关于多元函数的极值和最值计算
- 格式:doc
- 大小:66.00 KB
- 文档页数:2
关于多元函数的极值和最值计算多元函数的极值和最值计算是高等数学中的重要部分,它涉及到多元函数的极大值和极小值的求解以及在给定区域内的最大值和最小值的确定。
在这篇文章中,我们将详细介绍多元函数的极值和最值计算的方法和步骤。
首先,让我们来了解一下多元函数的概念。
在高等数学中,一个多元函数是指具有多个变量的函数,它通常被表示为f(x1,x2,...,xn),其中x1,x2,...,xn是变量,f是一个函数。
多元函数与一元函数不同,它的输入变量不再是一个实数,而是多个实数。
因此,多元函数的求解方法也与一元函数有所不同。
下面我们将分别介绍多元函数的极大值和极小值的求解方法。
首先是多元函数的极大值和极小值的求解。
要求解多元函数的极大值和极小值,我们需要找到函数的驻点(即导数等于零的点)以及临界点(即定义域的边界点)。
第一步是计算多元函数的偏导数。
在多元函数中,我们根据变量的个数来计算偏导数。
例如,对于一个两个变量的函数f(x1,x2),我们需要计算f对x1的偏导数∂f/∂x1和f对x2的偏导数∂f/∂x2第二步是找到偏导数为零的点。
我们将得到一个方程组,其中每个方程都是一个偏导数等于零的方程。
通过求解这个方程组,我们可以找到多元函数的驻点。
第三步是找到临界点。
临界点是指函数定义域的边界点。
我们需要判断多元函数在这些边界点是否存在极值。
为此,我们可以计算函数在边界点处的取值,并与其他驻点的函数值进行比较。
通过这些步骤,我们可以确定多元函数的极大值和极小值。
接下来,让我们介绍多元函数在给定区域内的最大值和最小值的确定方法。
要确定多元函数在给定区域内的最大值和最小值,我们需要利用拉格朗日乘数法。
首先,确定给定区域的边界条件。
给定区域可以是一个封闭区域,也可以是一个开放区域。
第一步是通过拉格朗日乘数法构建一个方程。
这个方程的形式是多元函数加上一个或多个约束条件的等式。
拉格朗日乘子是用来考虑约束条件对函数极值的影响的。
第五节多元函数的极值及其求法的图形观察二元函数22y x e xyz +-=播放播放设函数),(y x f z =在点),(00y x 的及其附近有定义,对于点),(00y x 附近的任一点),(y x 都有),(),(00y x f y x f <,则称函数在),(00y x 有极大值;若有),(),(00y x f y x f >,则称函数在),(00y x 有极小值.一、多元函数的极值及最值极大值、极小值统称为极值.使函数取得极值的点称为极值点.(1)(2)(3)例1处有极小值.在函数)0,0(4322yx z +=例2处有极大值.在函数)0,0(22yx z +-=例3处无极值.在函数)0,0(xyz =设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零:0),(00=y x f x , 0),(00=y x f y .多元函数取得极值的条件(称驻点)例如, 点)0,0(是函数xy z =的驻点,但不是极值点.驻点极值点注意:定理1(必要条件)问题:如何判定一个驻点是否为极值点?设函数),(y x f z =在点),(00y x 的某邻域内连续,有一阶及二阶连续偏导数,设 0),(00=y x f x , 0),(00=y x f y ,定理2(充分条件)则),(y x f 在点),(00y x 处是否取得极值的条件如下:令 A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00, (1)02>-B AC 时具有极值,且当0<A 时有极大值,当0>A 时有极小值;(2)02<-B AC 时没有极值;(3)02=-B AC 时可能有极值,也可能没有极值,还需另作讨论.设3322(,)339f x y x y x y x =-++-,求极值. 