北师大版高中数学必修一教案用函数模型解决实际问题
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
设 计所属年级: 高三年级 所属学科: 数 学 教师姓名: 学校名称:《一类常见函数()(0)af x x a x=+≠的图像和性质》教学设计设 计 者:学 校:一、教学背景1.课题来源在北师大版的高中数学必修一的函数部分的学习中经常会遇见形如()(0)af x x a x=+≠这类函数,而在必修一的教材中只在一道例题中有出现,但是很多题目的设置都与这类函数有关,大部分老师甚至要会花费两三个课时才能补充完整,为了提高教学效率,让学生轻松掌握,因此我们很有必要把块内容以微课的形式呈现给高一的学生,授课对象为高一年级学完第二章的学生。
2.教材分析及作用价值本节微课是函数部分的重点内容,在高考中既可以单独命题进行考查,也常常融合与相关题目中进行考查,是解决与函数类不等式相关问题的重要工具,高考中每年都有考查。
二、教学目标设置由于函数一直是高考的重点内容,学生通过前两章的学习,已经初步具备了用定义域、值域、单调性和奇偶性来研究函数的基础,基于这样的学情,设计了本节微课的三维教学目标,以达到学生能用这节所学知识分析和熟练解决问题的目的。
1.知识与技能通过本节微课的学习,让学生能掌握()(0)af x x a x=+≠的图像和性质,并能学以致用。
2.过程与方法借助于多媒体技术,能形象直观地展示函数的图像和性质并理论分析中在渗透数学中的数形结合、分类讨论的思想和方法。
3.情感、态度与价值观通过本节课的学习,帮助学生建立数学的审美观,培养学生的探索能力,能用已学方法有效地分析和解决问题。
三、学生学情分析由于学生在前两章已经学习函数的定义域和值域的求法以及函数的单调性、奇偶性的判断,通过学习,学生基本上掌握了研究函数的基本模式。
本节的内容是基础知识和外延知识的整合和推广,对学生而言,不仅是知识的融合,更是能力的提升。
四、教学策略分析 1.教学重难点与突破教学重点:常见函数()(0)af x x a x =+≠的图像和性质;教学难点:常见函数()(0)af x x a x=+≠的单调性。
§4.2.2用函数模型解决实际问题【学习目标】(1)学会用函数的知识解决实际问题的基本方法和步骤。
(2)区分不同函数所代表的不同变化趋势,懂得根据不同条件去选取不同函数来解决问题。
【学习重点】(1)如何根据实际问题的表述,设出变量,列出函数关系式(2)用待定系数法求出适当的拟合函数【学习难点】根据题目中的数据画出散点图确定函数模型【学法指导】利用多媒体教学手段,根据教师引导启发,学生们之间交流合作、讨论、观察、分析、概括、归纳、总结,达到教学目标的要求。
【课前预习】阅读教科书P140~P142,尝试完成下题:1.某同学为了援助失学儿童,每月将自己的零用钱以相等的数额存入储蓄盒内,准备凑够200元时一并寄出,储蓄盒里原有60元,两个月后盒内有90元。
(1)盒内的钱数(元)与存钱月份数的函数解析式,并画出图像。
(2)几个月后这位同学可以第一次汇款?【课堂互动】[复习回顾]回忆所学函数,如:一次函数、二次函数、反比例函数、指数函数和对数函数模型。
[互动过程1]例1.某公司一年需要一种计算机元件8000个,每天需同样多的元件用于组装整机.该元件每年分n次进货,每次购买元件的数量均为x,购一次货需手续费500元已购进而未使用的元件要付库存费,可以认为平均库存量为x/2件,每个元件的库存费是一年2元.请核算一下,每年进货几次花费最小? [互动过程2]例2.某商场经营一批进价是30元/件的商品,在市场试销中发现,此商品的销售单价x元与日销售y件之间的有如下关系:x... 30 40 45 50 ...y... 60 30 15 0 ...(1)在直角坐标系中,根据表中提供的数据描出实数对(,)x y对应的点,并确定y与x的一个函数关系式()y f x;(2)设经营此商品的日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大的日销售利润?【目标检测】1.某工厂生产一种机器的固定成本为5000元,且每生产100部,需要增加投入2500元,对销售市场进行调查后得知,市场对此产品的需求量为每年500部,已知销售收入的函数为()221500x x x H -=,其中x 是产品销售的数量(0≤x ≤500)。
