x e a x e x +−++−≥+.令()m h m e m =+,则()10m h m e +'=>,所以()h m 在R 上单调递增.由ln 1ln ln 1ln a x x e a x e x +−++−≥+,可知(ln 1)(ln )h a x h x +−≥,所以ln 1ln a x x +−≥,所以max ln (ln 1)a x x ≥−+. 令()ln 1F x x x =−+,则11()1xF x x x−'=−=. 所以当(0,1)x ∈时,()0,()F x F x '>单调递增; 当(1,)x ∈+∞时,()0,()F x F x '<单调递减. 所以max [()](1)0F x F ==,则ln 0a ≥,即1a ≥. 所以a 的取值范围为1a ≥. [方法二]:换元同构由题意知0,0a x >>,令1x ae t −=,所以ln 1ln a x t +−=,所以ln ln 1a t x =−+. 于是1()ln ln ln ln 1x f x ae x a t x t x −=−+=−+−+.由于()1,ln ln 11ln ln f x t x t x t t x x ≥−+−+≥⇔+≥+,而ln y x x =+在,()0x ∈+∞时为增函数,故t x ≥,即1x ae x −≥,分离参数后有1x xa e −≥.令1()x x g x e −=,所以1112222(1)()x x x x x e xe e x g x e e −−−−−−−=='. 当01x <<时,()0,()g x g x >'单调递增;当1x >时,()0,()g x g x <'单调递减. 所以当1x =时,1()x x g x e−=取得最大值为(1)1g =.所以1a ≥.[方法三]:通性通法1()ln ln x f x ae x a −=−+,11()x f x ae x−'∴=−,且0a >.设()()g x f x =',则121()0,x g x ae x −'=+> ∴g(x)在(0,)+∞上单调递增,即()f x '在(0,)+∞上单调递增, 当1a =时,()01f '=,∴()()11min f x f ==,∴()1f x ≥成立.当1a >时,11a < ,111a e −<∴,111()(1)(1)(1)0a f f a e a a−''∴=−−<,∴存在唯一00x >,使得01001()0x f x ae x −'=−=,且当0(0,)x x ∈时()0f x '<,当0(,)x x ∈+∞时()0f x '>,0101x ae x −∴=,00ln 1ln a x x ∴+−=−, 因此01min 00()()ln ln x f x f x ae x a −==−+000011ln 1ln 2ln 122ln 1a x a a x a x x =++−+≥−+⋅=+>1, ∴()1,f x >∴()1f x ≥恒成立;当01a <<时, (1)ln 1,f a a a =+<<∴(1)1,()1f f x <≥不是恒成立. 综上所述,实数a 的取值范围是[1,+∞). [方法四]:因为定义域为(0,)+∞,且()1f x ≥,所以(1)1f ≥,即ln 1a a +≥. 令()ln S a a a =+,则1()10S a a='+>,所以()S a 在区间(0,)+∞内单调递增. 因为(1)1S =,所以1a ≥时,有()(1)S a S ≥,即ln 1a a +≥. 下面证明当1a ≥时,()1f x ≥恒成立.令1()ln ln x T a ae x a −=−+,只需证当1a ≥时,()1T a ≥恒成立. 因为11()0x T a ea−=+>',所以()T a 在区间[1,)+∞内单调递增,则1min [()](1)ln x T a T e x −==−. 因此要证明1a ≥时,()1T a ≥恒成立,只需证明1min [()]ln 1x T a e x −=−≥即可.由1,ln 1x e x x x ≥+≤−,得1,ln 1x e x x x −≥−≥−.上面两个不等式两边相加可得1ln 1x e x −−≥,故1a ≥时,()1f x ≥恒成立. 当01a <<时,因为(1)ln 1f a a =+<,显然不满足()1f x ≥恒成立.所以a 的取值范围为1a ≥.【整体点评】(2)方法一:利用同构思想将原不等式化成ln 1ln ln 1ln a x x e a x e x +−++−≥+,再根据函数()m h m e m =+的单调性以及分离参数法即可求出,是本题的最优解;方法二:通过先换元,令1x ae t −=,再同构,可将原不等式化成ln ln t t x x +≥+,再根据函数ln y x x =+的单调性以及分离参数法求出;方法三:利用导数判断函数()f x 的单调性,求出其最小值,由min 0f ≥即可求出,解法虽稍麻烦,但是此类题,也是本题的通性通法;方法四:由特殊到一般,利用(1)1f ≥可得a 的取值范围,再进行充分性证明即可2022新高考1卷第22题2.已知函数()x f x e x =−和()ln g x x x =−,证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列. 【解答】易得()f x 在()0,+∞↑,(),0−∞↓;()g x 在()0,1↓,()1,+∞↑只有y b =过()f x 与()g x 交点时,恰有3个不同交点 则有1223()()()()f x f x g x g x b ====,即12122233ln ln x xe x e x x x x x b −=−=−=−= ①∵111122ln ln xxxe x e e x x −==−− ,且1211,xe x <<,∴1212ln xe x x x =⇒= ② 又∵32ln 3332ln ln x x x x ex e x −=−=− ,且3200ln ,x x >>,∴2323ln x x x x e =⇒= ③由①②③可得:()()2132222ln 2xx x e x b x x b x +=+=++−=,证毕2022全国甲卷(理)21题3.已知函数()ln xf x x a x x e −=+−.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <. 【详解】(1)[方法一]:同构处理 由()0f x ≥得:ln ln 0x x e x x a −++−−≥令ln ,1t x x t −=≥,则()0tf t e t a =+−≥即t a e t ≤+ 令()[),1,tg t e t t =+∈+∞,则()'10tg t e =+>故()tg t e t =+在区间[)1,+∞上是增函数故()()min 11g t g e ==+,即1a e ≤+ 所以a 的取值范围为(,1]e −∞+ [方法二]:常规求导()f x 的定义域为(0,)+∞,则2111()1x f x e x x x ⎛⎫'=−−+ ⎪⎝⎭1111111x x x e e x x x x x ⎛⎫−⎛⎫⎛⎫=−+−=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()0f x '=,得1x =当(0,1),()0,()x f x f x '∈<单调递减当(1,),()0,()x f x f x >'∈+∞单调递增()(1)1f x f e a ≥=+−, 若()0f x ≥,则10e a +−≥,即1a e ≤+ 所以a 的取值范围为(,1]e −∞+ (2)法一:极值点偏移+同构简化计算由题知,()f x 一个零点小于1,一个零点大于1,不妨设121x x ,要证121x x <,即证121x x <因为121,(0,1)x x ∈,即证()121f x f x ⎛⎫> ⎪⎝⎭, 又因为()()12f x f x =,故只需证()221f x f x ⎛⎫> ⎪⎝⎭,即证11ln ln 0,(1,)x x e x x xe x x x x −+−−−>∈+∞同构,原不等式变形为:()1ln ln 1ln ln x x xxex x ex x+−++−>+ 令()xg x e x =+,则有1(ln )ln g x x g x x ⎛⎫−>+⎪⎝⎭即证:)1ln ln ,(1,x x x x x−>∈+∞+ 即证1()2ln 0(1,,)h x x x xx =+∈<+∞− ()()222121'()10,1x h x x x x x−−=−−=<>,即()h x 递减,故()(1)0h x h <=,证毕. [方法二]:对数平均不等式由题意得:()ln x xe ef x a x x=+−令1xe t x=>,则()ln f t t t a =+−,()1'10f t t =+>所以()ln g t t t a =+−在()1,+∞上单调递增,故()0g t =只有1个解又因为()ln x xe ef x a x x =+−有两个零点12,x x ,故1212x x e e t x x == 两边取对数得:1122ln ln x x x x −=−,即12121ln ln x x x x −=−()121212*ln ln x x x x x x −<−121x x <,即121x x <()121212*ln ln x x x x x x −<−121211212121222112ln ln ln ln ln x x xx xx x x x x x x x x x x −<⇔−⇔<−不妨设121x t x =>,则只需证12ln t t t <−构造()12ln ,1h t t t t t =−+>,则()22211'110h t t t t ⎛⎫=−−=−−< ⎪⎝⎭故()12ln h t t t t=−+在()1,+∞上单调递减故()()10h t h <=,即12ln t t t<−得证2023新高考1卷T19(2) 同构+切线放缩或2次求导4.已知函数()()x f x a e a x =+−,证明:当a >0时,3()2ln 2f x a >+. 解:即证:当a >0时,232ln 2xae a x a +−>+第一步,指数化,同构变形:()ln 2ln 2332ln ln ln 22a xa x ea x a e a x a a +++−>+⇒−+>−+ 第二步,换元:令ln t a x =+,t ∈R ,有23ln 2te t a a −>−+ 第三步,放缩:1t e t −≥(证明略),即证231ln 2a a >−+第四步,构造函数:令23()ln 2g a a a =−+,1'()2g a a a =−,故()g a 在202⎛⎫↑ ⎪ ⎪⎝⎭,,2,2⎫+∞↓⎪⎢⎪⎣⎭22132()ln ln 1122222g a g ⎛≤=−+=+< ⎝⎭2022全国乙卷(理)16题5.