求得驻点:)2,1(),2,3(),0,1(),0,3(--,二阶偏导数为:66,0,66+-=''=''+=''y f f x f yy xy xx ,C B A 2B AC - (-3,0)-12 0 6 - 不是极值 (1,0)12 0 6 + 极小值-5 (-3,2)-12 0 -6 + 极大值31 (1,2) 12 0 6- 不是极值 例4解,令⎪⎩⎪⎨⎧=+-='=-+='063096322y y f x x f y x多元函数的最值求最值的一般方法:将函数在D内的所有驻点处的函数值及在D的边界上的最大值和最小值相互比较,其中最大者即为最大值,最小者即为最小值.求二元函数)4(),(2y x y x y x f z --==在直线6=+y x ,x 轴和y 轴所围成的闭区域D 上的最大值与最小值. 解x y o 6=+y x D 例5先求函数在D 内的驻点,⎩⎨⎧=---='=---='0)4(),(0)4(2),(222y x y x x y x f y x y x xy y x f y x 得区域D 内唯一驻点)1,2(,且4)1,2(=f ,再求),(y x f 在D 边界上的最值,解方程组 在边界0=x 和0=y 上0),(=y x f ,在边界6=+y x 上,即x y -=6,得 4,021==x x ,,2|64=-=⇒=x x y ,64)2,4(-=f 比较后可知4)1,2(=f 为最大值, 64)2,4(-=f 为最小值.,)6(223x x -=)2)(6(2--=x x z )60(≤≤x ,0)4(6=-='x x z 得区域D 内唯一驻点)1,2(,且4)1,2(=f ,在边界0=x 和0=y 上0),(=y x f ,要做一个容积为323cm 的无盖长方体箱子,问长、宽、高各为多少时,才能使所用材料最省? 若根据实际问题,目标函数有最大值(或最小值),而在定义区域内部有唯一的极大(小)值点,则可以断定该极大(小)值点即为最大(小)值点.例6解6464(0.0)S xy x y x y =++>>设长方体的长为x ,高为y ,则宽为32.xy 则箱子所用材料的面积为令由实际问题意义知,S 必有最小值,且内部唯一驻点,故当4x y ==时,S 有最小值.即当长、宽均为4cm 时,所用材料最省.22640640x y S y x S x y ⎧'=-=⎪⎪⎨⎪'=-=⎪⎩解得唯一驻点 4.x y ==用铁皮做一个有盖的长方形水箱,要求容积为V ,问怎么做用料最省?二、条件极值拉格朗日乘数法设水箱的长、宽、高分别为z y x ,,,则目标函数:)(2zx yz xy S ++=,约束条件:xyz V =, 实际问题中,目标函数的自变量除了受到定义域的限制外, 往往还受到一些附加条件的约束,这类极值问题称条件极值问题.例7解即表面积最小.,xyV z =⇒ 代入目标函数,化为无条件极值问题:x yz令 ⎪⎪⎩⎪⎪⎨⎧=-='=-='0)(20)(222y V x S x V y S y x ,求得唯一驻点3V y x ==,从而3V z =, 内部唯一驻点,且由实际问题S 有最大值,故做成立方体表面积最小.这种做法的缺点:1.变量之间的平等关系和对称性被破坏;2.有时解出隐函数困难甚至不可能.目标函数化为:)(2yV x V xy S ++=, 0,0>>y x要找函数),(y x f z =在条件0),(=y x ϕ下的可能极值点,解出λ,,y x ,其中y x ,就是可能的极值点的坐标.