实4.2实际问题的函数建模际问题的函数建模学习目标:能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.学习重点:运用一次函数、二次函数模型解决一些实际问题.学习难点:将实际问题转变为数学模型.知识点一 常见的函数模型自学导引在现实世界中,存在着许许多多的函数关系,建立合适的函数模型是解决这种关系的关键.怎样选择恰当的函数模型呢?问题1:在人口增长,复利计算中,选择什么样的函数模型呢?提示:指数函数模型.问题2:在加速直线运动中,物体运动的路程与时间的关系是什么样的函数模型? 提示:二次函数模型.问题3:在使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这里常要说的里氏震级M ,使用的是什么样的函数模型?提示:对数函数模型.新知自解常用到的函数模型:(1)正比例函数模型:y =kx (k ≠0);(2)反比例函数模型:y =k x(k ≠0); (3)一次函数模型:y =kx +b (k ≠0);(4)二次函数模型:y =ax 2+bx +c (a ≠0);(5)指数函数模型:y =m ·a x +b (a >0,且a ≠1,m ≠0);(6)对数函数模型:y =m log a x +c (m ≠0,a >0,且a ≠1);(7)幂函数模型:y =k ·x n +b (k ≠0).知识点二 函数建模自学导引某公司拟投资100万元获利,打算5年后收回本金和利息,有两种获利方式可供选择:一种是年利率10%按单利计算;另一种是年利率9%按每年复利一次计算.问题1:按单利(每年的本金不变,均为最初的投资)计算,5年后收回的本金和利息是多少?提示:100×(1+10%×5)=150(万元).问题2:按复利(今年的本金和利息全作为明年的本金)计算,5年后收回的本金和利息是多少?提示:100×(1+9%)5≈153.86(万元).问题3:该公司应该选择哪种方式投资?提示:第二种.按复利投资.新知自解用数学眼光看问题,用数学思想、方法、知识解决实际问题的过程叫作数学建模,可以用图表示数学建模的过程.1.函数模型就是用函数知识对我们日常生活中普遍存在的实际问题进行归纳加工,运用函数的方法进行求解,最后实际问题得以解决.2.解函数应用题的步骤把握热点考向高频考点题组化考点一一次、二次、分段函数模型[例1]某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系用图1的一条拆线表示;西红柿的种植成本与上市时间的关系用图2的抛物线表示.(1)写出图1表示的市场售价与上市时间的函数关系式P=f(t);写出图2表示的种植成本与上市时间的函数关系式Q=g(t).(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102 kg ,时间单位:天)[思路点拨] 本题由函数图像给出基本条件,解题时要抓住图像特征,抓住关键点的坐标,确定函数关系式解题.[精解详析] (1)f (t )=⎩⎪⎨⎪⎧-t +300,0≤t ≤200,2t -300,200<t ≤300.设g (t )=a (t -150)2+100(a ≠0),将t =50,Q =150代入得a =1200. ∴g (t )=1200(t -150)2+100(0≤t ≤300). (2)设纯收益为y 元,当0≤t ≤200时,y =f (t )-g (t )=(-t +300)-[1200(t -150)2+100] =-1200t 2+12t +1752=-1200(t -50)2+100. 当t =50时,y 取到最大值,且最大值为100.当200<t ≤300时,y =f (t )-g (t )=(2t -300)-[1200(t -150)2+100]=-1200t 2+72t -1 0252=-1200(t -350)2+100.当t =300时取到最大,最大值为87.5.故从2月1日起第50天上市的西红柿纯收益最大.[一点通] 处理此类问题的一般思路是:认真读题、审题,弄清题意,明确题目中的数量关系,可充分借助图像、表格信息确定解析式,对于分段函数图像要特别注意虚实点,写准定义域,同时要注意它是一个函数.题组集训1.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量t (件)与每件的销售价x (元/件)可看成是一次函数关系:t =-3x +204.(1)写出商场卖这种服装每天的销售利润与每件的销售价x 之间的函数关系式(销售利润是指所卖出服装的销售价与购进价的差);(2)通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适?最大销售利润为多少?解:(1)由题意,销售利润y 与每件的销售价x 之间的函数关系为:y =(x -42)(-3x +204), 即y =-3x 2+330x -8 568;(2)配方,得y =-3(x -55)2+507.∴当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元.2.甲、乙两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供了两个方面的信息,如图.甲调查表明:每个甲鱼池平均产量从第1年1万只甲鱼上升到第6年2万只. 乙调查表明:甲鱼池个数由第1年30个减少到第6年10个.