已知1x x =和2x x =分别是函数2()2e x f x a x =−(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a的取值范围是 .【答案】1,1e ⎛⎫⎪⎝⎭【详解】[方法一]:转化法,零点的问题转为函数图象的交点因为()2ln 2e xf x a a x '=⋅−,所以方程2ln 2e 0x a a x ⋅−=的两个根为12,x x ,即方程ln e x a a x ⋅=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,因为12,x x 分别是函数()22e x f x a x =−的极小值点和极大值点,所以函数()f x 在()1,x −∞和()2,x +∞上递减,在()12,x x 上递增, 所以当时()1,x −∞()2,x +∞,()0f x '<,即e y x =图象在ln x y a a =⋅上方 当()12,x x x ∈时,0fx,即e y x =图象在ln x y a a =⋅下方1a >,图象显然不符合题意,所以01a <<.令()ln x g x a a =⋅,则()2ln ,01xg x a a a '=⋅<<,设过原点且与函数()y g x =的图象相切的直线的切点为()00,ln x x a a⋅,则切线的斜率为()020ln x g x a a '=⋅,故切线方程为()0020ln ln x x y a a a a x x −⋅=⋅−,则有0020ln ln x x a a x a a −⋅=−⋅,解得01ln x a=,则切线的斜率为122ln ln eln a a a a ⋅=, 因为函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,所以2eln e a <,解得1e e a <<,又01a <<,所以11ea <<,综上所述,a 的取值范围为1,1e ⎛⎫⎪⎝⎭.[方法二]:【通性通法】构造新函数,二次求导 ()2ln 2e x f x a a x '=⋅−=0的两个根为12,x x因为12,x x 分别是函数()22e x f x a x =−的极小值点和极大值点,所以函数()f x 在()1,x −∞和()2,x +∞上递减,在()12,x x 上递增,设函数()()()g 2ln xx f x a a ex '==−,则()()2g 2ln 2x x a a e '=−,若1a >,则()g x '在R 上单调递增,此时若()0g 0x '=,则()f x '在()0-,x ∞上单调递减,在()0,x +∞上单调递增,此时若有1x x =和2x x =分别是函数()22(0x f x a ex a =−>且1)a ≠的极小值点和极大值点,则12x x >,不符合题意;若01a <<,则()g x '在R 上单调递减,此时若()0g 0x '=,则()f x '在()0,x −∞上单调递增,在()0,x +∞上单调递减,令()0g 0x '=,则02(ln )xea a =,此时若有1x x =和2x x =分别是函数()22(0x f x a ex a =−>且1)a ≠的极小值点和极大值点,且12x x <,则需满足()00f x '>,()()00002ln 20ln xe f x a a ex ex a ⎛⎫'=−=−> ⎪⎝⎭,即001ln 1ln x x a a <>,故()002ln ln ln 1ln x e a x a a ==>,所以11ea <<. [方法三]:同构+放缩(简证) ① 先得出01a << ② ()ln ln 2ln ln ln ln x a xx ae ea a ex ea ex x a a ⋅=⇒⋅=⇒=(ln 0x a >)③ 放缩:xxe e ex e x≥⇒≥()()221ln 11ln 01ln ee a a a ea >⇒<⇒−<<⇒<<题型一 一元同构2023深圳高二下期末·21(2)1.已知2()()x f x axe a R =∈,若关于x 的()2ln 0f x x x −−≥恒成立,求实数a 的取值范围.【答案】1a e≥【简证】()2ln 0f x x x −−≥恒成立等价于()22ln 0xaxe x x −−≥恒成立,即()()ln 2ln 22ln 2ln 0x xx x aee x x ae x x +−+=−+≥,则有ln 22ln x xx xa e++≥令2ln t x x =+,t ∈R ,则有max1t t a e e ⎛⎫≥=⎪⎝⎭(构造函数求导得出最值,过程略) 总结:同构+分参2.若关于x 的不等式ln ln 0e xx a a xx+−>对()0,1x ∀∈恒成立,则实数a 的取值范围为( ) A .1,e ⎛⎤−∞ ⎥⎝⎦B .1,e ∞⎡⎫+⎪⎢⎣⎭C .1,1e ⎡⎫⎪⎢⎣⎭D .10,e ⎛⎤ ⎥⎝⎦【答案】B【分析】由题意可知0a >,且ln e ln e xx a xa x >对()0,1x ∀∈恒成立,设()ln x g x x =,则问题转化为()()e xg a g x >在()0,1上恒成立,利用导数说明函数的单调性,再分e 1x a ≥和0e 1x a <<两种情况讨论,结合函数的取值情况及单调性,分别计算可得.重点题型·归类精讲【详解】由题意可知0a >,ln e ln ln e x x a a x x +>,即ln e ln e x x a xa x >对()0,1x ∀∈恒成立. 设()ln x g x x =,则问题转化为()()e xg a g x >在()0,1上恒成立,因为()21ln xg x x−'=,所以当0e x <<时,()0g x '>,当e x >时,()0g x '<, 所以()g x 在()0,e 上单调递增,在()e,+∞上单调递减,又()10g =,所以当()0,1x ∈时,()0g x <;当()1,x ∈+∞时,()0g x >. ①在()0,1x ∈上,若e 1x a ≥恒成立,即1a ≥,()()e0xg a g x ≥>;②在()0,1x ∈上,若0e 1x a <<,则e x a x >恒成立,即1e xxa <<恒成立, 令()e x x h x =,()0,1x ∈,则()10ex xh x −'=>,所以()h x 在()0,1上单调递增, 所以()()11e h x h <=,所以11e a <≤,综上所述,实数a 的取值范围为1,e ∞⎡⎫+⎪⎢⎣⎭.故选:B .宁波九校高三上期末·22(2) 3.已知函数1()ln 2f x x x x x ⎛⎫=+− ⎪⎝⎭,e 是自然对数的底数.若不等式2()(1)4axf x a e x ≤+−对0x ∀>恒成立,求实数a 的取值范围. 【答案】实数a 的取值范围为2,e ⎡⎫+∞⎪⎢⎣⎭.12()(1)42ln 4(1)4ax ax f x a e x x x x a e x x ⎛⎫≤+−⇒+−≤+− ⎪⎝⎭,整理,同乘x 得:()2212ln (1)1ln (1)ax axx x a e x x ax e x ⎛⎫+≤+⇒+≤+ ⎪⎝⎭, 比较一下2种构造方式,方式1:令()x g x xe x =+,()'()11xg x x e =++,易错:由洛必达可知(选填时用)——这里用不了错了!()111lim 1lim 0x x x x x x x e e e −−→−∞→−∞+−∞+=====−+∞−−∞,故()'()110()xg x x e g x =++>⇒↑()11'()111x xx xx x e g x x e e e−−−+++=++=+=,令()1xh x e x =−+,易知()h x ≥2恒成立, 故()11()0'()0()xx x e e x h x g x g x −−++=−−++=−>⇒>⇒↑由()2222ln 21ln (1)ln ln axx ax x x ax e x ex axe ax +≤+⇒+≤+,则有2(ln )()g x g ax ≤,由单调性可知22min ln 2ln x x ax a x e⎛⎫≤⇒≥= ⎪⎝⎭参考ln xy x=图像可以快速得出答案,解答题还是要写一下求导过程. 方式2:()ln g x x x x =+总结:(1)求导通分看极值点即可,注意2个增区间之间用“,”而不是“∪”(2)先同构再判断单调性. 江苏盐城2023届高三5月三模·22 4.已知函数()(ln ).x a f x e e a x =−+ (1)当a =1时,求()f x 的单调递增区间; (2)()0f x ≥恒成立,求a 的取值范围.【答案】(1)()1,+∞(2)(,1]−∞(1)解:当时,,,又,单调递增, ··············································· 2分 又,当时,当时,∴的单调递增区间为()1,+∞. ·························································· 4分 1a =()()1ln x f x e e x =−+()xe f x e x'=−()20xef x e x ''=+>()f x '∴()10f '=∴()0,1x ∈()0f x '<()1,x ∈+∞()0f x '>()f x(2)若恒成立,即恒成立.