拉格朗日乘数法令,0),(0),(),(0),(),(⎪⎩⎪⎨⎧=='+'='+'y x y x y x f y x y x f y y x x ϕϕλϕλ其中λ为参数,引入拉格朗日函数),(),();,(y x y x f y x F λϕλ+=如果目标函数是三元函数),,(z y x f ,且约束条件有两个,0),,(=z y x g ,0),,(=z y x h ,则构造拉格朗日函数为.),,(),,(),,(),;,,(z y x h z y x g z y x f z y x L μλμλ++=令,0),,(0),,(),,(),,(),,(0),,(),,(),,(0),,(),,(),,(⎪⎪⎪⎩⎪⎪⎪⎨⎧=='+'+'='+'+'='+'+'z y x h z y x g z y x h z y x g z y x f z y x h z y x g z y x f z y x h z y x g z y x f z z z y y y x x x μλμλμλ解出z y x ,,,就是可能的极值点的坐标.用铁皮做一个有盖的长方形水箱,要求容积为V ,问怎么做用料最省?例7目标函数:)(2zx yz xy S ++=,约束条件:xyz V =,解构作拉格朗日函数 )()(2V xyz zx yz xy L -+++=λ,令 ⎪⎪⎩⎪⎪⎨⎧==++='=++='=++='Vxyz xy y x L xz z x L yz z y L z y x 0)(20)(20)(2λλλ, 解得唯一驻点,3V z y x ===,由实际问题,即为最小值点.。
多元函数极值与最值在微积分中,我们学习了一元函数的极值与最值问题。
而在现实生活中,很多问题涉及到多个变量的函数,即多元函数。
对于多元函数来说,我们也需要研究其极值与最值问题。
本文将介绍多元函数的极值与最值的求解方法,并通过几个例子进行说明。
1. 极值与最值的定义在进行多元函数的极值与最值问题的求解之前,首先需要了解各种极值与最值的定义。
(这里插入合适的图表和示意图)1.1 局部极值:若对于一个给定的多元函数,存在某个点使得在该点的某个邻域内,函数值在该点之上或之下都小于等于(或大于等于)该点的函数值,那么称该点是该函数的一个局部极值点。
1.2 全局极大值与极小值:若对于一个给定的多元函数,如果函数的取值在定义域上的每个点上都大于等于(或小于等于)其它点,那么称该函数在该定义域上有全局极大值或极小值。
1.3 最大值与最小值:若对于一个给定的多元函数,对于其定义域上的每个点,函数值都小于等于(或大于等于)某个常数,那么称该常数为该函数在定义域上的最小值或最大值。
2. 求解方法接下来,我们将介绍两种常用的方法来求解多元函数的极值与最值问题。
2.1 梯度法梯度法是一种常用的用于求解多元函数极值的方法。
它利用函数在某个点的梯度方向可以指示函数值增大或减小的趋势。
具体步骤如下:(这里插入梯度法求解极值的算法步骤)2.2 拉格朗日乘子法拉格朗日乘子法是另一种常用的求解多元函数极值与最值的方法。
它适用于含有约束条件的优化问题,即在满足一定条件下求取函数的极值或最值。
具体步骤如下:(这里插入拉格朗日乘子法求解极值的算法步骤)3. 实例分析为了更好地理解多元函数的极值与最值问题的求解方法,我们将通过几个实例来进行分析。
3.1 示例一:二元函数我们考虑一个二元函数示例,如下所示:(这里插入具体示例的函数表达式和图形展示)通过梯度法和拉格朗日乘子法,我们可以求解该函数的极值与最值,并得出结果。
3.2 示例二:三元函数我们再考虑一个三元函数示例,如下所示:(这里插入具体示例的函数表达式和图形展示)同样地,我们可以利用梯度法和拉格朗日乘子法来求解该函数的极值与最值。
大学数学多元函数的极值与最值多元函数是数学领域中的重要概念之一,研究多元函数的极值与最值对于优化问题的解决具有重要作用。
在本文中,将介绍多元函数的极值与最值的概念、计算方法以及应用。
一、多元函数的极值与最值概念多元函数是指涉及多个自变量和依赖变量的函数。
对于多元函数而言,极值即为函数在某个特定点上取得的最大值或最小值。
最值则是指函数在整个定义域上取得的最大值和最小值。
二、求多元函数的极值与最值的方法1. 隐函数求导法当函数无法直接表示为显式解析式时,可以通过隐函数求导的方法来求解极值。
