(2020精编)江苏省连云港市灌云县实验中学2019年中考模拟数学试题二.doc
- 格式:doc
- 大小:389.28 KB
- 文档页数:9
江苏省灌云县联考2019-2020学年中考数学模拟教学质量检测试题一、选择题1.如图,菱形ABCD 的边长是4厘米,∠B=60°,动点P 以1厘米/秒的速度自A 点出发沿AB 方向运动至B 点停止,动点Q 以2厘米/秒的速度自B 点出发沿折线BCD 运动至D 点停止.若点P 、Q 同时出发运动了t 秒,记△BPQ 的面积为S 厘米2,下面图象中能表示S 与t 之间的函数关系的是( )A .B .C .D .2.把a 移到根号内得( )B. C.3.O 为等边△ABC 所在平面内一点,若△OAB 、△OBC 、△OAC 都为等腰三角形,则这样的点O 一共有( ) A .4B .5C .6D .104.2018年4月10日,历时四个月的“2018中国茶叶区域公用品牌价值评估”结果出炉,信阳毛尖较去年增加3.61亿元,以63.52亿元蝉联品牌价值排行榜第二名,并被评选为“最具品牌带动力”的三大品牌之一.数据63.52亿元用科学计数法表示为( ) A .83.6110⨯B .73.6110⨯C .863.5210⨯D .96.35210⨯5.在实数范围内把二次三项式x 2+x ﹣1分解因式正确的是( )A .(x )(x )B .(x )()C .()(x )D .()() 6.已知⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8cm ,则AC 的长为( )A .B .C .或.或7.如果a+b =12,那么a b a b b a+--22的值是( ) A .12 B .14 C .2 D .48.已知x a =2,x b =﹣3,则x 3a ﹣2b =( ) A .23B .89C .-23D .89-9.如图,正方形ABCD 的顶点A (1,1),B (3,1),规定把正方形ABCD“先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD 的顶点C 的坐标为( )A .(﹣2018,3)B .(﹣2018,﹣3)C .(﹣2016,3)D .(﹣2016,﹣3)10.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:A .5,5B .6,6C .5,6D .6,511.如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(8,6),以A 为圆心,任意长为半径画弧,分别交AC 、AO 于点M 、N ,再分别以M 、N 为圆心,大于12MN 长为半径画弧两弧交于点Q ,作射线AQ 交y 轴于点D ,则点D 的坐标为( )A .()0,1B .80,3⎛⎫ ⎪⎝⎭C .50,3⎛⎫ ⎪⎝⎭D .()0,212.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,AC=6,BD=10,则AD 的长度可以是( )A.2B.7C.8D.10二、填空题13.如图,半径为13的等圆⊙O 1和⊙O 2相交与A ,B 两点,延长O 1O 2与⊙O 1交于点D ,连接BD 并延长与⊙O 2交于点C ,若AB =24,则CD =_____.14.某公司向银行申请了甲 、乙两种贷款,共计68万元,每年需付出8.42万元利息。
2019年江苏省连云港市灌云县中考数学模拟试卷(5月份)一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出四个选项中,只有一项是符合题目要求.)1.(3分)下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.12.(3分)下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x73.(3分)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×1064.(3分)下图几何体的主视图是()A.B.C.D.5.(3分)某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)3 3.54 4.5人数1132A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.56.(3分)受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=3007.(3分)某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折8.(3分)如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k <0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tan二、填空题(本大题共有8小题,每小题3分,共24分)9.(3分)=.10.(3分)分解因式:x3﹣x=.11.(3分)若一个多边形的内角和是540°,则这个多边形是边形.12.(3分)从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.13.(3分)小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是cm2.14.(3分)如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.15.(3分)已知抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC.若在x轴上侧的A点为抛物线上的动点,且∠BAC为锐角,则AD的取值范围是.16.(3分)如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为.三、解答题(本大题共有10题,共102分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.)17.(12分)计算或化简:(1)(2)18.(6分)解方程:+=1.19.(10分)图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.20.(6分)如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.21.(10分)有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.22.(10分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.23.(10分)如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE =135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)24.(12分)近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.25.(12分)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.26.(14分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD =1,OB=,请直接写出当点C与点M重合时AC的长.2019年江苏省连云港市灌云县中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出四个选项中,只有一项是符合题目要求.)1.(3分)下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣1<0<1,∴各数中最小的数是﹣3.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(3分)下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x7【分析】A、利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,本选项错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、3x2•4x2=12x4,本选项错误;B、原式不能合并,错误;C、x4÷x=x3,本选项正确;D、(x5)2=x10,本选项错误,故选:C.