请你根据提供的信息说明:(1)第2年甲鱼池的个数及全县出产甲鱼总数;(2)到第6年这个县的甲鱼养殖业的规模比第1年是扩大了还是缩小了?说明理由;(3)哪一年的规模最大?说明理由.解:(1)由图可知,直线y 甲=kx +b 经过(1,1)和(6,2),可求得k =0.2,b =0.8. ∴y 甲=0.2(x +4).同理可得y 乙=4(-x +172). 故第二年甲鱼池的个数为26个,平均生产量为1.2万只,全县出产甲鱼的总数为26×1.2=31.2(万只);(2)规模缩小,原因是:第一年出产甲鱼总数30万只,而第6年出产甲鱼总数为20万只;(3)设第x 年规模最大,即求y 甲·y 乙=0.2(x +4)·4(-x +172)=-0.8x 2+3.6x +27.2的最大值.。
§2.1 函数模型的应用实例(Ⅰ)一、教学目标:1.知识与技能能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.2.过程与方法感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数模型在数学和其他学科中的重要性.3.情感、态度、价值观体会运用函数思想处理现实生活中和社会中的一些简单问题的实用价值.二、教学重点与难点:1.教学重点:运用一次函数、二次函数模型解决一些实际问题.2.教学难点:将实际问题转变为数学模型.三、学法与教学用具1.学法:学生自主阅读教材,采用尝试、讨论方式进行探究.2.教学用具:多媒体四、教学设想(一)创设情景,揭示课题引例:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼”问题的吗?你有什么更好的方法?老师介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”.这样,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23.比例激发学生学习兴趣,增强其求知欲望.可引导学生运用方程的思想解答“鸡兔同笼”问题.(二)结合实例,探求新知例1.某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程.探索:1)本例所涉及的变量有哪些?它们的取值范围怎样;2)所涉及的变量的关系如何?3)写出本例的解答过程.老师提示:路程S和自变量t的取值范围(即函数的定义域),注意t的实际意义.学生独立思考,完成解答,并相互讨论、交流、评析.例2.某商店出售茶壶和茶杯,茶壶每只定价20元,茶杯每只定价5元,该商店制定了两种优惠办法:1)本例所涉及的变量之间的关系可用何种函数模型来描述?2)本例涉及到几个函数模型?3)如何理解“更省钱?”;4)写出具体的解答过程.在学生自主思考,相互讨论完成本例题解答之后,老师小结:通过以上两例,数学模型是用数学语言模拟现实的一种模型,它把实际问题中某些事物的主要特征和关系抽象出来,并用数学语言来表达,这一过程称为建模,是解应用题的关键。
高一数学函数模型在解题中的应用北师大版【本讲教育信息】一. 教学内容:函数模型在解题中的应用1、实际问题的函数刻画2、用函数模型解决一些实际问题3、函数建模二. 学习目标进一步感受函数与现实世界的联系,强化用数学知识解决实际问题的意识;进一步尝试用函数刻画实际问题,通过研究函数的性质解决实际问题;了解数学建模的过程三. 知识要点一)常见的函数模型1、一次函数模型:现实生活中很多问题都可联系一次函数模型进行解决,如物体匀速直线运动中位移和时间的关系,弹簧的伸长与拉力的关系等,都可以通过直线来直观地刻画其变量之间的关系。
解析式:y=kx+b,k≠0。
其中参变量k有时称为比例系数。
2、二次函数模型:抛体运动中位移和时间的关系(如掷铅球),匀加速直线运动中位移和时间的关系(如研究汽车刹车后的滑行)等,都可以通过二次曲线来刻画其变量之间的关系。
解析式:y=ax2+bx+c,a≠0。
3、幂函数模型:在气象学、工程学等科学与生产实践中蕴含着幂函数关系,这是一种应用十分广泛的函数模型,二次函数模型就是其中一种重要的模型。
解析式:y=ax n+b,a·b≠0。
4、指数函数模型:细胞分裂、人口增长、利润增长、银行储蓄等经济生活和社会生活中都蕴含着指数函数关系。
解析式:y=a·b x+c,a·b≠0。
5、对数函数模型:对数函数模型在生产、生活及航天等领域有着比较广泛的应用。
解析式:y=log a x,a>0且a≠1。
二)实际问题的函数刻画生活中的许多实际问题,都可转化为函数问题。
通过建立函数模型,可以把实际问题转化为函数问题,进而利用函数的有关性质对函数问题进行处理和研究,得到数学结论,从而达到解决实际问题的目的。
用函数来刻画实际问题是解决实际问题的第一步,也是最重要和最困难的一步,关键要做到以下几点:第一:认真读题。
可以先大致浏览全题,理解问题背景,初步把握变量之间的数量关系;明确问题;第二:翻译。