方法1:,,令, 则,在上单调递增,又,当时,故存在唯一正实数使得, ····················································· 6分 当时,,单调递减,当时,,单调递增,,由恒成立,得,由得,, ······ 8分 ∴,∴,∴,设,则恒成立,故在上递增,而,∴, 又且函数在上是增函数,故的取值范围为. ···································································· 12分 法2:同法一得,由得,∴ ,,故的取值范围为. ················· 12分方法3:令,则,,则,令,则, ················································ 8分 ∵,∴在上单调递增,当时,显然成立;当时,恒成立,即恒成立,可证(过程略),,,即,,综上,的取值范围为(,1]−∞. ······························································ 12分 ()0f x ≥()ln 0x ae e a x −+≥()ln x a af x e e x e a =−−()a x a x e xe e f x e x x−'=−=()x ag x xe e =−()0x x g x e xe '=+>()x ag x xe e ∴=−()0,+∞()00ag e =−<x →+∞()g x →+∞0x 00x a x e e =0x x <()0f x '<()f x 0x x >()0f x '>()f x ()()000min ln x a a f x f x e e x e a ∴==−−()0f x ≥()min 0f x ≥00x a x e e =00ln x x a +=()()00000min (2ln )0x xf x f x e x e x x ∴==−+≥0001(2ln )0x x x −+≥000(2ln )10x x x +−≤00012ln 0x x x +−≤1()2ln h x x x x=+−221()10h x x x '=++>()h x (0,)+∞(1)0h =001x <≤00ln x x a +=ln y x x =+(0,1]a (,1]−∞()()000min ln x a af x f x e e x e a ==−−00x a x e e =00ln x x a +=()000min00011ln ln aa a a a a a e f x e x e a e x e a e x a e a x x x ⎛⎫⎛⎫=−−=−−=+−− ⎪ ⎪⎝⎭⎝⎭()20a a e a e a ≥−−≥()220a e a ∴−≥a (,1]−∞a e t =ln a t =()()ln ln ln x e t t x t tx ≥+=()()()ln ln ln tx xxe tx tx tx e ≥=()(0)xg x xe x =>()()ln()g x g tx ≥()()10x g x x e '=+>()(0)xg x xe x =>()0,+∞()ln 0tx ≤()()ln()g x g tx ≥()ln 0tx >()ln ln ln x tx t x ≥=+ln ln t x x ≤−ln 1x x −≥∴ln 1t ≤∴t e ≤a e e ≤∴1a ≤a方法4:∵恒成立,∴,即,同法3考查函数可得, ··········································· 7分 反之,当时,, 又可证(过程略),∴,∴恒成立,故的取值范围为. ···································································· 12分 补充:同构和型+放缩ln (ln )0(ln )ln ln ln x a x a x a x a x e x x e a x e e a x e a x e x x a e −−−+≥⇒≥+⇒−≥+⇒+≥+=+令()x g x e x =+↑,则有()min ()(ln )ln ln 1g x a g x x a x a x x −≥⇒−≥⇒≤−=总结:(1)两次求导+取点(2)法一和法二是整体求导再用隐零点处理,法三和法四是同构处理相对简单 湖南九校联盟第二次联考·16 5.已知不等式))(1ln (0xa x e a a e −⎡⎤≥>⎢⎥⎣⎦恒成立,则实数a 的最大值为_______ 【答案】2e[]ln ln (1)lnln (1)1ln ln(1)1ln ln(1)1x x x a x a a x e a e a a x e a x x x e a x e−−−≥⇒≥−−−+⇒≥+−⇒−+−≥−令()x g x e x =+↑,则有()2(ln )ln(1)ln ln(1)ln(1)ln 2ln g x a g x x a x x x a a e a −≥−⇒−≥−⇒−−≥⇒≥⇒≥可放缩补充:构造函数求导令ln(1)()g x x x −−=,12()111x g x x x '−=−=−− 故g (x )在(1,2)上单调递减,在(2,+∞)上单调递增,因此min ()(2)2g x g ==. 因为不等式(1)ln(0)xa x e a a e−≥>恒成立,所以Ina ≤2,即2.a e ≤ 总结:指对分离,补全结构,最后的最值可以放缩得出. 补充:对右边的式子配凑也可以()0f x ≥(1)0f ≥a e e a ≥()(0)xg x xe x =>1a ≤1a ≤11x a a x −+≥+−ln 1,1x a x x e x a −≤−≥−+ln x a e a x −≥+()ln x ae e a x ≥+a (,1]−∞湖南省2023届高三下3月考试·166.已知e 是自然对数的底数.若()0x ∀∈+∞,,e ln mx m x ≥成立,则实数m 的最小值是 . 【答案】1e解析:由ln e ln e ln ln mx mx x m x mx x x e x ≥⇒≥=⋅.令()e x f x x =,则()f x 在()0+∞,上单调递增, 且()()ln f mx f x ≥,所以ln mx x ≥,即ln xm x≥对()0x ∀∈+∞,恒成立. 令()ln xg x x =,则()21ln x g x x−'=,所以当()0e x ∈,时,()0g x '>;当()e x ∈+∞,时,()0g x '<, 故()g x 在[)1+∞,上的最大值是1e ,所以1e m ≥,即实数m 的最小值是1e .故答案为:1e. 总结:同乘补全结构即可,入门型7.若不等式0x ae lnx lna −+恒成立,则a 的取值范围是( )A .1[,)e +∞B .2[,)e +∞C .[,)2e+∞D .[e ,)+∞【答案】A 【法一】:同构ln ln ln ln ln 0ln ln ln ln ln x a x a x x ae x a e e a x e a x x x e x +⇒+−+≥⇒≥+≥=+++构造函数()x g x e x =+,故ln ln ln ln (ln )(ln )a x x e a x e x g a x g x ++≥++≥+⇒ 而'()10x g x e =+>,则ln ln a x x +≥,即()max ln ln a x x ≥−令ln y x x =−,则1x y x '−=,故max 1y =−,则1ln 1a a e≥−⇒≥. 对于ln ln a x x +≥还可以直接分类参数:max1ln ln ln ln ln ln x xx xx a x x a x e a ee e ⎛⎫⎛⎫+≥⇒≥−=⇒≥= ⎪ ⎪⎝⎭⎝⎭ 总结:需要同加x 才能补全结构 【法二】:整体求导、取点设()x f x ae lnx lna =−+,则0x >,0a >,1()x f x ae x∴'=−, 易知()f x '在(0,)+∞上为增函数,存在0(0,)x ∈+∞,使得0001()0x f x ae x '=−=, 即01x ae x =, 两边取对数,可得00lna x lnx +=−,当00x x <<时,()0f x '<,函数()f x 单调递减, 当0x x >时,()0f x '>,函数()f x 单调递增,000001()()2x min f x f x ae lnx lna x lna x ∴==−+=++, 不等式0x ae lnx lna −+恒成立,∴00120x lna x ++恒成立, ∴12x lna x +−恒成立, 00001122x x x x +⋅=,当且仅当01x =时取等号, 22lna ∴−,即1ae ,故a 的取值范围是1[e,)+∞.湖北鄂东南联考 ·88.已知函数()ln x f x x x xe k −=−−−恒有零点,则实数k 的取值范围是( )A .(],1−∞−B .1,1e⎛⎤−∞−− ⎥⎝⎦C .11,1e⎡⎤−−−⎢⎥⎣⎦D .11,0e⎡⎫−−⎪⎢⎣⎭方法1:同构要使()ln x f x x x xe k −=−−−恒有零点,只需ln ln l =n x x x k x x xe x x e e −−=−−−− 设ln x x t −=,求导可知(],1t ∈−∞−而t k t e =−,求导可知函数t k t e =−在(],1−∞−上单调递增,故1,1k e ⎛⎤∈−∞−⎥⎝⎦方法2:分参求导ln xk x x xe −=−−,令()ln xg x x x xe −=−−,则()1'()1111x x x g x e x x x e x e −−⎪=⎛⎫+−=−−− ⎝⎭∵110xx e −> 故()ln x g x x x xe −=−−在(]0,1递增,()1,+∞递减,故max 1()(1)1g x g e==−−,故选B.注:由常见不等式1x e x ≥+得到,即1100xx e x x e−−>⇒>; 或者令11()x x xe e h x e x x x −=−=,221'()x x x e h x e−=,因为0x >,故'()0h x > 方法3:直接求导(可以消掉k )()()2111'()1xx x x x xxx x e x xe e x x f x x e e xe xe −−−−−=−+=++=,不难得出x x e −在()0,+∞上恒小于0,故()f x 在()0,1上单调递增,在[)1,+∞上递减,故max 1()(1)1f x f k e ==−−−,当0x →时,()f x →−∞,故()f x 的值域为1,1k e ⎛⎤−∞−−− ⎥⎝⎦,则11101k k e e−−−≥⇒≤−−. 福建龙岩九校联考·169.已知函数mx x m x f −+=)1ln()(,若不等式x e x x f −+>1)(在()+∞,0上恒成立,则实数m 的取值范围是____________ . 【答案】(],1−∞x e x x f −+>1)(在()+∞,0上恒成立等价于ln(1)1x m x mx x e +−>+−第一步,错位同构:()ln(1)1xm x x mx e +−+>−,第二步,构造对应函数:令()xg x mx e =−,则有[]ln(1)()g x g x +>第三步,分析单调性,定义域:易知0ln(1)x x <+<,故()g x 在()0,+∞上单调递减 第四步,由单调性求出参数范围:()min'()001xx g x m e x m e=−≤>⇒≤=总结:错位同构,很少见,最后要注意取等.湖南常德3月模拟10.