【点评】此题考查了同底数幂的除法,合并同类项,积的乘方与幂的乘方,以及单项式乘单项式,熟练掌握法则是解本题的关键.3.(3分)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300 000用科学记数法表示为:3×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下图几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到的几何体的左边有3个正方形,中间只有2个正方形,右边有1个正方形.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(3分)某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)3 3.54 4.5人数1132A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.5【分析】根据众数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.【点评】本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.(3分)受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=300【分析】设快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.(3分)某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折【分析】根据题意和函数图象中的数据可以列出相应的方程,从而可以求得超过500元的部分可以享受的优惠,本题得以解决.【解答】解:设超过500元的部分可以享受的优惠是x折,(1000﹣500)×+500=900,解得,x=8,故选:C.【点评】本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.(3分)如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k <0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tan【分析】过点C作CE⊥OA于E,过点D作DF⊥x轴于F,根据平行四边形的对边相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,设AF=a,表示出点C、D的坐标,然后根据CE、DF的关系列方程求出a的值,再求出OE、CE,然后利用∠COA的正切值列式整理即可得解.【解答】解:如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,在▱OABC中,OC=AB,∵D为边AB的中点,∴OC=AB=2AD,CE=2DF,∴OE=2AF,设AF=a,∵点C、D都在反比例函数上,∴点C(﹣2a,﹣),∵A(3,0),∴D(﹣a﹣3,),∴=2×,解得a=1,∴OE=2,CE=﹣,∵∠COA=∠α,∴tan∠COA=tan∠α=,即tanα=﹣,k=﹣4tanα.故选:A.【点评】本题考查了平行四边形的性质,反比例函数图象上点的坐标特征,锐角三角函数,根据点C、D的纵坐标列出方程是解题的关键.二、填空题(本大题共有8小题,每小题3分,共24分)9.(3分)=2.【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:2【点评】此题主要考查了学生开平方的运算能力,比较简单.10.(3分)分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.11.(3分)若一个多边形的内角和是540°,则这个多边形是五边形.【分析】根据多边形的内角和公式求出边数即可.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:五.【点评】本题考查了多边形的内角和定理,熟记公式是解题的关键.12.(3分)从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.【分析】先写出3种等可能的结果数,然后根据三角形三边的关系确定三条线段能构成三角形的结果数,再根据概率公式求解.【解答】解:共有3种等可能的结果数,它们是:2、3、3,2、3、4,2、3、5,其中三条线段能构成三角形的结果数为2种,所以能构成三角形的概率=.故答案为:.【点评】本题考查了列表法与树状图法,概率公式:随机事件A的概率P(A)=事件A 可能出现的结果数除以所有可能出现的结果数.也考查了三角形三边的关系.13.(3分)小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是35πcm2.【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【解答】解:底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.(3分)如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【解答】解:别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC=5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴,∴∴在Rt△BCD中,∵CD=,BC=5,所以BD==.故答案为:.【点评】本题主要考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.15.(3分)已知抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC.若在x轴上侧的A点为抛物线上的动点,且∠BAC为锐角,则AD的取值范围是3<AD≤9.【分析】由“∠BAC为锐角”可知点A在以定线段BC为直径的圆外,又点A在x轴上侧,从而可确定动点A的范围,进而确定AD的取值范围.【解答】解:如图,∵抛物线y=﹣x2+2x+8,∴抛物线的顶点为A0(1,9),对称轴为x=1,与x轴交于两点B(﹣2,0)、C(4,0),分别以BC、DA为直径作⊙D、⊙E,则两圆与抛物线均交于两点P(1﹣2,1)、Q(1+2,1).可知,点A在不含端点的抛物线内时,∠BAC<90°,且有3=DP=DQ<AD≤DA0=9,即AD的取值范围是3<AD≤9.【点评】此题主要考查了抛物线与x轴的交点,解题时首先求出抛物线的顶点坐标和与x 轴的交点坐标,然后利用已知条件探究即可解决问题.16.(3分)如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为15.【分析】将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,判定△BAC≌△QAC(SAS),得到BC=CQ=BD+CD=5,再设AD=x,在Rt △CQE中,运用勾股定理列出关于x的方程,求得x的值,最后根据△ABC的面积=×BC×AD,进行计算即可【解答】解:如图,将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,由旋转可得,△ABD≌△AQF,∴AB=AQ,∠BAD=∠F AQ,BD=QF=3,∠F=∠ADC=∠DAF=90°=∠E,∵∠BAC=45°,∴∠BAD+∠DAC=45°,∴∠DAC+∠F AQ=45°,又∵∠DAF=90°,∴∠CAQ=45°,∴∠BAC=∠CAQ.且AB=AQ,AC=AC∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=5,设AD=x,则QE=x﹣3,CE=x﹣2.在Rt△CQE中,CE2+QE2=CQ2∴(x﹣2)2+(x﹣3)2=52解得:x1=6,x2=﹣1(舍去),∴AD=6,∴△ABC的面积为=×BC×AD=15故答案为:15【点评】本题考查了正方形的性质,全等三角形的性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.三、解答题(本大题共有10题,共102分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.)17.(12分)计算或化简:(1)(2)【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质、二次根式的性质分别化简得出答案;(2)首先利用分式的混合运算法则进而化简得出答案.