2.2 用函数模型解决实际问题导入新课思路1.(事例导入)一张纸的厚度大约为0.01 cm,一块砖的厚度大约为10 cm,请同学们计算将一张纸对折n次的厚度和n块砖的厚度,列出函数关系式,并计算n=20时它们的厚度.你的直觉与结果一致吗?解:纸对折n次的厚度:f(n)=0.01·2n(cm),n块砖的厚度:g(n)=10n(cm),f(20)≈105 m,g(20)=2 m.也许同学们感到意外,通过对本节的学习大家对这些问题会有更深的了解.思路2.(直接导入)请同学们回忆指数函数、对数函数以及幂函数的图像性质,本节我们通过实例比较它们的应用.推进新课新知探究提出问题①如果张红购买了每千克1元的蔬菜x千克,需要支付y元,把y表示为x的函数.②正方形的边长为x,面积为y,把y表示为x的函数.③某保护区有1单位面积的湿地,由于保护区努力,湿地每年以5%的增长率增长,经过x年后湿地的面积为y,把y表示为x的函数.④分别用表格、图像表示上述函数.⑤指出它们属于哪种函数模型.⑥讨论它们的单调性.⑦继续扩大x的取值范围,比较它们的增长差异.⑧另外还有哪种函数模型?活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.①总价等于单价与数量的积.②面积等于边长的平方.③由特殊到一般,先求出经过1年、2年、…….④列表画出函数图像.⑤引导学生回忆学过的函数模型.⑥结合函数表格与图像讨论它们的单调性.⑦让学生自己比较并体会.⑧另外还有与对数函数有关的函数模型.讨论结果:①y=x.②y=x2.③y=(1+5%)x,④如下表图5 图6 图7⑤它们分别属于:y=kx+b(直线型),y=ax2+bx+c(a≠0,抛物线型),y=ka x+b(指数型).⑥从表格和图像得出它们都为增函数.⑦在不同区间增长速度不同,随着x的增大y=(1+5%)x的增长速度越来越快,会远远大于另外两个函数.⑧另外还有与对数函数有关的函数模型,形如y=log a x+b,我们把它叫作对数型函数.函数模型是应用最广泛的数学模型之一.许多实际问题一旦认定是函数关系.就可以通过研究函数的性质把握问题,使问题得到解决.应用示例思路1例1 某公司一年需要一种计算机元件8 000个,每天需同样多的元件用于组装整机.该元件每年分n 次进货,每次购买元件的数量均为x ,购一次货需手续费500元.已购进而未使用的元件要付库存费,可以认为平均库存量为12x 件,每个元件的库存费是一年2元.请核算一下,每年进货几次花费最小?解:无论分几次进货,公司进货的总数是8 000个元件,元件费用是固定不变的,影响总费用变化的量只是库存费和购货手续费,若想减少库存费,就要增加进货次数,而进货次数的增加又使手续费的总量增加了,这就需要将二者对总费用的影响用数学关系表示清楚,进而求最小的花费.设购进8 000个元件的总费用为F ,一年总库存费为E ,手续费为H ,其他费用为C (C 为常数),则E =2×12x ,H =500×8 000x ,x =8 000n(n ≥1,n ∈Z ),所以F =E +H +C =2×12x +500×8 000x +C=8 000n+500n +C =500⎝ ⎛⎭⎪⎫16n +n +C =500⎝ ⎛⎭⎪⎫4n -n 2+4 000+C ≥4 000+C ,当且仅当4n=n ,即n =4时,总费用最少,故以每年进货4次为宜.例2 电声器材厂在生产扬声器的过程中,有一道重要的工序:使用AB 胶粘合扬声器中的磁钢与夹板.长期以来,由于对AB 胶的用量没有一个确定的标准,经常出现用胶过多,胶水外溢;或用胶过少,产生脱胶,影响了产品质量.经过实验,已有一些恰当用胶量的具体数据(见下表). 序号 1 2 3 4 5 6 7 8 9 10磁钢面积/cm 211.0 19.4 26.2 46.6 56.6 67.2 125.2 189.0 247.1 443.4用胶量/g0.164 0.396 0.404 0.664 0.812 0.972 1.688 2.86 4.076 7.332现在需要提出一个既科学又简便的方法来确定磁钢面积与用胶量的关系.解:我们取磁钢面积x 为横坐标、用胶量y 为纵坐标,建立直角坐标系.根据上表数据在直角坐标系中描点,得出图8.图8从图中我们清楚地看到这些点基本上分布在一条直线附近.画出这条直线,使图上的点比较均匀地分布在直线两侧.用函数y =ax +b 表示用胶量与磁钢面积的关系.取点(56.6,0.812),(189.0,2.86),将它们的坐标代入y =ax +b ,得方程组⎩⎪⎨⎪⎧0.812=56.6a +b ,2.86=189.0a +b .解得a =0.015 47,b =-0.063 50. 这条直线是y =0.015 47x -0.063 50.点评:通过一些数据寻求事物规律,往往是通过绘出这些数据在直角坐标系中的点,观察这些点的整体特征,看它们接近我们熟悉的哪一种函数图像,选定函数形式后,将一些数据代入这个函数的一般表达式,求出具体的函数表达式,再做必要的检验,基本符合实际,就可以确定这个函数基本反映了事物规律.