该方法主要依靠链式法则来计算导数,进而确定极值的位置。
2. 梯度法梯度法是一种常用的优化算法,可以用来求解多元函数的极值问题。
其基本思想是沿着函数值下降最快的方向进行搜索,直到找到极值点。
3. 条件极值对于多元函数在一定条件下的极值问题,可以利用拉格朗日乘数法求解。
该方法通过引入约束条件,将多元函数的极值问题转化为带约束条件的无条件极值问题。
三、多元函数极值与最值的应用1. 经济学中的应用多元函数的极值与最值在经济学中有着广泛的应用。
以生产成本函数为例,通过求取其极小值可以得到最低成本的生产方案,帮助企业提高效益。
2. 工程优化问题在工程领域中,多元函数的极值与最值的求解能够帮助工程师找到最优设计方案,减少资源的浪费,提高整体效益。
3. 金融学中的投资问题在金融学中,多元函数的极值与最值的计算可以被应用于投资组合方面。
通过求取最大收益或最小风险的投资组合,可以帮助投资者制定合理的投资策略。
四、总结通过本文对大学数学多元函数的极值与最值的介绍,我们了解了多元函数极值的概念以及求解方法。
多元函数的极值与最值在实际问题中有着广泛应用,对于优化问题的解决具有重大意义。
因此,学好多元函数的极值与最值的相关知识,对于我们深入理解数学的应用和发展具有重要意义。
大学数学易考知识点多元函数的极值和最值大学数学易考知识点:多元函数的极值和最值多元函数的极值和最值是大学数学中的一个重要概念,在数学分析和最优化理论中具有广泛的应用。
本文将介绍多元函数的极值和最值的相关概念、计算方法及其应用。
一、极值和最值的定义在介绍多元函数的极值和最值之前,首先需要了解极值和最值的定义。
1. 极值:在某个定义域内,如果一个函数在某一点的某个邻域内的函数值始终大于(或小于)该点的函数值,那么这个函数在该点就有一个极大值(或极小值)。
极大值和极小值统称为极值。
2. 最大值和最小值:在某个定义域内,如果一个函数在该定义域内的所有函数值中存在一个最大值(或最小值),那么这个函数在该定义域就有一个最大值(或最小值)。
二、求解多元函数的极值和最值为了求解多元函数的极值和最值,需要掌握以下几种常用的计算方法。
1. 偏导数法偏导数法是求解多元函数极值和最值的一种常用方法。
步骤如下:(1)求出多元函数的所有偏导数。
(2)令所有偏导数等于零,解得所有的稳定点。
(3)计算这些稳定点的函数值,并找到其中的最大值和最小值。
2. 条件极值法条件极值法是在满足一定条件下求解多元函数的极值和最值的方法。
步骤如下:(1)建立多元函数的约束条件。
(2)应用拉格朗日乘数法或者将约束条件代入目标函数,将多元函数的求解问题转化为含有一个变量的函数的求极值问题。
(3)对这个含有一个变量的函数应用一元函数的求导法则,求得极值点。
(4)将求得的极值点代入原多元函数,求得极值和最值。
3. 边界法边界法是求解多元函数的最值的一种方法。
步骤如下:(1)找到多元函数的定义域的边界。
(2)计算定义域的边界上的函数值,并找出其中的最大值和最小值。
三、多元函数极值和最值的应用多元函数的极值和最值在众多学科中都有着广泛的应用,这里介绍其中的两个应用领域。
1. 经济学中的优化问题在经济学中,很多问题可以抽象为多元函数的极值和最值问题。
例如,生产者如何选择生产要素的投入比例以最大化利润,消费者如何选择商品的购买数量以最大化效用等。
多元函数的极值及最值问题多元函数的极值及最值问题在数学中是一个重要的研究领域。
它涉及到了多元函数的最大值和最小值,以及如何求取这些值的方法。
本文将从定义、求解方法和实例等方面来讨论多元函数的极值及最值问题。
一、定义首先,我们先来了解一下多元函数的极值和最值的定义。
对于一个多元函数 f(x1, x2, ..., xn),如果存在一个点 (x1*, x2*, ..., xn*),使得在其邻域内的任意点 (x1, x2, ..., xn) 都满足f(x1*, x2*, ..., xn*) ≥ f(x1,x2, ..., xn),则称该点为函数的极大值点。