【解答】解:(1)原式=﹣2+2×+1=﹣2++1=1;(2)原式=1﹣×=1﹣=﹣.【点评】此题主要考查了分式的混合运算以及实数运算,正确掌握分式的混合运算法则是解题关键.18.(6分)解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+1)(x+1)﹣4=x2﹣1,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(10分)图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16万人次到图书馆阅读,其中商人占百分比为12.5%.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.【分析】(1)利用到图书馆阅读的人数=学生的人数÷学生的百分比求解,商人占百分比=商人数÷总人数求解即可,(2)求出职工到图书馆阅读的人数,作图即可,(3)利用总人数乘读者是职工的人数所占的百分比求解即可.【解答】解:(1)在统计的这段时间内,到图书馆阅读的人数为4÷25%=16(万人),其中商人占百分比为×100%=12.5%;故答案为:16;12.5;(2)职工:16﹣4﹣2﹣4=6(万人),如图所示:(3)估计24000人次中是职工的人次为24000×=9000(人次).【点评】本题主要考查了条形统计图与扇形统计图,解题的关键是读懂统计图,从统计图中得到准确的信息.20.(6分)如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.【分析】要证明BC=ED,只要证明△ABC≌△CED即可,根据题意目中的条件和平行线的性质可以得到证明两个三角形全等的条件,本题得以解决.【解答】证明:∵AB∥CD,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴BC=ED.【点评】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,利用全等三角形的判定和性质解答.21.(10分)有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.【分析】(1)应用列表法,求出两次抽取数字和为5的概率是多少即可.(2)应用列表法,求出所抽取数字和为5的概率是多少即可.【解答】解:(1)132(1,2)(3,2)4(1,4)(3,4)∵共有4种可能性,且每种可能性都相同,数字和为5有两种可能性,∴两次抽取数字和为5的概率为:=.(2)12341﹣﹣(2,1)(3,1)(4,1)2(1,2)﹣﹣(3,2)(4,2)3(1,3)(2,3)﹣﹣(4,3)4(1,4)(2,4)(3,4)﹣﹣∵共有12种可能性,且每种可能性都相同,数字和为5的有4种可能性,∴抽取数字和为5概率为:=.【点评】此题主要考查了列表法与树状图法,要熟练掌握,解答此题的关键是要明确:列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B 的结果数目m,求出概率.22.(10分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.【分析】(1)连接OE,BE,因为DE=EF,所以,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sin A=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===∴r=∴AF=5﹣2×=【点评】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.23.(10分)如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE =135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)【分析】(1)直接作出平行线和垂线进而得出∠EDF的值;(2)利用锐角三角函数关系得出DN以及EF的值,进而得出答案.【解答】解:(1)如图所示:过点D作DF∥AB,过点D作DN⊥AB于点N,EF⊥AB 于点M,由题意可得,四边形DNMF是矩形,则∠NDF=90°,∵∠A=60°,∠AND=90°,∴∠ADN=30°,∴∠EDF=135°﹣90°﹣30°=15°,即DE与水平桌面(AB所在直线)所成的角为15°;(2)如图所示:∵∠ACB=90°,∠A=60°,AB=16cm,∴∠ABC=30°,则AC=AB=8cm,∵灯杆CD长为40cm,∴AD=48cm,∴DN=AD•cos30°≈41.76cm,则FM=41.76cm,∵灯管DE长为15cm,∴sin15°===0.26,解得:EF=3.9,故台灯的高为:3.9+41.76≈45.7(cm).【点评】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.24.(12分)近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【分析】(1)设今年年初猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设5月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.【点评】本题考查了一元一次不等式的应用、一元二次方程的应用;根据题意列出不等式和方程是解决问题的关键.25.(12分)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【分析】(1)利用tan∠ABC=3,得出C点坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠P AE=∠PEA=∠EPD,同理可得:∠P AF=∠PF A =∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠P AE+∠P AF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF =AD+EF=(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c =0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=P A,∴∠P AE=∠PEA=∠EPD,同理可得:∠P AF=∠PF A=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠P AE+∠P AF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.【点评】此题主要考查了二次函数综合以及待定系数法求二次函数解析式和直角三角形中线的性质等知识,用AD表示出△PEF的周长是解题关键.26.(14分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD =1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,。
江苏省连云港初中毕业升学考试数学试题一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣2的绝对值是 A .﹣2 B .12-C .2D .122x 的取值范围是 A .x ≥1 B .x ≥0 C .x ≥﹣1 D .x ≤0 3.计算下列代数式,结果为5x 的是A .23x x +B .5x x ⋅C .6x x -D .552x x -4.一个几何体的侧面展开图如图所示,则该几何体的底面是5.一组数据3,2,4,2,5的中位数和众数分别是 A .3,2 B .3,3C .4,2D .4,36.在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”,“兵”所在位置的格点构成的三角形相似 A .①处B .②处C .③处D .④处7.如图,利用一个直角墙角修建一个梯形储料场ABCD ,其中∠C =120°.若新建墙BC 与CD 总长为12m ,则该梯形储料场ABCD 的最大面积是A .18m 2B .2C .2D 28.如图,在矩形ABCD 中,AD =.将矩形ABCD 对折,得到折痕MN ;沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论:①△CMP 是直角三角形;②点C 、E 、G 不在同一条直线上;③PC =2MP ;④BP =2AB ;⑤点F 是△CMP 外接圆的圆心.