这种方法称为数据拟合.在自然科学和社会科学中,很多规律、定律都是先通过实验,得到数据,再通过数据拟合得到的.例3 某公司为了实现1 000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随着利润x (单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y =0.25x ,y =log 7x +1,y =1.002x,其中哪个模型能符合公司的要求?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超过5万元,同时奖金不超过利润的25%,由于公司总的利润目标为1 000万元,所以人员销售利润一般不会超过公司总的利润.于是只需在区间[10,1 000]上,检验三个模型是否符合公司要求即可.不妨先作出函数图像,通过观察函数的图像,得到初步结论,再通过具体计算,确认结果.解:借助计算器或计算机作出函数y =0.25x ,y =log 7x +1,y =1.002x的图像(图9).图9观察函数的图像,在区间[10,1 000]上,模型y =0.25x ,y =1.002x的图像都有一部分在直线y =5的上方,只有模型y =log 7x +1的图像始终在y =5的下方,这说明只有按模型y =log 7x +1进行奖励时才符合公司的要求.下面通过计算确认上述判断.首先计算哪个模型的奖金总数不超过5万.对于模型y =0.25x ,它在区间[10,1 000]上递增,而且当x =20时,y =5,因此,当x >20时,y >5,所以该模型不符合要求;对于模型y =1.002x,由函数图像,并利用计算器,可知在区间(805,806)内有一个点x 0满足1.002x 0=5,由于它在区间[10,1 000]上递增,因此当x >x 0时,y >5,所以该模型也不符合要求;对于模型y =log 7x +1,它在区间[10,1 000]上递增,而且当x =1 000时,y =log 71 000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y =log 7x +1奖励时,奖金是否不超过利润的25%,即当x ∈[10,1 000]时,是否有y x=log 7x +1x≤0.25成立.令f (x )=log 7x +1-0.25x ,x ∈[10,1 000].利用计算器或计算机作出函数f (x )的图像(图10),由函数图像可知它是递减的,因此图10f (x )<f (10)≈-0.316 7<0,即log 7x +1<0.25x . 所以当x ∈[10,1 000]时,log 7x +1x<0.25.说明按模型y =log 7x +1奖励,奖金不超过利润的25%. 综上所述,模型y =log 7x +1确实能符合公司的要求. 变式训练市场营销人员对过去几年某商品的价格及销售数量的关系作数据分析发现有如下规律:该商品的价格每上涨x %(x >0),销售数量就减少kx %(其中k 为正常数).目前,该商品定价为a 元,统计其销售数量为b 个.(1)当k =12时,该商品的价格上涨多少,就能使销售的总金额达到最大?(2)在适当的涨价过程中,求使销售总金额不断增加....时k 的取值范围. 解:依题意,价格上涨x %后,销售总金额为y =a (1+x %)·b (1-kx %)=ab10 000[-kx 2+100(1-k )x +10 000].(1)取k =12,y =ab 10 000⎝ ⎛⎭⎪⎫-12x 2+50x +10 000,所以x =50,即商品价格上涨50%,y 最大为98ab .(2)因为y =ab10 000[-kx 2+100(1-k )x +10 000],此二次函数的开口向下,对称轴为x =501-kk,在适当涨价过程后,销售总金额不断增加,即要求此函数当自变量x 在{x |x >0}的一个子集内增大时,y 也增大.所以501-k k>0,解得0<k <1.点评:这类问题的关键在于列函数解析式建立函数模型,然后借助不等式进行讨论.思路2例1 某工厂有216名工人接受了生产1 000台GH 型高科技产品的总任务,已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成.每个工人每小时能加工6个G 型装置或3个H 型装置.现将工人分成两组同时开始加工,每组分别加工一种装置.设加工G 型装置的工人有x 人,他们加工完G 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x )(单位:小时,可不为整数).(1)写出g (x ),h (x )解析式;(2)比较g (x )与h (x )的大小,并写出这216名工人完成总任务的时间f (x )的解析式; (3)应怎样分组,才能使完成总任务用的时间最少?