已知不等式ln()x x a e a +≤−对[1,)x ∀∈+∞恒成立,则a 的取值范围为 . 【答案】11a e −<≤−解析:易得:()ln()ln()x xx a e a x a x a x e +≤−⇒+++≤+,1a >−即:ln()ln()x a x x a e x e +++≤+,构造函数()xg x x e =+,∴()()()ln g x a g x +≤.易知()g x 在[1,)x ∈+∞为增函数;∴()ln x x a ≥+, 令()()ln h x x x a =−+,()111x a h x x a x a+−'=−=++, 当0a ≥时,()0h x '≥,()h x 在[1,)x ∈+∞为增函数,()()10h x h ≥≥,∴01a e ≤≤−;当10a −<<时,11a −>;[1,1)x a ∈−,()0h x '<;()1x a ∈−+∞,时,()0h x '≥; ∴()()min 110h x h a a =−=−≥,∴11a −<≤,综上:11a e −<≤−. 总结:最后不等式要注意x 取值范围 补充:对于()ln x x a ≥+,也可以分参()()()minln ln ln 1x x x x x a e x a e x a a e x e ≥+⇒≥+⇒≥+⇒≤−=−浙江省衢州、丽水、湖州三地市高三下学期4月教学质量检测·811.对任意的实数0x >,不等式22ln ln 0x ae x a −+≥恒成立,则实数a 的最小值为( )e2eC.2eD.12e【答案】D总结:指对分离,补全结构2022湖北四地七校高二下期中·712.已知实数a >0,不等式()0x e aln ax ->恒成立,则a 的取值范围是( ) A .1<<a e eB .0<a <1C .0<a <eD .a >e【解答】解:令f (x )=e x ﹣aln (ax ),a >0,x ∈(0,+∞),f ′(x )=e x ﹣在x ∈(0,+∞)上单调递增,x →0时,f ′(x )→﹣∞;x →+∞时,f ′(x )→+∞. ∴存在唯一x 0>0,使得﹣=0,即=,x 0=lna ﹣lnx 0,∴x =x 0时,函数f (x )取得极小值即最小值,f (x 0)=+ax 0﹣2alna >0,∴2﹣2lna >0,解得0<a <e . 总结:补全结构即可。
北京市海淀区北京师大附中2024年数学高三第一学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设向量a ,b 满足2=a ,1b =,,60a b =,则a tb +的取值范围是 A .)2,⎡+∞⎣B .)3,⎡+∞⎣C .2,6⎡⎤⎣⎦D .3,6⎡⎤⎣⎦2.已知集合{}|1A x x =>-,集合(){}|20B x x x =+<,那么A B 等于( )A .{}|2x x >-B .{}1|0x x -<<C .{}|1x x >-D .{}|12x x -<<3.如图所示,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A .212 B .212C .612D .3124.若复数z 满足2312z z i -=+,其中i 为虚数单位,z 是z 的共轭复数,则复数z =( ) A .35B .25C .4D .55.已知集合A ={﹣2,﹣1,0,1,2},B ={x |x 2﹣4x ﹣5<0},则A ∩B =( ) A .{﹣2,﹣1,0}B .{﹣1,0,1,2}C .{﹣1,0,1}D .{0,1,2}6.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )A .13B .310C .25D .347.如图,正四面体P ABC -的体积为V ,底面积为S ,O 是高PH 的中点,过O 的平面α与棱PA 、PB 、PC 分别交于D 、E 、F ,设三棱锥P DEF -的体积为0V ,截面三角形DEF 的面积为0S ,则( )A .08V V ≤,04S S ≤B .08V V ≤,04S S ≥C .08V V ≥,04S S ≤D .08V V ≥,04S S ≥8.在复平面内,复数z a bi =+(a ,b R ∈)对应向量OZ (O 为坐标原点),设OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nn r i r n i n θθθθ+=+⎡⎤⎣⎦,已知)43z i =,则z =( )A .23B .4C .83D .169.已知函数()3cos f x x m x =+,其图象关于直线3x π=对称,为了得到函数2()3g x m x =+的图象,只需将函数()f x 的图象上的所有点( ) A .先向左平移6π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 B .先向右平移6π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 C .先向右平移3π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 D .先向左平移3π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 10.已知{}n a 为正项等比数列,n S 是它的前n 项和,若116a =,且4a 与7a 的等差中项为98,则5S 的值是( )A .29B .30C .31D .3211.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元12.已知定义在R 上函数()f x 的图象关于原点对称,且()()120f x f x ++-=,若()11f =,则()1(2)(3)(2020)f f f f ++++=( )A .0B .1C .673D .674二、填空题:本题共4小题,每小题5分,共20分。
一、选择题:(每题5分,共60分)1.已知集合A={x|x2-x-2≤0},B={x|-2<x≤1},则A∩B=() A.[-1,2]B.[-1,1]C.(-2,1]D.[-2,2]2.i是虚数单位,复数z满足i·z=1+3i,则|z|=()A.10B.10C.8D.223.设向量a,b满足|a+2b|=5,|a|=2,|b|=3,则a,b夹角的余弦值为()A.58B.-58C.35D.-134.已知曲线C:y2=2px(y>0,p>0)的焦点为F,P是C上一点,以P为圆心的圆过点F且与直线x=-1相切,若圆P的面积为25π,则圆P的方程为() A.(x-1)2+(y-1)2=25B.(x-2)2+(y-4)2=25C.(x-4)2+(y-4)2=25D.(x-4)2+(y-2)2=255.已知公差不为0的等差数列{an }中,a2+a4=a6,a9=a26,则a10=()A.52B.5C.10D.406.四名数学老师相约到定点医院接种新冠疫苗,若他们一起登记后,等待电脑系统随机叫号进入接种室,则甲不被第一个叫到,且乙、丙被相邻叫到的概率为()A.18B.16C.14D.137.函数f(x)=e x sin x在区间[-π,π]的图象大致是()B C DA8.若非零实数x ,y ,z 满足2x =3y =6z ,则与x +yz最接近的整数是()A.3B.4C.5D.69.若x ,y满足约束条件≥0,+2y ≥3,x +y ≤3,z =x -y 的最大值为M ,最小值为m ,则M -m =()A.0B.32C.-3D.310.半正多面体(semiregular solid)亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它是以八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为()A.83B.4C.163D.20311.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-1,0),过F 且与x 轴垂直的直线与双曲线交于A ,B 两点,O 为坐标原点,△AOB 的面积为32,则下列结论不正确的有()A.双曲线C 的方程为4x 2-4y23=1B.双曲线C 的两条渐近线所成的锐角为60°C F 到双曲线C 渐近线的距离为3D.双曲线C 的离心率为212.若函数f (x )=sin|x |-cos 2x ,则()A.f (x )是周期函数B.f (x )在[-π,π]上有3个零点C.f (xD.f (x )的最小值为-1二、填空题(每题5分,共20分)13.设a ,b ,c 为单位向量,且c =3a +2b ,则a 与b 夹角的余弦值是__________.14.已知函数f (x1-2a x +3a ,x <1,x -1,x ≥1的值域为R ,则实数a 的取值范围是________.15.“敕勒川,阴山下.天似穹庐,笼盖四野.”《敕勒歌》形象描写了中国北方游牧民族建筑的特征,诗中的“穹庐”即“毡帐”,屋顶近似圆锥,为了烘托节日气氛,计划在屋顶安装灯光带.某个屋顶的圆锥底面直径长8米,母线长6米,其中一条灯光带从该圆锥一条母线的下端点开始,沿侧面经过与该母线在同一轴截面的另一母线的中点,环绕一圈回到起点,则这条灯光带的最短长度是________米.16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sin A sin B cos C=sin 2C ,则a 2+b 2c2=________,sin C 的最大值为________.三、解答题(共70分)17.(本题12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a =3c ,b =27,求△ABC 的面积;(2)若sin A +3sin C =22,求C .18.(本题12分)为了弘扬国学文化,某地区在高一年级开设了“书法”选修课,并为每个同学配备了书法训练手册.学期末该地区某个学校的校团委为了调查学生学习“书法”选修课的情况,随机抽取了高一100名学生进行调查.根据调查结果绘制了学生日均进行书法训练时间的频率分布直方图(如图所示),将日均进行书法训练时间不低于40分钟的学生称为“书法爱好者”.(1)根据已知条件完成如图列联表,并据此资料判断是否有95%的把握认为“书法爱好者”与学生性别有关?(2)将上述调查所得到的频率视为概率.现在从该地区高一所有学生中,采用随机抽样的方法每次抽取1名学生,抽取3次,记所抽取的3名学生中的“书非书法爱好者书法爱好者合计男女1055合计法爱好者”人数为X .