其中正确的个数为 A .2个B .3个C .4个D .5个二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.64的立方根是. 10.计算2(2)x -=.11.连镇铁路正线工程的投资总额约为46400000000元.数据“46400000000”用科学记数法可表示为. 12.一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为. 13.如图,点A 、B 、C 在⊙O 上,BC =6,∠BAC =30°,则⊙O 的半径为.14.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于. 15.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3),按此方法,则点C 的坐标可表示为.16.如图,在矩形ABCD 中,AB =4,AD =3,以点C 为圆心作OC 与直线BD 相切,点P 是OC 上一个动点,连接AP 交BD 于点T ,则APAT的最大值是. 三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)17.(本题满分6分)计算:11(1)2()3--⨯+.18.(本题满分6分)解不等式组:2412(3)1x x x >-⎧⎨-->+⎩.19.(本题满分6分)化简:22(1)42m m m ÷+--.19.(本题满分8分)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了名中学生,其中课外阅读时长“2~4小时”的有人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为°;(3)若该地区共有2000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.21.(本题满分10分)现有A 、B 、C 三个不透明的盒子,A 盒中装有红球、黄球、蓝球各1个,B 盒中装有红球、黄球各1个,C 盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A 、B 、C 三个盒子中任意摸出一个球. (1)从A 盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.22.(本题满分10分)如图,在△ABC 中,AB =AC .将△ABC 沿着BC 方向平移得到△DEF ,其中点E 在边BC 上,DE 与AC 相交于点O . (1)求证:△OEC 为等腰三角形;(2)连接AE 、DC 、AD ,当点E 在什么位置时,四边形AECD 为矩形,并说明理由.23.(本题满分10分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x (吨),生产甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式;(2)若每生产1吨甲产品需要A 原料0.25吨,每生产1吨乙产品需要A 原料0.5吨.受市场影响,该厂能获得的A 原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.24.(本题满分10分)如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号) (参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)25.(本题满分10分)如图,在平面直角坐标系xOy 中,函数y x b =-+的图像与函数ky x=(x <0)的图像相交于点A(﹣1,6),并与x 轴交于点C .点D 是线段AC 上一点,△ODC 与△OAC 的面积比为2:3. (1)k =,b =; (2)求点D 的坐标;(3)若将△ODC 绕点O 逆时针旋转,得到△△OD ′C ′,其中点D ′落在x 轴负半轴上,判断点C ′是否落在函数ky x=(x <0)的图像上,并说明理由.26.(本题满分12分)如图,在平面直角坐标系xOy 中,抛物线L 1:2y x bx c =++过点C(0,﹣3),与抛物线L 2:213222y x x =--+的一个交点为A ,且点A 的横坐标为2,点P 、Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A 、C 、P 、Q 为顶点的四边形恰为平行四边形,求出点P 的坐标;(3)设点R 为抛物线L 1上另一个动点,且CA 平分∠PCR ,若OQ ∥PR ,求出点Q 的坐标.27.(本题满分14分)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上,(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处.若正方形ABCD的边长为4 ,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=52,请直接写出FH的长.......。
机密★启用前连云港市高中段学校招生统一文化考试数 学 试 题(请考生在答题卡上作答)注意事项:1.本卷共6页27题,全卷满分150分,考试时间120分钟。
2.请在答题卡规定的区域内作答,在其它位置作答一律无效。
3.作答前,请考生务必将自己的姓名、考试号和座位号用0.5毫米黑色签字笔填写在答题卡及试题的指定位置,并认真核对条形码上的姓名及考试号。
4.选择题答题必须用2B 铅笔填涂在答题卡的指定位置上,如需改动,用橡皮擦干净后重新填涂。
5.作图必须用2B 铅笔作答,并加黑加粗。
参考公式:二次函数)0(2≠++=a c bx ax y 的图像顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22一.选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在正确选项的字母代号填涂在答题卡的指定位置........上) 1.下列实数中,是无理数的为A .-1B .21-C .2D .3.14 2.计算()23-的结果是A . -3B .3C .-9D .93.在平面直角坐标系中,点P (-2,3)关于原点对称的点Q 的坐标为A .(2,-3)B .(2,3)C .(3,-2)D .(-2,-3)4.“丝绸之路”经济带首个实体平台——中哈物流合作基地在我市投入使用,其最大装卸能力达410 000标箱,其中“410 000”用科学计数法表示为A .0.41×106B . 4.1×105C .41×104D .4.1×1045.一组数据1,3,6,1,2的众数与中位数分别是A .1,6B .1,1C .2,1D .1,26.如图,若△ABC 和△DEF 的面积分别为1S 、2S ,则A .2121S S = B .2127S S = C .21S S = D .2158S S = (第6题图)58B(第7题图)B7.如图,点P 在以AB 为直径的半圆内,连AP 、BP ,并延长分别交半圆于点C 、D ,连接AD 、BC 并延长交于点F ,作直线PF ,下列说法正确的是:①AC 垂直平分BF ;②AC 平分∠BAF ;③PF ⊥AB ;④BD ⊥A .①②B .①④C .②④D .③④ 8.如图,△ABC 的三个顶点分别为A (1,2),B (2,5),C (6函数xk y =在第一象限内的图像与△ABC 有交点,则k 的取值范围A .2≤k ≤449 B .6≤k ≤10 C .2≤k ≤6 D .2≤k ≤225 二.填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡的相应位置........上) 9.使1-x 有意义的x 的取值范围是 ▲ .10.计算()()312-+x x = ▲ .11.一个正多边形的一个外角等于30°,则这个正多边形的边数为 ▲ .12.若3=ab ,52=-b a ,则222ab b a -的值是 ▲ .13.若函数xm y 1-=的图象在同一象限内,y 随x 的增大而增大,则m 的值可以是 ▲ .(写出一个即可)(第8题图)图2图1(第16题图)B 14.如图,AB ∥CD ,∠1=62°,FG 平分∠EFD ,则∠2= ▲.(第14题图)B C 图2图1(第15题图)15.如图1,折线段AOB 将面积为S 的⊙O 分成两个扇形,大扇形、小扇形的面积分别为1S 、2S ,若121S S S S ==0.618,则称分成的小扇形为“黄金扇形”,生活中的折扇(如图2),大致是“黄金扇形”,则“黄金扇形”的圆心角约为 ▲ °.(精确到0.1)16.如图1,将正方形纸片ABCD 对折,使AB 与CD 重合, 折痕为EF ,如图2,展形再折叠一次,使点C 与点E 重合,折痕为GH ,点B 的对应点为M ,EM 交AB 于N 则tan ∠ANE= ▲ .三.解答题(本大题共11小题,共102分,请在答题卡的指定区域内.........作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(本题满分6分)计算 1331275-⎪⎭⎫ ⎝⎛-+-18.(本题满分6分)解不等式2(x -1)+5<3x ,并把解集在数轴上表示出来.19.(本题满分6分)解分式方程 xx x --=+-21322.20.(本题满分8分)我市启动了第二届“美丽港城·美在悦读”全民阅读活动。