类似地,如果存在一个点(x1*, x2*, ..., xn*),使得在其邻域内的任意点 (x1, x2, ..., xn) 都满足f(x1*, x2*, ..., xn*) ≤ f(x1, x2, ..., xn),则称该点为函数的极小值点。
最大值和最小值是多元函数的最值问题,即求取函数在给定定义域内取得的最大值和最小值。
最大值和最小值统称为最值。
二、求解方法在求解多元函数的极值和最值问题时,可以采用以下方法:1. 极值的存在性判断对于一个具体的多元函数,首先需要确定它的定义域。
然后,通过求取函数的偏导数,判断其偏导数是否为零(或不存在)。
若存在某一点使得偏导数为零(或不存在),则该点可能是函数的极值点。
2. 极值的求解在确定了可能的极值点后,可以进一步进行求解。
常用的方法有以下几种:- 梯度法:通过计算函数的梯度向量,并将其置为零,求解出使得梯度向量为零的点,即可能的极值点。
- 条件极值法:若多元函数受到一些条件约束,可以通过引入拉格朗日乘子法进行求解。
在建立拉格朗日函数后,将其偏导数为零的点作为可能的极值点。
3. 讨论临界点求得极值点后,需要进行分类讨论。
通过计算函数的二阶偏导数或者使用黑塞矩阵等方法,可以判断极值点是极大值、极小值还是鞍点。
三、实例分析下面我们通过一个实例来具体讨论多元函数的极值及最值问题。
关于多元函数的极值和最值计算
(一) 可微函数的无条件极值
如果(,)z f x y =在区域D 上存在二阶连续偏导数,我们可以用下面的方法求出极值。
首先,通过解方程''00x y
f f ⎧=⎪⎨=⎪⎩ 得到驻点。
其次,对每个驻点求出二阶偏导数: '''''',,xx xy yy
A f
B f
C f === 最后利用课本定理7.8进行判断。
20,0,AC B A ->> 函数在此点取极小值;
20,0,AC B A ->< 函数在此点取极大值;
20,AC B -< 函数在此点不取极值;
20,AC B -= 不能确定。
(二) 如何求多元函数的最值
如果函数(,)z f x y =在有界闭域D 上连续,那么函数(,)z f x y =在有界闭域D 上一定存在最大值和最小值。
下面介绍如何求出(,)z f x y =在有界闭域D 上的最值。
首先, 在D 的内部求出函数(,)z f x y =的驻点 及 偏导数不存在的点。
其次,求出函数(,)z f x y =在D 的边界上的最大值点和最小值点。
这里分两种情况处理:
第一种情况:D 的边界是由显函数来表示 的(包括边界是分段用显函数表示的情形),可以用消元法转化为一元函数在闭区间上的最值问题 来解决。
第二种情况:D 的边界是由 隐函数(,)0x y ϕ=来表示 的,而且函数(,)z f x y =,(,)x y ϕ在包含D 的区域上存在二阶连续偏导数,此时可以用拉格朗日乘数法求出驻点。
最后, 通过比较函数(,)z f x y =在我们得到的点上的函数值,就可得到(,)z f x y =在有界闭域D 上的最值。
(三) 如何求条件极值
下面介绍求函数(,)z f x y =在约束条件(,)0x y ϕ=下的条件极值。
第一种情况:如果(,)0x y ϕ=确定了显函数)(y g x =或者)(x h y =,可以用消元法转化为一元函数在闭区间上的极值问题 来解决。
第二种情况:如果函数(,)z f x y =,(,)0x y ϕ=在区域D 上存在二阶连续偏导数,而且(,)0x y ϕ=确定了隐函数,此时可以用拉格朗日乘数法。
首先,求出拉格朗日函数),,(λy x L 在区域D 内的驻点。
然后用书中介绍的二阶全微分方法对每个驻点进行判断。
通常,在实际应用中只要求我们求出函数(,)z f x y =在约束条件(,)0x y ϕ=下的最大值和最小值,此时只要比较函数在相应驻点处的函数值就可以了。