若每次抽取的结果是相互独立的,求X 的分布列、期望E (X )和方差D (X ).附:K 2=n ad -bc 2a +bc +d a +c b +d ,其中n =a +b +c +d .P (K 2≥k 0)0.050.010k 03.8416.63519.(本题12分)如图所示,在长方体ABCD A1B 1C 1D 1中,AD =AA 1=1,AB =3,点E 在棱AB 上.(1)求异面直线D 1C 与A 1D 所成角的余弦值;(2)若二面角D 1EC D 的大小为45°,求点B 到平面D 1EC 的距离.20.(本题12分)已知椭圆C :x 2a 2+y2b2=1(a >b >0)的焦距为8,且点M 在C 上.(1)求C 的方程;(2)若直线l 与C 相交于A ,B 两点,且线段AB 被直线OM 平分,求△AOB (O 为坐标原点)面积的最大值.21.(本题12分)设函数f (x )=x (e x -1)-ax 2.(1)若a =12,求f (x )的单调区间;(2)若当x >0时,f (x )>0恒成立,求实数a 的取值范围.22.(本题10分)在极坐标系中,方程为ρ=2sin 2θ的曲线为如图所示的“幸运四叶草”,该曲线又被称为玫瑰线.(1)当玫瑰线的θ∈0,π2时,求以极点为圆心的单位圆与玫瑰线的交点的极坐标;(2)求曲线ρ=22M 与玫瑰线上的点N 距离的最小值及取得最小值时的点M ,N 的极坐标.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、B [∵A ={x |-1≤x ≤2},B ={x |-2<x ≤1},∴A ∩B =[-1,1].故选B .2、B [∵i·z =1+3i ,∴-i·i·z =-i·(1+3i),∴z =3-i ,则|z |=32+(-1)2=10,故选B .3、【解析】选B.由|a +2b|=5两边平方得a2+4|a|·|b|cos <a ,b>+4b2=25,所以cos <a ,b>=-58.4、C[由圆P 的面积为25π,即πr 2=25π,可得圆P 的半径r =5,以P 为圆心的圆过点F 且与直线x =-1相切,可得|PF |=5,x P +1=5,即x P =4,由抛物线的定义可得4+p2=5,解得p =2,则抛物线的方程为y 2=4x (y >0),可得P 的坐标为(4,4),则圆P 的方程为(x -4)2+(y -4)2=25,故选C .5、A[设等差数列{a n }的公差为d (d ≠0),∵a 2+a 4=a 6,a 9=a 26,∴2a 1+4d =a 1+5d ,a 1+8d =(a 1+5d )2,解得:a 1=d =14,则a 10=a 1+9d =10×14=52,故选6、D [四名教师总的进入注射室的顺序有A 44=24种,则:①甲第二个被叫到,且乙、丙被相邻叫到的方法数有A 22=2种;②甲第三个被叫到,且乙、丙被相邻叫到的方法数有A 22=2种;③甲第四个被叫到,且乙、丙被相邻叫到的方法数有2A 22=4种,所以“甲不被第一个叫到,且乙、丙被相邻叫到”的概率为2+2+424=13.7、D [当x ∈(-π,0)时,sin x <0,e x >0,则f (x )<0,故排除AB ,∵f (x )=e x sinx ,当x ∈(0,π)时,∴f ′(x )=e x (sin x +cos x )=2e x f ′(x )=0,解得x=3π4,当0<x <3π4时,f ′(x )>0,函数单调递增,当3π4<x <π时,f ′(x )<0,函数单调递减,在x =3π4取最大值,故选项D 符合,故选D .8、B[设2x =3y =6z =t ,则x =log 2t ,y =log 3t ,z =log 6t ,所以x +y z =log 2t +log 3tlog 6t=lg t lg 2+lg t lg 3lg t lg 6=(lg 2+lg 3)lg tlg 2lg 3lg tlg 6=lg 26lg 2lg 3>lg 26=4,故选B .9、D [由题意,作出平面区域如下,z =x -y 可化为y =x -z ,+2y =3x +y =3=1,=1.过点B (1,1)时,截距最小,z 有最大值M =1-1=0,过点C (0,3)时,截距最大,z 有最小值m =0-3=-3,故M -m =3,故选D .10、D[如图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为2,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,∴该几何体的体积为V =2×2×2-8×13×12×1×1×1=203,故选D .11、C [双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-1,0),则c =1,又过F且与x 轴垂直的直线与双曲线交于1B 1∴△AOB 的面积S =12×1×2b 2a =32,即b 2a =32,又a 2+b 2=c 2=1,∴a =12,b 2=34,∴双曲线方程为4x 2-4y 23=1,故A 正确;双曲线C 的渐近线方程为y =±3x ,则两渐近线的夹角为60°,故B 正确;F 到双曲线C 的渐近线的距离d =32,故C 错误;双曲线C 的离心率为e =c a =112=2,故D 正确.故选C .12、C[函数f (x )=sin|x |-cos 2x ,对于A :函数y =sin|x |不是周期函数,故A错误;对于B :f (x )2x +sin x -1(x >0)2x -sin x -1(x <0),令f (x )=0,在[-π,π]上,求得x =-56π,-π6,56π,π6,故B 错误;对于C :当x f (x )=2sin 2x +sin x -1,所以f ′(x )=4sin x cos x +cos x ,由于x sin x >0且cos x>0,故f ′(x )>0,故函数f (x )在x C 正确;对于D :由于f (x )=2sin 2x +sin x -1=x -98,当sin x =-14时,f (x )min =-98,故D错误.故选C .二、填空题:13、-63[根据题意,设a 与b 的夹角为θ,若c =3a +2b ,则有(3a +2b )2=c 2,变形可得:3a 2+2b 2+26a ·b =c 2,则有cos θ=-63.14、0[当x ≥1时,f (x )=2x -1≥1,∵函数f (x )1-2a )x +3a ,x <1,x -1,x ≥1的值域为R ,∴当x <1时,y =(1-2a )x +3a 必须取遍(-∞,1]内的所有实数,-2a >0,-2a +3a ≥1,解得0≤a <12.15、67[将侧面沿母线SA 展开,A 点对应于点A1,轴截面对应的另一条母线为SB ,SB 的中点为C ,连接AC 、A 1C ,则AC +A 1C 为灯光带的最短长度,如图所示:因为SA =6,底面圆的直径为8,则半径为4,所以AB ︵=4π,所以∠ASB =4π6=2π3,又SC =3,由余弦定理得AC 2=62+32-2×6×3×cos 2π3=63,解得AC =37,所以A 1C =AC =37,所以灯光带的最短长度为2AC =67(米).16、353[∵sin A sin B cos C =sin 2C ,∴由正弦定理得到:ab cos C =c 2,可得cos C =c 2ab .又cos C =a 2+b 2-c 22ab ,∴a 2+b 2-c 22ab =c 2ab ,整理可得a 2+b 2c 2=3.∵cos C =a 2+b 2-c 22ab =a 2+b 2-a 2+b 232ab=a 2+b 23ab ≥2ab 3ab =23,当且仅当a =b 时等号成立,∴(sin C )max =1-cos 2C =53.三、解答题17、解:(1)由题设及余弦定理,得28=3c 2+c 2-2×3c 2×cos 150°,易错点:求cos 150°,求c 解得c =-2(舍去)或c =2,从而a =2 3.因此△ABC 的面积为12×23×2×sin 150°=3.(2)在△ABC 中,A =180°-B -C =30°-C ,卡壳点:A 与C 的转化所以sin A +3sin C =sin(30°-C )+3sin C =sin(30°+C ),故sin(30°+C )=22.而0°<C <30°,所以30°<30°+C <60°,易错点:忽略角的范围所以30°+C =45°,故C =15°.18、解:(1)由频率分布直方图可知,在抽取的100人中,“书法爱好者”有25人,从而2×2列联表如下:非书法爱好者书法爱好者合计男301545女451055合计7525100将2×2列联表中的数据代入公式计算,得K 2=100×(30×10-45×15)275×25×45×55=10033≈3.030.因为3.030<3.841,所以没有95%的把握认为“书法爱好者”与学生性别有关.(2)由频率分布直方图知抽到“书法爱好者”的频率为0.25,将频率视为概率,即从学生中抽取一名“书法爱好者”的概率为14.由题意得X ~X 的分布列为X 0123P27642764964164故E (X )=np =3×14=34,D (X )=3×14×34=916.19、解:如图所示,以D 为坐标原点,分别以DA →,DC →,DD 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.(1)易知D (0,0,0),A 1(1,0,1),D 1(0,0,1),C (0,3,0),得DA 1→=(1,0,1),CD 1→=(0,-3,1),|cos 〈DA 1→,CD 1→〉|=|DA 1→·CD 1→|DA 1→|·|CD 1→||=122=24.由图知异面直线D 1C 与A 1D 所成角为锐角,所以异面直线D 1C 与A 1D 所成角的余弦值为24.(2)由题意知,m =(0,0,1)为平面DEC 的一个法向量.设n =(x ,y ,z )为平面D 1EC 的法向量,则|cos 〈m ,n 〉|=|m ·n ||m |·|n |=|z |x 2+y 2+z 2=cos 45°=22,所以z 2=x 2+y 2.①由C (0,3,0),得D 1C →=(0,3,-1),由n ⊥D 1C →,得n ·D 1C →=0,所以3y -z =0.