2019年江苏省连云港市中考数学模拟考试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.二次函数y =ax 2+bx+c 的图象如图所示,下列结论:(1)ab<0;(2)a +c<b ;(3) b c - 4a c >0;(4) 14 a -12b +c>0,其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个2.化简20的结果是( )A .25B .52C . 210D .543.如图,直线 AB 、CD 被第三条直线EF 所截,∠1=80°,下列论述正确的是( ) A .若∠2=80°,则 AB ∥CD B .若∠5=80°,则 AB ∥CDC .若∠3= 100°则 AB ∥CDD .若∠4=80°,则 AB ∥CD4. 如图,已知∠C =∠D ,AC=AE ,要得到△ABC ≌△AED 还应给出的条件中错误的是( )A .∠BAD =∠EACB .∠B=∠EC .ED=BC AB =AE5.如图,A 、B 、C 是同一直线上的顺次三点,下面说法正确的是( )A .射线AB 与射线BA 是同一条射线B .射线AB 与射线BC 是同一条射线C .射线AB 与射线AC 是同一条射线D .射线BA 与射线BC 是同一条射线6.某人第一次向南走 40 km ,第二次向北走30 km ,第三次向北走 40 km ,最后相当于这人( )A . 向南走110kmB . 向北走 50 kmC .向南走 30 kmD .向北走 30 km7.一块长方形木板可划分为 3 个小正方形 (如图),破裂后阴影部分的面积为1.2 m 2,则原长方形木板的面积是( )A .2.4m 2B .2.2m 2C .1.8m 2D .2.6m 2二、填空题8.两圆的圆心距等于 1,半径R 、r 是方程27120x x −+=的两根,则这两圆的位置关系是 . 9.口袋中放有 3 个红球与 11 个黄球,这两种球除颜色外没有任何区别,从口袋中任取一 个球,取到黄球的概率是 . 10.如图所示,水坝的迎水坡AB=25 m ,坝高55m ,则坡角α≈ .11.半径为9cm 的圆中,长为12πcm 的一条弧所对的圆心角的度数为______.12.已知:如图,正方形ABCD 中,对角线AC 和BD 相交于点O ,E 、F 分别是边AB 、BC 上的点,若AE =4cm ,CF =3cm ,且OE ⊥OF ,则EF 的长为 cm. 13.如图,四边形ABCD 的对角线AC ,BD 交于点O ,EF 过点O ,若OA=OC ,OB=OD ,则图中全等的三角形有_ _ _对. 14.请写出命题“直角三角形的两个锐角互余”的逆命题: . 15.△ABC 中,AB=AC ,∠A=90°,D 是BC 的中点,AD=2,则AC= . 16.用等腰直角三角板画∠AOB=45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转 28°,则三角板的斜边与射线 OA 的夹角α为 .17.如图,梯形AOCD 中,AD ∥0C ,AD=3,点;A 到x 轴的距离为4,到y 轴的距离为3,则点D 的坐标为 .18.在Rt △ABC 中,∠C=90°,AC=3cm ,BC=4cm ,则斜边AB= .19. 一副扑克共有54张牌,现拿掉大王、小王后,从中任取一张牌刚好是梅花的概率是 .20.P (必然事件)= ,P (不可能事件)= .21.已知线段AB 长为10厘米,C 是线段AB 上任意一点(不与A ,B 重合), M 是AC 的中A D B C E F OO EF点,N 是BC 的中点,则MN =________厘米.三、解答题22.如图,小明与小华爬山时遇到一条笔直的石阶路,路的一侧设有与坡面AB 平行的护栏MN (MN=AB ).小明量得每一级石阶的宽为32cm ,高为24cm ,爬到山顶后,小华数得石阶一共200级,如果每一级石阶的宽和高都一样,且构成直角,请你帮他们求出坡角∠BAC 的大小(精确到度)和护栏MN 的长度.以下数据供选用:tan 3652120.7500,tan 53748 1.3333,sin 3652120.6000,sin 537480.8000''''''''''''︒=︒=︒=︒=23.先确定图中路灯灯泡的位置,再根据小浩的影子画出表示小洁身高的线段.24.如图所示,以□ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,•延长BA 交⊙O 于G ,求证:⌒GE =⌒EF .25.已知x ,y 是实数,举例说明下列说法是错误..的. (1)x y x y +=+;(2) 11y y x x +<+ (3)若x y ≤,则22x y ≤;(4)若6x y +>,9xy >,则3x >,3y >.26. 已知等边三角形的边长为43,求它的高.27. 如图,在5×5 的正方形网格中,小正方形的边长为 1,横、纵线的交叉点称为格点,以AB 为其中一边作等腰三角形,使得所作三角形的另一个顶点也在格点上,可以作多少个?请一一作出.28.在△ABC 中,如果∠A=∠B=12∠C ,试判断△ABC 的形状,并说明理由.29.如图,两条直线相交有1个交点,三条直线相交有l 个交点或3个交点.。
江苏省连云港市2019年中考数学模拟试卷(word版含解析)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.)1.有理数﹣1,﹣2,0,3中,最小的数是()A.﹣1 B.﹣2 C.0 D.3【分析】先求出|﹣1|=1,|﹣2|=2,根据负数的绝对值越大,这个数就越小得到﹣2<﹣1,而0大于任何负数,小于任何正数,则有理数﹣1,﹣2,0,3的大小关系为﹣2<﹣1<0<3.【解答】解:∵|﹣1|=1,|﹣2|=2,∴﹣2<﹣1,∴有理数﹣1,﹣2,0,3的大小关系为﹣2<﹣1<0<3.故选B.【点评】本题考查了有理数的大小比较:0大于任何负数,小于任何正数;负数的绝对值越大,这个数就越小.2.据市统计局调查数据显示,我市目前常住人口约为4470000人,数据“4470000”用科学记数法可表示为()A.4.47×106B.4.47×107C.0.447×107D.447×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据“4470000”用科学记数法可表示为4.47×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面是的字是()A.丽B.连C.云D.港【分析】正方体的平面展开图中,相对面的特点是必须相隔一个正方形,据此作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“港”是相对面,“丽”与“连”是相对面,“的”与“云”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.计算:5x﹣3x=()A.2x B.2x2C.﹣2x D.﹣2【分析】原式合并同类项即可得到结果.【解答】解:原式=(5﹣3)x=2x,故选A【点评】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.5.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣2【分析】根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为0,∴,解得x=1.故选:C.【点评】本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零,根据此条件列出关于x的不等式组是解答此题的关键.6.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A.y=3x B.C.D.y=x2【分析】可以分别写出选项中各个函数图象的特点,与题目描述相符的即为正确的,不符的就是错误的,本题得以解决.