解:(1)由题意,知需加工G 型装置4 000个,加工H 型装置3 000个,所用工人分别为x 人,216-x 人.∴g (x )=4 0006x ,h (x )= 3 000216-x ·3,即g (x )=2 0003x ,h (x )=1 000216-x (0<x <216,x ∈N +).(2)g (x )-h (x )=2 0003x -1 000216-x =1 000·432-5x3x 216-x .∵0<x <216,∴216-x >0.当0<x ≤86时,432-5x >0,g (x )-h (x )>0,g (x )>h (x ); 当87≤x <216时,432-5x <0,g (x )-h (x )<0,g (x )<h (x ).∴f (x )=⎩⎪⎨⎪⎧2 0003x,0<x ≤86,x ∈N +;1 000216-x ,87≤x <216,x ∈N+.(3)完成总任务所用时间最少即求f (x )的最小值. 当0<x ≤86时,f (x )递减, ∴f (x )≥f (86)=2 0003×86=1 000129.∴f (x )min =f (86),此时216-x =130. 当87≤x <216时,f (x )递增, ∴f (x )≥f (87)=1 000216-87=1 000129.∴f (x )min =f (87),此时216-x =129. ∴f (x )min =f (86)=f (87)=1 000129. ∴加工G 型装置,H 型装置的人数分别为86,130或87,129. 变式训练1.某农产品去年各季度的市场价格如下表:季 度 第一季度 第二季度 第三季度 第四季度 每吨售价(单位:元)195.5200.5204.5199.5m 与各季度售价差的平方和最小)收购该种农产品,并按每个100元纳税10元(又称征税率为10个百分点),计划可收购a 万吨,政府为了鼓励公司多收购这种农产品,决定将税率降低x 个百分点,预测收购量可增加2x 个百分点,(1)根据题中条件填空,m =________(元/吨); (2)写出税收y (万元)与x 的函数关系式;(3)若要使此项税收在税率调节后不少于原计划税收的83.2%,试确定x 的取值范围. 解:(1)∵f (m )=(m -195.5)2+(m -200.5)2+(m -204.5)2+(m -199.5)2=4m 2-1 600m +160 041,∴m =200.(2)降低税率后的税率为(10-x )%,农产品的收购量为a (1+2x %)万吨,收购总金额为200a (1+2x %),故y =200a (1+2x %)(10-x )%=20010 000a (100+2x )(10-x )=150a (100+2x )(10-x )(0<x <10).(3)原计划税收为200a ×10%=20a (万元),依题意得150a (100+2x )(10-x )≥20a ×83.2%,即x 2+40x -84≤0.解得-42≤x≤2.又0<x<10,∴0<x≤2.∴x的取值范围是0<x≤2.2.假设国家收购某种农产品的价格是120元/担,其中征税标准为每100元征8元(叫税率为8%),计划可收购m万担(其中m为正常数),为了减轻农民负担,如果税率降低x%,预计收购量可增加(2x)%.(1)写出税收y(万元)与x的函数关系式;(2)要使此项税收在税率调节后不低于原计划的78%,求x的取值范围.解:(1)y=120m×104[1+(2x)%]×(8-x)%=120m(-2x2-84x+800).(2)由题意知120m(-2x2-84x+800)≥0.78×120m×104×8%,解得0<x≤2.所以x的取值范围是0<x≤2.例2 民营企业生产A,B两种产品,根据市场调查与市场预测,A产品的利润与投资成正比,其关系如图11,B产品的利润与投资的算术平方根成正比,其关系如图12.(注:利润与投资单位:万元)(1)分别将A,B两种产品的利润表示为投资的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元?(精确到1万元)图11 图12解:(1)设投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元. 由题设f (x )=k 1x ,g (x )=k 2x , 由图知f (1)=14,∴k 1=14. 又g (4)=52,∴k 2=54. 从而f (x )=14x (x ≥0),g (x )=54x (x ≥0). (2)设A 产品投入x 万元,则B 产品投入10-x 万元,企业利润为y 万元.则y =f (x )+g (10-x )=x 4+5410-x (0≤x ≤10), 令10-x =t ,则y =10-t 24+54t =-14⎝ ⎛⎭⎪⎫t -522+6516(0≤t ≤10), 当t =52时,y max =6516≈4, 此时x =10-254=3.75(万元). ∴当A 产品投入3.75万元,B 产品投入6.25万元时,企业获得最大利润约为4万元. 