②令y =1,由①②知n =(2,1,3)为平面D 1EC 的一个法向量,又易知CB →=(1,0,0),所以点B 到平面D 1EC 的距离d =|CB →·n ||n |=26=33.20、解:(1)+14b 2=1,8,b 2+c 2,2=20,2=4,故椭圆C 的方程为x 220+y 24=1.(2)易得直线OM 的方程为y =-153x ,设A (x 1,y 1),B (x 2,y 2),R (x 0,y 0)为AB 的中点,其中y 0=-153x 0.因为A ,B 在椭圆上,+y 214=1,+y 224=1,则k AB =y 1-y 2x 1-x 2=-420×x 1+x 2y 1+y 2=-15×2x02y 0= 3.可设直线l 的方程为y =3x +m =3x +m ,+y 24=1,整理得16x 2+103mx +5m 2-20=0,则Δ=300m 2-64(5m 2-20)>0,解得-8<m <8,则x 1+x 2=-53m8,x 1x 2=5m 2-2016.|AB |=1+3·(x 1+x 2)2-4x 1x 2=275m 264-5m 2-204=-5m 2+3204,原点到直线l 的距离d =|m |1+3=|m |2,则△AOB 的面积S =12d ·|AB |=12×|m |2×-5m 2+3204=-5(m 2-32)2+512016,∴当m 2=32时,S 有最大值,512016=2 5.此时m =±4 2.21、解:(1)若a =12,则f (x )=x (e x -1)-12x 2,f ′(x )=e x -1+x e x -x =(e x -1)(x +1),当x ∈(-∞,-1)时,f ′(x )>0;当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )的单调递增区间是(-∞,-1),(0,+∞),单调递减区间是(-1,0).(2)f (x )=x (e x -1)-ax 2=x (e x -1-ax ).令g (x )=e x -1-ax ,则g ′(x )=e x -a ,若a ≤1,则当x ∈(0,+∞)时,g ′(x )>0,g (x )为增函数,而g (0)=0,从而当x >0时,g (x )>0,则f (x )>0.若a >1,则当x ∈(0,ln a )时,g ′(x )<0,g (x )为减函数,而g (0)=0.从而当x ∈(0,ln a )时,g (x )<0,即f (x )<0不符合题意.综上可得a 的取值范围是(-∞,1].22、解:由题意可得单位圆的极坐标方程为ρ=1.=1,=2sin 2θ,得sin 2θ=12.因为θ∈0,π2,所以θ=π12θ=5π12,(2)以极点为坐标原点,极轴为x 轴,建立平面直角坐标系xOy .曲线ρ=22坐标方程为x +y =4.玫瑰线关于原点中心对称,而原点O 到直线x +y =4的最小距离|OM |min =|-4|2=22,原点到玫瑰线上的点的最大距离|ON |max =2,当且仅当θ=π4时,|OM |min 和|ON |max 同时取到,所以|MN |min =|OM |min -|ON |max =22-2,此时2223解:(1)f (x )=|x -2|+|3x -4|x -6,x ≥2,x -2,43<x <2,4x +6,x ≤43,由f (x )>2≥2,x -6>2x <2,-2>2≤43,4x +6>2,解得x >2或∅或x <1,所以不等式的解集为{x |x <1或x >2}.(2)根据函数f (x )的图象知,f (x )min ==23,所以3a +4b =2,所求可看作点(2,0)到直线3x +4y -2=0的距离d 的平方,又d =|3×2-2|32+42=45.所以(a -2)2+b 2的最小值为1625.。
湖南省株洲二中2025届高三数学第一学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合{}2,A x x x R =>∈,{}2230B x x x =-->,则AB =( ) A .(3,)+∞ B .(,1)(3,)-∞-+∞C .(2,)+∞D .(2,3) 2. “角谷猜想”的内容是:对于任意一个大于1的整数n ,如果n 为偶数就除以2,如果n 是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入10n =,则输出i 的( )A .6B .7C .8D .93.已知x ,y 满足条件0020x y y x x y k ≥≥⎧⎪≤⎨⎪++≤⎩,(k 为常数),若目标函数3z x y =+的最大值为9,则k =( )A .16-B .6-C .274-D .2744.已知数列满足:.若正整数使得成立,则( )A .16B .17C .18D .195.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<6.定义在R 上的奇函数()f x 满足()()330f x f x --+-=,若()11f =,()22f =-,则()()()()1232020f f f f ++++=( ) A .1- B .0C .1D .2 7.已知复数z 满足32i z i ⋅=+(i 是虚数单位),则z =( )A .23i +B .23i -C . 23i -+D . 23i -- 8.函数()()23ln 1x f x x +=的大致图象是A .B .C .D .9.记集合(){}22,16A x y x y =+≤和集合(){},4,0,0B x y x y x y =+≤≥≥表示的平面区域分别是1Ω和2Ω,若在区域1Ω内任取一点,则该点落在区域2Ω的概率为( )A .14πB .1πC .12πD .24ππ- 10.设i 为虚数单位,则复数21z i =-在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 11.已知命题p :1m =“”是“直线0x my -=和直线0x my +=互相垂直”的充要条件;命题q :对任意()2,∈=+a R f x x a 都有零点;则下列命题为真命题的是( )A .()()p q ⌝∧⌝B .()p q ∧⌝C .p q ∨D .p q ∧12.若(1+2ai)i =1-bi ,其中a ,b ∈R ,则|a +bi|=( ).A .12B .5C .52D .5二、填空题:本题共4小题,每小题5分,共20分。
数列解答题提升训练
1、 【2013·江西卷】正项数列{}n a 的前n 项和n S 满足:222(1)()0n n S n n S n n -+--+=
(1)求数列{}n a 的通项公式;
(2)令221(2)n n n b n a +=
+,数列{}n b 的前n 项和为n T ,证明:对于任意的n ∈N *,都有Tn<564.
2、【江苏海安高级中学2014高三数学期末复习】数列{n a }的前n 项和为n S ,213122
n n S a n n +=--+,(*)n N ∈. (1)设n n b a n =+,证明:数列{}n b 是等比数列;
(2)求数列{}n nb 的前n 项和n T ;
3、【2013·天津卷】已知首项为32
的等比数列{a n }不.是递减数列,其前n 项和为S n (n∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.
(1)求数列{a n }的通项公式;
(2)设T n =S n -1S n
(n∈N *),求数列{T n }的最大项的值与最小项的值.
4、【江苏省常州市金坛市第一中学2013年高考冲刺模拟试卷】数列{}n a 中,11a =,37a =,
且11(2)1
n n na a n n +-=-≥. (1)求2a 及{}n a 的通项公式;
(2)设k a 是{}n a 中的任意一项,是否存在,()r p N r p k *∈>>,使,,k p r a a a 成等比 数列?如存在,试分别写出p 和r 关于k 的一个..
表达式,并给出证明; (3)证明:对一切n N *∈,21176
n
i i a =<∑.。
期末复习卷2(不等式)一、单选题1.(2021河南高二期末)设a=x2-2x+2,b=1-x,则实数a与b的大小关系为()A.a>bB.a=bC.a<bD.与x有关2.不等式2+x-x2<0的解集为()A.(-∞,-1)∪(2,+∞)B.(-2,1)C.(-1,2)D.(-∞,-2)∪(1,+∞)3.(2021福建泉州高一期末)若不等式ax2+bx-1≥0的解集是x-12≤x≤-13,则a=()A.-6B.-5C.65D.64.(2021安徽黄山高一期末)下列不等式正确的是()A.若a<b,则a2<b2B.若a>b,则ac>bcC.若a>b>0,c>d>0,e>f>0,则ace>bdfD.若a>b>c>0,d>e>f>0,则>>5.已知>0,则=2−4r1的最小值为()A.−2B.12C.1D.26.(2021云南高三期末)如果两个正方形的边长分别为x,y,且x+y=1,那么它们的面积之和的最小值是()A.14B.12C.1D.27.(2021湖北高三一模)已知正数a,b是关于x的函数y=x2-(m2+4)x+m的两个零点,则1+1的最小值为()A.2B.22C.4D.428.设>0,>0,+=1,则下列说法错误的是.()A.B的最大值为14B.2+2的最小值为12C.4+1的最小值为9D.+的最小值为2二、多选题9.若1<1<0,则下列说法正确的是()A.a<bB.a>bC.a2<b2D.ab<b210.(2021湖北高三月考)若非零实数a,b满足a>b,则下列结论正确的是()A.a+b≥2BB.a2+b2>2abC.|a+b|<2(2+2)D.(a+b)1+1>411.(2020广东高一期中)已知y=ax2+bx+c,不等式ax2+bx+c>0的解集是{x|1<x<3},下列说法正确的是()A.a>0B.a+b+c=0C.关于x的不等式cx2+bx+a>0的解集是x13<x<1D.如果am2+bm+c>0,则a(m+2)2+b(m+2)+c<012.已知正数,,则下列不等式中恒成立的是()A.+≥22B.(+p(1+1)≥4 C.≥2B D.2B r>B三、填空题13.(2021山东日照高一期末)不等式-1>0的解集为.14.(2020天津,14)已知a>0,b>0,且ab=1,则12+12+8r的最小值为.15.(2021上海黄浦格致中学高一期末)定义区间[a,b](a<b)的长度为b-a,若关于x的不等式x2-4x+m≤0的解集的区间长度为2,则实数m的值为.16.