【解答】解:y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;的图象在二、四象限,故选项C错误;y=x2的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.【点评】本题考查反比例函数的性质、正比例函数的性质、二次函数的性质,解题的关键是明确它们各自图象的特点和性质.7.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A.86 B.64 C.54 D.48【分析】分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.同理,得出S4、S5、S6的关系.【解答】解:如图1,S1=AC2,S2=BC2,S3=AB2.∵AB2=AC2+BC2,∴S1+S2=AC2+BC2=AB2=S3,如图2,S4=S5+S6,∴S3+S4=16+45+11+14=86.故选A.【点评】本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.8.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r 的取值范围为()A.2<r<B.<r<3C.<r<5 D.5<r<【分析】如图求出AD、AB、AE、AF即可解决问题.【解答】解:如图,∵AD=2,AE=AF=,AB=3,∴AB>AE>AD,∴<r<3时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,故选B.【点评】本题考查点由圆的位置关系、勾股定理等知识,解题的关键是正确画出图形,理解题意,属于中考常考题型.二、填空题(本大题共有8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上.)9.化简:═2.【分析】直接利用立方根的定义即可求解.【解答】解:∵23=8∴=2.故填2.【点评】本题主要考查立方根的概念,如果一个数x的立方等于a,那么x是a的立方根.10.分解因式:x2﹣36=(x+6)(x﹣6).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+6)(x﹣6),故答案为:(x+6)(x﹣6)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是9.【分析】直接利用众数的定义得出答案.【解答】解:∵7,9,9,4,9,8,8,中9出现的次数最多,∴这组数据的众数是:9.故答案为:9.【点评】此题主要考查了众数的定义,正确把握定义是解题关键.12.如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2=72°.【分析】由AB∥CD,根据平行线的性质找出∠ABC=∠1,由BC平分∠ABD,根据角平分线的定义即可得出∠CBD=∠ABC,再结合三角形的内角和为180°以及对顶角相等即可得出结论.【解答】解:∵AB∥CD,∠1=54°,∴∠ABC=∠1=54°,又∵BC平分∠ABD,∴∠CBD=∠ABC=54°.∵∠CBD+∠BDC=∠DCB=180°,∠1=∠DCB,∠2=∠BDC,∴∠2=180°﹣∠1﹣∠CBD=180°﹣54°﹣54°=72°.故答案为:72°.【点评】本题考查了平行线的性质、角平分线的定义以及三角形内角和定理,解题的关键是找出各角的关系.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.13.已知关于x的方程x2+x+2a﹣1=0的一个根是0,则a=.【分析】方程的解就是能使方程左右两边相等的未知数的值,把x=0代入方程,即可得到一个关于a的方程,即可求得a的值.【解答】解:根据题意得:0+0+2a﹣1=0解得a=.故答案为:.【点评】本题考查了一元二次方程的解.一元二次方程的根一定满足该方程的解析式.14.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=75°.【分析】如图,作辅助线,首先证得=⊙O的周长,进而求得∠A3OA10==150°,运用圆周角定理问题即可解决.【解答】解:设该正十二边形的圆心为O,如图,连接A10O和A3O,由题意知,=⊙O的周长,∴∠A3OA10==150°,∴∠A3A7A10=75°,故答案为:75°.【点评】此题主要考查了正多边形及其外接圆的性质及圆周角定理,作出恰当的辅助线,灵活运用有关定理来分析是解答此题的关键.15.如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N.若AD=2,则MN=.【分析】设正方形的边长为2a,DH=x,表示出CH,再根据翻折变换的性质表示出DE、EH,然后利用勾股定理列出方程求出x,再根据相似三角形的判定性质,可得NE的长,根据线段的和差,可得答案.【解答】解:设DH=x,CH=2﹣x,由翻折的性质,DE=1,EH=CH=2﹣x,在Rt△DEH中,DE2+DH2=EH2,即12+x2=(2﹣x)2,解得x=,EH=2﹣x=.∵∠MEH=∠C=90°,∴∠AEN+∠DEH=90°,∵∠ANE+∠AEN=90°,∴∠ANE=∠DEH,又∠A=∠D,∴△ANE∽△DEH,=,即=,解得EN=,MN=ME﹣BC=2﹣=,故答案为:.【点评】本题考查了翻折变换的性质,勾股定理的应用,锐角三角函数,设出DH的长,然后利用勾股定理列出方程是解题的关键,也是本题的难点.16.如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD (点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为9π.【分析】连接PA、PD,过点P作PE垂直AB于点E,延长AE交CD于点F,根据垂径定理可得出AE=BE=AB,利用勾股定理即可求出PE的长度,再根据平行线的性质结合正方形的性质即可得出EF=BC=AB,DF=AE,再通过勾股定理即可求出线段PD的长度,根据边与边的关系可找出PF的长度,分析AB旋转的过程可知CD边扫过的区域为以PF为内圆半径、以PD为外圆半径的圆环,根据圆环的面积公式即可得出结论.【解答】解:连接PA、PD,过点P作PE垂直AB于点E,延长AE交CD于点F,如图所示.∵AB是⊙P上一弦,且PE⊥AB,∴AE=BE=AB=3.在Rt△AEP中,AE=3,PA=5,∠AEP=90°,∴PE==4.∵四边形ABCD为正方形,∴AB∥CD,AB=BC=6,又∵PE⊥AB,∴PF⊥CD,∴EF=BC=6,DF=AE=3,PF=PE+EF=4+6=10.在Rt△PFD中,PF=10,DF=3,∠PFE=90°,∴PD==.∵若AB边绕点P旋转一周,则CD边扫过的图形为以PF为内圆半径、以PD为外圆半径的圆环.∴S=πPD2﹣πPF2=109π﹣100π=9π.故答案为:9π.【点评】本题考查了垂径定理、勾股定理、平行线的性质以及圆环的面积公式,解题的关键是分析出CD边扫过的区域的形状.本题属于中档题,难度不大,但稍显繁琐,解决该题型题目时,结合AB边的旋转,找出CD边旋转过程中扫过区域的形状是关键.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答.解答时写出必要的文字说明、证明过程或演算步骤.)17.计算:(﹣1)2016﹣(2﹣)0+.【分析】原式利用乘方的意义,零指数幂法则,以及算术平方根定义计算即可得到结果.【解答】解:原式=1﹣1+5=5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程:.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+2x﹣x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.19.解不等式,并将解集在数轴上表示出来.【分析】先去分母、再去括号、移项、合并同类项、系数化为1即可求出此不等式的解集,再在数轴上表示出其解集即可.【解答】解:去分母,得:1+x<3x﹣3,移项,得:x﹣3x<﹣3﹣1,合并同类项,得:﹣2x<﹣4,系数化为1,得:x>2,将解集表示在数轴上如图:【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,解此题的关键是能正确求出不等式的解集.20.某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了50名学生,扇形统计图中m=32.