变式训练某商场计划投入一笔资金采购一批紧销商品,经过市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售,可获利30%,但要付出仓储费用700元,请根据商场情况,如何购销获利较多?解:设商场投资x 元,在月初出售,到月末可获利y 1元,在月末出售,可获利y 2元,则y 1=15%x +10%(x +15%x )=0.265x ,y 2=0.3x -700.图13利用函数图像比较大小,在直角坐标系中,作出两函数的图像如图13所示,得两图像的交点坐标为(20 000,5 300).由图像,知当x >20 000时,y 2>y 1.当x =20 000时,y 1=y 2;当x <20 000时,y 2<y 1.∴当投资小于20 000元时,月初出售;当投资等于20 000元时,月初、月末出售均可;当投资大于20 000元时,月末出售.知能训练光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k ,通过x 块玻璃以后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃以后,光线强度减弱到原来的13以下.(lg 3≈0.477 1) 解:(1)光线经过1块玻璃后强度为(1-10%)k =0.9k ;光线经过2块玻璃后强度为(1-10%)·0.9k =0.92k ;光线经过3块玻璃后强度为(1-10%)·0.92k =0.93k ;光线经过x 块玻璃后强度为0.9x k .∴y =0.9x k (x ∈N +).(2)由题意,知0.9x k <k 3, ∴0.9x <13.两边取对数,x lg 0.9<lg 13. ∵lg 0.9<0,∴x >lg 13lg 0.9. ∵lg 13lg 0.9=lg 31-2lg 3≈10.4,∴x min =11. ∴通过11块玻璃以后,光线强度减弱到原来的13以下. 拓展提升某池塘中野生水葫芦的面积与时间的函数关系的图像如图14所示.假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m 2;③野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;④设野生水葫芦蔓延到2 m 2、3 m 2、6 m 2所需的时间分别为t 1,t 2,t 3,则有t 1+t 2=t 3; ⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.哪些说法是正确的?图14解:①说法正确.∵关系为指数函数,∴可设y=a x(a>0且a≠1).∴由图知2=a1.∴a=2,即底数为2.②∵25=32>30,∴说法正确.③∵指数函数增加速度越来越快,∴说法不正确.④t1=1,t2=log23,t3=log26,∴说法正确.⑤∵指数函数增加速度越来越快,∴说法不正确.课堂小结活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价.引导方法:从基本知识和基本技能两方面来总结.答案:(1)建立函数模型;(2)利用函数图像性质分析问题、解决问题.作业习题4—2 A组2.设计感想本节设计由学生熟悉的素材入手,结果却出乎学生的意料,由此使学生产生浓厚的学习兴趣.课本中两个例题不仅让学生学会了函数模型的应用,而且体会到它们之间的差异;我们补充的例题与之相映生辉,是课本的补充和提高,其难度适中是各地高考模拟经常选用的素材.其中拓展提升中的问题紧贴本节主题,很好地体现了指数函数的性质特点,是一个不可多得的素材.。
2.2 用函数模型解决实际问题-北师大版高中数学必修第一册(2019版)教案一、教学目标1.掌握函数模型的概念;2.理解表示函数模型的语言;3.掌握利用函数模型解决实际问题的方法和步骤;4.能够运用函数模型解决实际问题。
二、教学重点和难点教学重点1.函数模型的概念;2.利用函数模型解决实际问题的方法和步骤。
教学难点1.利用函数模型解决实际问题的具体思路和方法。
三、教学内容与进度安排教学内容课时数函数模型的概念 1利用函数模型解决实际问题 2四、教学过程函数模型的概念1. 导入教师将实物或图片放在课桌前,引导学生关注,从中得到一些信息,并引出“函数模型”的概念。
2. 理解函数模型教师通过实例,向学生阐述函数模型的概念,即通过一个输入得到一个输出的关系。
3. 表示函数模型的语言教师介绍表示函数模型的几种语言,例如:•解析式;•表格形式;•图形形式;•词语形式。
利用函数模型解决实际问题1. 复习教师复习函数的概念,引导学生从函数的定义出发,理解函数模型。
2. 案例分析教师通过具体的案例,向学生介绍如何利用函数模型解决实际问题。
例如:•计算人口增长量;•计算房价变化;•计算销售额变化。