某校要建一个面积为200 2的长方形花园,并且在四周要修建出宽为2 和4 的小路(如图所示).要使得花园和小路占地总面积最小,则花园的长应为;最小面积为2.四、解答题17.(10分)解下列不等式:(1)2+3−22>0.(2)o3−p≤o+2)−1.(3)2−2+3>0.18.(12分)(2021吉林高一期末)已知x>0,y>0,且x+4y=40.(1)求xy的最大值;(2)求1+1的最小值.19.(12分)(2021云南昆明高二期末)已知函数y=x+1-1(x≠1).(1)解不等式(x-1)x+1-1>3;(2)当x>1时,求x+1-1的最小值.20.(12分)如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形生态种植园.设生态种植园的长为B,宽为B.(1)若生态种植园面积为722,则,为何值时,可使所用篱笆总长最小?(2)若使用的篱笆总长度为30,求1+2的最小值.21.(12分)(2021山东济宁高一期末)设函数y=ax2+(b-2)x+3.(1)若不等式ax2+(b-2)x+3>0的解集为(-1,1),求实数a,b的值;(2)若b=-a-1,且存在x∈R,使ax2+(b-2)x+3>4成立,求实数a的取值范围.22.(12分)(2021云南曲靖第二中学高一期末)设y=x2-(a-1)x+a-2(a∈R).(1)若不等式x2-(a-1)x+a-2≥-2对一切实数x恒成立,求实数a的取值范围;(2)解关于x的不等式x2-(a-1)x+a-2<0.期末复习卷2(不等式)参考答案1a-b=x2-x+1=x-122+34>0恒成立,所以a>b.故选A.2x2-x-2>0,即(x-2)(x+1)>0,解得x<-1或x>2,所以不等式2+x-x2<0的解集为(-∞,-1)∪(2,+∞).故选A.3不等式ax2+bx-1≥0的解集为x-12≤x≤-13,∴-12,-13为方程ax2+bx-1=0的两个根,∴根据根与系数的关系可得-12×-13=-1,解得a=-6.故选A.4A,若a=-3,b=2,则a2>b2,错误;对于B,若c=0,则ac=bc,错误;对于C,若a>b>0,c>d>0,e>f>0,由不等式的基本性质可得ace>bdf,正确;对于D,若a=3,b=2,c=1,d=3,e=2,f=1,则===1,错误.故选C.5.【答案】A解:>0,则=2−4r1=+1−4≥4=−2,当且仅当=1,即=1时,等号成立,则=2−4r1的最小值为−2.故选A.6x2+y2≥2xy,所以2(x2+y2)≥x2+y2+2xy=(x+y)2=1,所以x2+y2≥12,当且仅当x=y=1时,等号成立.因此,两个正方形的面积之和x2+y2的最小值为12.故选B.7,正数a,b是关于x的方程x2-(m2+4)x+m=0的两根,可得a+b=m2+4,ab=m>0,则1+1=r B=m+4≥4,当且仅当m=4,即m=2时等号成立.经检验知当m=2时,方程x2-(m2+4)x+m=0有两个正实数解.所以1+1的最小值为4.故选C.8.【答案】D【解析】解:由题意,对各选项依次进行分析:对,因为正实数,满足+=1,所以1=+≥2B,当且仅当==12时等号成立,所以B≤14,当且仅当==12时等号成立,故B有最大值14,故A 正确;对,因为(+p2=2+2+2B=1,所以2+2=1−2B≥1−2×112,当且仅当==12时等号成立,所以2+2有最小值12,故B正确.对,利用基本不等式,有4+1=+=4++5=9=1=,即=23=13时等号成立,故4+1有最小值9,故C正确;对,由题意,得(+p2=++2B=1+2B≤1+=2,故+≤2,当且仅当==12时等号成立,即+有最大值2,故D错误.故选D.9.答案BCD解析因为1<1<0,故a<0,b<0,b<a,即b<a<0,故B正确,A错误.对于C,a2-b2=(a-b)(a+b),而a+b<0,a-b>0,故a2-b2<0,即a2<b2,故C正确.对于D,ab-b2=b(a-b)<0,故ab<b2,故D正确.故选BCD.10.答案BC解析对于A,若a,b均为负数,则不等式显然不成立,故A错误;对于B,显然成立,故B正确;对于C,在a2+b2>2ab两边同时加上a2+b2,得2(a2+b2)>(a+b)2,则|a+b|<2(2+2)成立,故C正确;对于D,取a=2,b=-1,则(a+b)1+1=(2-1)×12+1-1=-12<4,则(a+b)1+1>4不成立,故D错误.故选BC.11.答案BCD解析对于A,ax2+bx+c>0的解集是{x|1<x<3},则a<0,故A不正确;对于B,由题意知x=1是方程ax2+bx+c=0的一个实数根,故a+b+c=0,故B正确;对于C,由题意知x=1和x=3是方程ax2+bx+c=0的两个实数根,则由根与系数的关系得=-4,=3,则不等式cx2+bx+a>0变为x2+x+1<0,即3x2-4x+1<0,解不等式得x的取值范围为x13<x<1,故C正确;对于D,如果am2+bm+c>0,则1<m<3,故3<m+2<5,则a(m+2)2+b(m+2)+c<0,故D正确.故选BCD.12.【答案】ABC【解析】解:因为,均为正数,所以++1B≥2B+1B≥22,当且仅当==22时,等号成立,A正确;因为,均为正数,所以(+p(1+1)=++2≥2·+2=4,当且仅当=时,等号成立,B正确;因为,均为正数,所以2+2≥2B>0,∴2+2B≥2B,当且仅当=时,等号成立,C正确;因为,均为正数,所以+≥2B,∴2B r≤1,所以2B r≤B,当且仅当=时,等号成立,不正确.故选ABC.13.(2021山东日照高一期末)不等式-1>0的解集为.答案(-∞,0)∪(1,+∞)解析由-1>0,解得x<0或x>1,即原不等式的解集为(-∞,0)∪(1,+∞).14.(2020天津,14)已知a>0,b>0,且ab=1,则12+12+8r的最小值为.答案4解析∵ab=1,∴b=1.∴12+12+8r=12+2+8r1=121++8r1.令1+a=t>0,则原式=2+8≥22·8=24=4.当且仅当t2=16,即t=4时,等号成立,此时1+a=4.15.(2021上海黄浦格致中学高一期末)定义区间[a,b](a<b)的长度为b-a,若关于x的不等式x2-4x+m≤0的解集的区间长度为2,则实数m的值为.答案3解析设x1,x2是方程x2-4x+m=0的两个根,则x1+x2=4,x1x2=m,∴|x1-x2|=(1+2)2-412=16-4=2,解得m=3.16.某校要建一个面积为200 2的长方形花园,并且在四周要修建出宽为2 和4 的小路(如图所示).要使得花园和小路占地总面积最小,则花园的长应为;最小面积为2.【答案】20,392解:设花园的长为B,则花园的宽为200,又设花园占地面积为B2,依题意,得=(+ 8)(200+4)=232+4(+400)⩾232+4×2b400=392,当且仅当=400,即=20时取“=”.所以花园的长为20,宽为10时,占地总面积最小为392 2.故答案为20;392.17.(10分)解下列不等式:(1)2+3−22>0.(2)o3−p≤o+2)−1.(3)2−2+3>0.【答案】解:(1)原不等式可化为22−3−2<0,所以(2+1)(−2)<0,故原不等式的解集是{U−12< <2}.(2)原不等式可化为22−−1≥0.所以(2+1)(−1)≥0,故原不等式的解集为{U≤−12或≥1}.(3)由2−2+3=(−1)2+2>0对任意的∈恒成立,故原不等式的解集是.18.(12分)(2021吉林高一期末)已知x>0,y>0,且x+4y=40.(1)求xy的最大值;(2)求1+1的最小值.解(1)因为x>0,y>0,所以40=x+4y≥24B=4B(当且仅当x=4y,即x=20,y=5时,等号成立).所以xy≤100,因此xy的最大值为100.(2)因为x+4y=40,即140(x+4y)=1,所以1+1=140(x+4y)1+1=1405+4+≥1405+24·=940当且仅当x=2y,即x=403,y=203时,等号成立.所以1+1的最小值为940.19.(12分)(2021云南昆明高二期末)已知函数y=x+1-1(x≠1).(1)解不等式(x-1)x+1-1>3;(2)当x>1时,求x+1-1的最小值.解(1)由(x-1)x+1-1>3,得x2-x-2>0.又x≠1,所以解得x>2或x<-1,即原不等式的解集为(-∞,-1)∪(2,+∞). (2)当x>1时,x-1>0,y=x+1-1=x-1+1-1+1≥2+1=3,当且仅当x-1=1-1,即x=2或x=0(舍)时,等号成立.所以x+1-1的最小值是3.20.(12分)如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形生态种植园.设生态种植园的长为B,宽为B.(1)若生态种植园面积为722,则,为何值时,可使所用篱笆总长最小?(2)若使用的篱笆总长度为30,求1+2的最小值.【答案】解:(1)由已知可得B=72,其中>0,>0,篱笆总长为(+2p.又因为+2≥22B=24,当且仅当=2,即=12,=6时等号成立.所以当=12,=6时,可使所用篱笆总长最小.(2)由已知得+2=30,>0,>0,又因为(1+2)(+2p=5+2+2≥5+=9,所以1+2≥310,当且仅当2=2,即=,即=10,=10时等号成立.所以1+2的最小值是310.21.(12分)(2021山东济宁高一期末)设函数y=ax2+(b-2)x+3.(1)若不等式ax2+(b-2)x+3>0的解集为(-1,1),求实数a,b的值;(2)若b=-a-1,且存在x∈R,使ax2+(b-2)x+3>4成立,求实数a的取值范围.由题意可知,方程ax2+(b-2)x+3=0的两根是-1,1,=0,1,解得=-3,=2.(2)存在x∈R,使ax2+(b-2)x-1>0成立,将b=-a-1代入上式可得ax2-(a+3)x-1>0成立.当a≥0时,显然存在x∈R使得上式成立;当a<0时,需使方程ax2-(a+3)x-1=0有两个不相等的实根,所以Δ=(a+3)2+4a>0,即a2+10a+9>0,解得a<-9或-1<a<0.综上可知,a的取值范围是(-∞,-9)∪(-1,+∞).22.(12分)(2021云南曲靖第二中学高一期末)设y=x2-(a-1)x+a-2(a∈R).(1)若不等式x2-(a-1)x+a-2≥-2对一切实数x恒成立,求实数a的取值范围;x的不等式x2-(a-1)x+a-2<0.由题意,不等式x2-(a-1)x+a-2≥-2对于一切实数x恒成立,等价于x2-(a-1)x+a≥0对于一切实数x恒成立.所以Δ=(a-1)2-4a≤0,解得3-22≤a≤3+22.故实数a的取值范围为[3-22,3+22].(2)不等式x2-(a-1)x+a-2<0,即[x-(a-2)](x-1)<0.当a-2>1,即a>3时,不等式的解集为{x|1<x<a-2};当a-2=1,即a=3时,不等式的解集为⌀;当a-2<1,即a<3时,不等式的解集为{x|a-2<x<1}.综上所述,当a<3时,不等式的解集为{x|a-2<x<1};当a=3时,不等式的解集为⌀;当a>3时,不等式的解集为{x|1<x<a-2}.。