(2)请根据数据信息补全条形统计图.(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?【分析】(1)由A的数据即可得出调查的人数,得出m=×100%=32%;(2)求出C的人数即可;(3)由1000×(16%+40%),计算即可.【解答】解:(1)8÷16%=50(人),m=×100%=32%故答案为:50,32;(2)50×40%=20(人),补全条形统计图如图所示:(3)1000×(16%+40%)=560(人);答:估计选择“非常了解”、“比较了解”共约有560人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.21.甲、乙两校分别有一男一女共4名教师报名到农村中学支教.(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是.(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.【分析】(1)根据甲、乙两校分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是=;故答案为:;(2)将甲、乙两校报名的教师分别记为甲1、甲2、乙1、乙2(注:1表示男教师,2表示女教师),树状图如图所示:==.所以P(两名教师来自同一所学校)【点评】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.22.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.【分析】(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.【解答】证明:(1)∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.【点评】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.23.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?【分析】(1)设该店有客房x间,房客y人;根据题意得出方程组,解方程组即可;(2)根据题意计算:若每间客房住4人,则63名客人至少需客房16间,求出所需付费;若一次性定客房18间,求出所需付费,进行比较,即可得出结论.【解答】解:(1)设该店有客房x间,房客y人;根据题意得:,解得:.答:该店有客房8间,房客63人;(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱;若一次性定客房18间,则需付费20×18×0.8=288千<320钱;答:诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.【点评】本题考查了二元一次方程组的应用;根据题意得出方程组是解决问题的关键.24.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,0),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y=,把(3,4)代入求出m的值即可;(2)令y==1,得出x=12<15,即可得出结论.【解答】解:(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,0),B(3,4)代入得,解得:,∴y=﹣2x+10;②当x>3时,设y=,把(3,4)代入得:m=3×4=12,∴y=;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=;(2)能;理由如下:令y==1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L.【点评】本题考查了扬州市的应用、反比例函数的应用;根据题意得出函数关系式是解决问题的关键.25.如图,在△ABC中,∠C=150°,AC=4,tanB=.(1)求BC的长;(2)利用此图形求tan15°的值(精确到0.1,参考数据:=1.4,=1.7,=2.2)【分析】(1)过A作AD⊥BC,交BC的延长线于点D,由含30°的直角三角形性质得AD=AC=2,由三角函数求出CD=2,在Rt△ABD中,由三角函数求出BD=16,即可得出结果;(2)在BC边上取一点M,使得CM=AC,连接AM,求出∠AMC=∠MAC=15°,tan15°=tan∠AMD=即可得出结果.【解答】解:(1)过A作AD⊥BC,交BC的延长线于点D,如图1所示:在Rt△ADC中,AC=4,∵∠C=150°,∴∠ACD=30°,∴AD=AC=2,CD=ACcos30°=4×=2,在Rt△ABD中,tanB===,∴BD=16,∴BC=BD﹣CD=16﹣2;(2)在BC边上取一点M,使得CM=AC,连接AM,如图2所示:∵∠ACB=150°,∴∠AMC=∠MAC=15°,tan15°=tan∠AMD===≈≈0.27≈0.3.【点评】本题考查了锐角三角函数、含30°的直角三角形性质、三角形的内角和、等腰三角形的性质等知识;熟练掌握三角函数运算是解决问题的关键.26.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(﹣1,1),B(2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.(1)求此抛物线对应的函数表达式及点C的坐标;(2)若抛物线上存在点M,使得△BCM的面积为,求出点M的坐标;(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标.【分析】(1)把A(﹣1,1),B(2,2)代入y=ax2+bx求得抛物线的函数表达式为y=x2﹣x,由于BC∥x轴,设C(x0,2).于是得到方程x02﹣x0=2,即可得到结论;(2)设△BCM边BC上的高为h,根据已知条件得到h=2,点M即为抛物线上到BC的距离为2的点,于是得到M的纵坐标为0或4,令y=x2﹣x=0,或令y=x2﹣x=4,解方程即可得到结论;(3)解直角三角形得到OB=2,OA=,OC=,∠AOD=∠BOD=45°,tan∠COD=①如图1,当△AOC∽△BON时,求得ON=2OC=5,过N作NE⊥x轴于E,根据三角函数的定义得到OE=4,NE=3,于是得到结果;②如图2,根据相似三角形的性质得到BN=2OC=5,过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F解直角三角形得到BF=4,NF=3于是得到结论.【解答】解:(1)把A(﹣1,1),B(2,2)代入y=ax2+bx得:,解得,故抛物线的函数表达式为y=x2﹣x,∵BC∥x轴,设C(x0,2).∴x02﹣x0=2,解得:x0=﹣或x0=2,∵x0<0,∴C(﹣,2);(2)设△BCM边BC上的高为h,∵BC=,∴S△BCM=h=,∴h=2,点M即为抛物线上到BC的距离为2的点,∴M的纵坐标为0或4,令y=x2﹣x=0,解得:x1=0,x2=,∴M1(0,0),M2(,0),令y=x2﹣x=4,解得:x3=,x4=,∴M3(,0),M4(,4),综上所述:M点的坐标为:(0,0),(,0),(,0),(,4);(3)∵A(﹣1,1),B(2,2),C(﹣,2),D(0,2),∴OB=2,OA=,OC=,∴∠AOD=∠BOD=45°,tan∠COD=,①如图1,当△AOC∽△BON时,,∠AOC=∠BON,∴ON=2OC=5,过N作NE⊥x轴于E,∵∠COD=45°﹣∠AOC=45°﹣∠BON=∠NOE,在Rt△NOE中,tan∠NOE=tan∠COD=,∴OE=4,NE=3,∴N(4,3)同理可得N(3,4);②如图2,当△AOC∽△OBN时,,∠AOC=∠OBN,∴BN=2OC=5,过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F,∴NF⊥BF,∵∠COD=45°﹣∠AOC=45°﹣∠OBN=∠NBF,∴tan∠NBF=tan∠COD=,∴BF=4,NF=3,∴N(﹣1,﹣2),同理N(﹣2,﹣1),综上所述:使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标是(4,3),(3,4),(﹣1,﹣2),(﹣2,﹣1).【点评】本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.27.我们知道:光反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射角等于入射角.