3. 方法和步骤教师向学生介绍利用函数模型解决实际问题的方法和步骤,例如:•确定问题的变量和关系;•建立函数模型;•分析函数的性质,利用函数解决实际问题。
练习学生根据教师提供的练习题,独立完成计算。
五、教学方法与技巧1.让学生通过观察实物或图片获得信息,进而理解函数模型的概念;2.复习函数的定义,帮助学生理解函数模型的概念;3.举具体案例让学生思考如何利用函数模型解决实际问题;4.通过练习让学生巩固掌握;六、作业1.完成课后练习;2.根据实际问题,自行寻找相关数据,利用函数模型解决问题。
七、板书设计函数模型的概念:通过一个输入得到一个输出的关系表示函数模型的语言:解析式;表格形式;图形形式;词语形式利用函数模型解决实际问题的方法和步骤:1. 确定问题的变量和关系;2. 建立函数模型;3. 分析函数的性质,利用函数解决实际问题。
《用函数模型解决实际问题》教学设计用函数模型解决实际问题这部分内容,非常注重贴近实际生活,关注社会热点,要求学生对一些实际例子做出判断、决策,注重培养学生分析问题、解决问题的能力。
解决函数建模问题,也就是根据实际问题建立起数学模型来。
所谓的数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表达的一种数学结构。
函数就是重要的数学模型,用函数解决方程问题,使求解变得容易进行。
本节内容是安排在学生刚学完函数的相关知识,为学生建立起函数模型奠定基础。
学生虽然对这种函数建模问题并不陌生,但是要建立起正确的函数模型却不是一件容易的事。
这种题型题目较长,相关的内容较多,问题不是一眼就可以看出答案,需要建立的函数模型也多种多样,不少还会涉及到求二次函数的最值问题,学生往往是无从下手,对自己失去信心。
针对这种情况,我觉得直接让学生一步到位就找出解决问题的途径是很困难,老师在这里就应该发挥自己的主导地位,带领学生由问题入手,逐步分析,自己设计出一个一个的小问题,最后把这些小问题串起来,把题目中的大问题解决。
用函数模型解决实际问题需要建立的函数模型是多种多样的,只有根据题目的要求建立起适当的函数模型,才能成功地解决问题。
教师在授课过程中,要注重分类的思想,帮助学生把函数建模问题分成几类,以方便学生形成自己的知识系统。
一.一次函数模型的应用
某同学为了援助失学儿童,每月将自己的零用钱一相等的数额存入储蓄盒内,准备凑够200元时一并寄出,储蓄盒里原有60元,两个月后盒内有90元。
(1)盒内的钱数(元)与存钱月份数的函数解析式,并画出图象。
(2)几个月后这位同学可以第一次汇款?
这种题型只要建立起一次函数就可以很快地解决问题,而且学生以前也有接触过,对他们而言这种问题难度不大,主要是让他们对函数建模有个感觉。
二.二次函数模型的应用
建立二次函数模型解决实际问题是整本书中出现得最多的一种方法,这种多用于根据二次函数的性质求出最值,求利润问题也多属于这种类型。
某商店进了一批服装,每件售价为90元,每天售出30件,在一定范围内这批服装的售价每降低1元,每天就多售出1件。
请写出利润(元)与售价(元)之间的函数关系,当售价为多少元时,每天的利润最大?
学生首次接触这种类型的题,往往是束手无策,这时教师可引导他们从他们最熟悉的问题做起:利润=单件售价×售出件数,设售价为x,则下面只需要找出售出件数即可,而售出件数又与价钱降低的幅度有关,所以设计下列相关问题让学生去找答案:售价比原定的售价降低了:90-x
售出件数比原来多了:(90-x)×1=90-x
则现在售出件数为:30+(90-x)=120-x
因此,利润y=x(120-x)
只要学生根据这些小问题,一个一个向题目索取答案,那么这道题就可以迎刃而解。
三.分段函数模型的应用
我们国家的税收,邮资的收取,出租车的收费都是按段收费的,可以根据这些现实中的例子让学生写出它们对应的函数,这样学生会更感兴趣,而且也更能感受到数学在实际生活中的广泛应用。
四.指数函数模型的应用
这种函数的应用多用于人口的增长问题,银行用复利计算利息的问题。
按复利计算利息的一种储蓄,设本金为a元,每期利率为r,本利和为y,存期为x,写出本利和y随存期x变化的函数式。
如果存入本金1000元,每期利率2.25%,计算5期后的本利和是多少?(不计利息税)
这种涉及到建立指数函数模型的问题,学生理解起来相对困难,可以帮助学生从第一期、第二期……求起:
1期后的本利和为a+a×r=a(1+r)
2期后的本利和为a(1+r)+a(1+r)r=a(1+r)2
3期后的本利和为a(1+r)2+a(1+r)2×r=a(1+r)3
……
x期后的本利和为y=a(1+r)x
这样分步骤,学生就很容易理解最终的本利和的函数式是怎么得到的。
根据实际例子建立起适当的函数模型是教学当中的一大难点,只有帮助学生进行分类归纳,并且在授课过程中时刻体现由问题入手,由简单到复杂,学生才能对所学知识更好地掌握,才能在数学学习中体会到其中的乐趣,把数学更好地应用到实际生活中去。