高三期末综合题(二)1.已知:A 、B 、C 三点坐标分别为)0,3(A 、)3,0(B 、)sin ,(cos ααC ,⎪⎭⎫⎝⎛∈23,2ππα。
1)若BC AC =,求角α;(2)若1-=⋅BC AC ,求αααtan 12sin sin 22++的值。
2. 如图,三棱柱111C B A ABC -的所有棱长都相等,且⊥A A 1底面ABC ,D 为1CC 的中点,OD O B A AB 连结相交于点与11(Ⅰ)求证:OD ∥ABC 平面(Ⅱ)求证:⊥1AB 平面BD A 1.3.已知函数log (3)6a y x =++(0a >,1a ≠)的图象恒过定点M ,椭圆G :22221x y a b+=(0a b >>)的左,右焦点分别为1F ,2F ,直线l 经过点M 且与⊙C :222690x y x y ++-+=相切.(1)求直线l 的方程;(2)若直线l 经过点2F 并与椭圆G 在x 轴上方的交点为P ,且127cos 25F PF ∠=,求12PF F ∆内切圆的方程.4.已知函数)0)(ln()(2>=a ax x x f(Ⅰ)a e =时,求()f x 在1x =处的切线方程;(Ⅱ)若2)('x x f ≤对任意的0>x 恒成立,求实数a 的取值范围; (Ⅲ)当1=a 时,设函数xx f x g )()(=,若1),1,1(,2121<+∈x x e x x ,求证:42121)(x x x x +<.5.已知某种钻石的价值υ(万元)与其重量ω (克拉)的平方成正比,且一颗重为3克拉的该种钻石的价值为35万元.(Ⅰ)写出υ关于ω的函数关系式;(Ⅱ)若把一颗钻石切割成重量比为1∶3的两颗钻石,求价值损失的百分率;(Ⅲ)请猜想把一颗钻石切割成两颗钻石时,按重量比为多少时价值损失的百分率最大?(直接写出结果,不用证明)(注:价值损失的百分率=-原有价值现有价值原有价值×100%;在切割过程中的重量损耗忽略不计)6.设21,F F 分别为椭圆)0(1:2222>>=+b a b y a x C 的左、右焦点.(1)若椭圆C 上的点21,)23,1(F F A 到两点的距离之和等于4,求椭圆C 的方程和焦点坐标;(2)设点P 是(1)中所求得的椭圆上的动点,的最大值求||),21,0(PQ Q 。
参考答案1.解:(1))sin ,3(cos αα-=AC ,)3sin ,(cos -=ααBC 由BC AC =,得2222)3(sin cos sin )3(cos -+=+-αααα∴ααcos sin =,即1tan =α,∵⎪⎭⎫⎝⎛∈23,2ππα,∴45πα= (2)1)3(sin sin )3(cos cos -=-+-=⋅ααααBC AC ,∴32cos sin =+αα ∴94cos sin 21=⋅+αα ∴95cos sin 2-=⋅αα 95cos sin 2cos sin 1)cos (sin sin 2tan 12sin sin 22-=⋅=++=++αααααααααα2.(1)、∵CE∥1BB ,CE=BB 21CE∥CD ,CE=CD∴OD∥EC (2)、CE⊥AB,CE⊥1BB ∴CE⊥面1AB ∴OD⊥1AB ∵B A 1⊥1ABE DABCsH FG∴1AB ⊥面BD A 1【解析】略3.(1)20x +=,或43100x y +-= (2)22525()416x y +-=【解析】试题分析:(Ⅰ)易知定点(2,6)M -,⊙C 的圆心为(1,3)C -,半径1r =. ①当l x ⊥轴时,l 的方程为20x +=,易知l 和⊙C 相切.②当l 与x 轴不垂直时,设l 的方程为6(2)y k x -=+,即260kx y k -++=,圆心(1,3)C -到l 的距离为231k d k +=+. 由l 和⊙C 相切,得2311k k +=+,解得43k =-.于是l 的方程为43100x y +-=.综上,得直线l 的方程为20x +=,或43100x y +-=.(Ⅱ)设12F PF α∠=,12F F P β∠=,则由7cos 25α=,得24sin 25α=. 又由直线l 的斜率为43k =-,得4sin 5β=,3cos 5β=.于是12243744sin sin()sin cos cos sin 2552555PF F αβαβαβ∠=+=+=⨯+⨯=. 有12PF F β∠=,12F PF ∆是等腰三角形,点P 是椭圆的上顶点.易知10(0,)3P .于是12PF F ∆内切圆的圆心D 在线段PO 上.设(0,)D m ,内切圆半径为r .则1003m <<,r m =由点D 到直线l 的距离3105m d r m -===,解得54m =. 故12PF F ∆内切圆的方程为22525()416x y +-=.考点:直线与椭圆的位置关系点评:本题考查椭圆的标准方程,考查椭圆的定义,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题. 4.(Ⅰ)32y x =-;(Ⅱ)20e a ≤<;(Ⅲ)详见解析.【解析】试题分析:(Ⅰ)将a e =代入,求导即得;(Ⅱ)2)ln(2)('x x ax x x f ≤+=,即x ax ≤+1ln 2在0>x 上恒成立. 不等式恒成立的问题,一般有以下两种考虑,一是分离参数,二是直接求最值.在本题中,设x ax x u -+=1ln 2)(,则2,012)('==-=x x x u ,这里面不含参数a 了,求x ax x u -+=1ln 2)(的最大值比较容易了,所可直接求最大值.(Ⅲ)本题首先要考虑的是,所要证的不等式与函数x x x x f x g ln )()(==有什么关系?待证不等式可作如下变形:4121212121212()ln()4ln()ln ln 4ln()x x x x x x x x x x x x <+⇔<+⇔+<+,最后这个不等式与x x x x f x g ln )()(==有联系吗?我们再往下看.1()1ln 0,g x x x e '=+==,所以在),1(+∞e 上)(x g 是增函数.因为11211<+<<x x x e ,所以111212121ln )()ln()()(x x x g x x x x x x g =>++=+即)ln(ln 211211x x x x x x ++<从这儿可以看出,有点联系了.同理)ln(ln 212212x x x x x x ++<,所以)ln()2()ln()(ln ln 2112212112122121x x x xx x x x x x x x x x x x +++=++++<+,与待证不等式比较,只要,421221≥++x x x x 问题就解决了,而这由重要不等式可证,从而问题得证.试题解析:(Ⅰ)22()ln()(1ln ),()2(1ln )32ln f x x ex x x f x x x x x x x '==+=++=+,(1)1,(1)3f f '==,所以切线为:13(1)y x -=-即32y x =-. 3分(Ⅱ)x ax x x f +=)ln(2)(',2)ln(2)('x x ax x x f ≤+=,即x ax ≤+1ln 2在0>x 上恒成立 设x ax x u -+=1ln 2)(,2,012)('==-=x x x u ,2>x 时,单调减,2<x 单调增,所以2=x 时,)(x u 有最大值.212ln 2,0)2(≤+≤a u ,所以20ea ≤<. 8分 法二、2ln 1ax x +≤可化为1ln ln 2x a x -≤-. 令1()ln 2x g x x -=-,则112()22x g x x x -'=-=,所以11()ln (2)ln 2ln 222x e g x x g -=-≥=-= 所以ln ln 022e ea a ≤⇒<≤. (Ⅲ)当1=a 时,x x x x f x g ln )()(==, 1()1ln 0,g x x x e '=+==,所以在),1(+∞e 上)(x g 是增函数,)1,0(e上是减函数.因为11211<+<<x x x e ,所以111212121ln )()ln()()(x x x g x x x x x x g =>++=+即)ln(ln 211211x x x x x x ++<,同理)ln(ln 212212x x x x x x ++<.所以)ln()2()ln()(ln ln 2112212112122121x x x xx x x x x x x x x x x x +++=++++<+又因为,421221≥++x xx x 当且仅当“21x x =”时,取等号.又1),1,1(,2121<+∈x x e x x ,0)ln(21<+x x ,所以)ln(4)ln()2(21211221x x x x x x x x +≤+++,所以)ln(4ln ln 2121x x x x +<+,所以:42121)(x x x x +<. 14分考点:1、导数的应用;2、不等式的证明.5.解:(Ⅰ)依题意设v =k ω2,又当ω=3时,v =35,即3500009k =,得: 23500009v ω=(Ⅱ)设这颗钻石的重量为a 克拉,由(Ⅰ)可知,按重量比为l ∶3切割后的价值为k (14a )2+k (34a )2价值损失为 k a 2一[k (14a )2+k (34a )2]价值损失的百分率为ks5*u222213[()()]440.37537.5%ka k a k a ka-+== 答:价值损失的百分率为37.5%.(Ⅲ)重量比为1∶1时,价值损失的百分率达到最大。
6.(1)方程为22143x y +=,焦点()()121,0,1,0F F - (2)5 【解析】试题分析:(1)将点的坐标代入椭圆方程可得到,a b 的关系式,利用椭圆定义可求得a 值,从而得到椭圆方程;(2)利用两点间距离公式求得||PQ 的表达式,借助于P 在椭圆上将表达式转化为用x 表示的函数式,求得函数最值 试题解析:(1)椭圆C 的焦点在x 轴上,由椭圆定义得2a=4,即a=2又点⎪⎭⎫ ⎝⎛23,1A 在椭圆上。