如右图,AO为入射光线,入射点为O,ON为法线(过入射点O且垂直于镜面的直线),OB为反射光线,此时反射角∠BON等于入射角∠AON.问题思考:(1)如图1,一束光线从点A处入射到平面镜上,反射后恰好过点B,请在图中确定平面镜上的入射点P,保留作图痕迹,并简要说明理由;(2)如图2,两平面镜OM、ON相交于点O,且OM⊥ON,一束光线从点A出发,经过平面镜反射后,恰好经过点B.小昕说,光线可以只经过平面镜OM反射后过点B,也可以只经过平面镜ON反射后过点B.除了小昕的两种做法外,你还有其它做法吗?如果有,请在图中画出光线的行进路线,保留作图痕迹,并简要说明理由;问题拓展:(3)如图3,两平面镜OM、ON相交于点O,且∠MON=30°,一束光线从点S出发,且平行于平面镜OM,第一次在点A处反射,经过若干次反射后又回到了点S,如果SA和AO的长均为1m,求这束光线经过的路程;(4)如图4,两平面镜OM、ON相交于点O,且∠MON=15°,一束光线从点P出发,经过若干次反射后,最后反射出去时,光线平行于平面镜OM.设光线出发时与射线PM的夹角为θ(0°<θ<180°),请直接写出满足条件的所有θ的度数(注:OM、ON足够长)【分析】(1)如图1,作A关于平面镜ML的对称点A′,连接A′B交ML于点P,则点P 即为所求,只要证明∠3=∠4即可.(2)如图2,作A关于OM的对称点A′,作B关于ON的对称点B′,连接A′B′分别交OM、ON于点P、Q.(3)如图3,光线的行进路线为S→A→B→C→B→A→S,则光线的行进路线为A→P→Q→B,求出SA+AB+BC+CB+BA+AS即可.(4)θ=30°,60°,90°,120°,150°,分别作出图形即可解决问题.【解答】解:(1)如图1,作A关于平面镜ML的对称点A′,连接A′B交ML于点P,则点P即为所求.证明:如图作PN⊥ML,∵A与A′关于ML对称,∴∠1=∠2,∵∠2+∠3=90°,∠1+∠2+∠3+∠4=180°,∴∠1+∠4=90°,∴∠3=∠4,∴AP是入射光线,PB是反射光线,P即为入射点.(2)如图2,作A关于OM的对称点A′,作B关于ON的对称点B′,连接A′B′分别交OM、ON于点P、Q.则光线的行进路线为A→P→Q→B.(3)如图3,光线的行进路线为S→A→B→C→B→A→S.∵∠SAN=∠OAB=∠MON=∠30°,∴OB=BA,∵BC⊥ON,∴CA=OA=,∴AB=,BC=,∴这束光线经过的路程为:SA+AB+BC+CB+BA+AS=(1++)×2=2+.(4)θ=30°,60°,90°,120°,150°.理由如图所示,【点评】本题考查轴对称、翻折变换等知识,解题的关键是充分利用反射角等于入射角解决问题,第四个问题容易漏解,考虑问题要全面,属于中考压轴题.。
秘密★启用前连云港市高中段学校招生统一文化考试数 学 试 题(请考生在答题卡上作答)注意事项:1.考试时间为120分钟.本试卷共6页,28题.全卷满分150分. 2.请在答题卡上规定区域内作答,在其他位置作答一律无效.3.答题前,请考生务必将自己的姓名、准考证号和座位号用0.5毫米黑色墨水签字笔填写在答题卡及试题指定位置,并认真核对条形码上的姓名及考试号.4.选择题答案必须用2B 铅笔填涂在答题卡的相应位置上,如需改动,用橡皮擦干净后再重新填涂.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母填涂在答题卡的相应位置上) 1.下列各数中是正数的为( )A .3B .-12 C .- 2 D .02.计算a 2·a 4的结果是( )A .a 8B .a 6C .2a 6D .2a 83.将一包卷卫生纸按如图所示的方式摆在水平桌面上,则它的俯视图是( )A .B .C .D .4.为了传承和弘扬港口文化,我市将投入6000万元建设一座港口博物馆.其中“6000万”用科学记数法可表示为( )A .0.6×108B .6×108C .6×107D .60×1065.在Rt △ABC 中,∠C =90º,若sinA =513,则cosA 的值为( )A.512B.813C.23D.12136.如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>b B.|a|>|b|C.-a<b D.a+b<07.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,……,如此大量摸球实验后,小新发出其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%.对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率应稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的球是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5 º,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.32-4二、填空题(本大题共有8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡的相应位置上)9.计算:(3)2=_________.10.使x+1有意义的x的取值范围是_________.11.分解因式:4-x2=_________.12.若正比例函数y=kx(k为常数,且k≠0)的函数值y随着x的增大而增减小,则k的值可以是_________.(写出一个即可)13.据市房管局统计,今年某周我市8个县区的普通住宅成交量如下表:则该周普通住宅成交量的中位数为_________套.14.如图,一束平行太阳光线照射到正五边形上,则∠1=_________º.15.如图,△ABC 内接于⊙O ,∠ACB =35º,则∠OAB =_________º.16.点O 在直线AB 上,点A 1,A 2,A 3,……在射线OA 上,点B 1,B 2,B 3,……在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M 从O 点出发,按如图所示的箭头方向沿着实线段和以点O 为圆心的半圆匀速运动,速度为每秒1个单位长度.按此规律,则动点M 到达A 101点处所需时间为_________秒.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(本题满分6分)计算(15)-1+(2-1)0+2×(-3)18.(本题满分6分)解不等式组⎩⎨⎧x -5<1x +2≤4x -719.(本题满分6分)先化简,再求值:(1m -1n )÷m 2-2mn +n 2mn ,其中m =-3,n =5.20.(本题满分8分)某校为了解“理化生实验操作”考试的备考情况,随机抽取了一部分九年级学生进行测试,测试结果分为“优秀”、“良好”、“合格”、“不合格”四个等级,分别记为A、B、C、D.根据测试结果绘制了如下尚不完整的统计图.(1)本次测试共随机抽取了_______________名学生.请根据数据信息补全条形统计图;(2)若该校九年级的600名学生全部参加本次测试,请估计测试成绩等级在合格以上(包括合格)的学生约有多少人?21.(本题满分8分)甲、乙、丙三人之间互相传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.22.(本题满分10分)在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.23.(本题满分10分)小林准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,小林该怎么剪?2.”他的说法对吗?请说明(2)小峰对小林说:“这两个正方形的面积之和不可能...等于48 cm理由.24.(本题满分10分如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y=k 1x 的图象的一个交点为A(1,m) .过点B 作AB 的垂线BD ,与反比例函数y =k 2x (x >0)的图象交于点D(n ,-2). (1)求k 1和k 2的值;(2)若直线A B 、BD 分别交x 轴于点C 、E ,试问在y 轴上是否存在一点F ,使得△BDF ∽△ACE .若存在,求出点F 的坐标;若不存在, 请说明理由.25.(本题满分12分)我市某海域内有一艘渔船发生故障,海事救援船接到求救信号后立即从港口出发沿直线匀速前往救援,与故障渔船会合后立即将拖回.如图,折线段O -A -B 表示救援船在整个航行过程中离港口的距离y (海里)随航行时间x (分钟)的变化规律.抛物线y =ax 2+k 表示故障渔船在漂移过程中离港口的距离y (海里)随漂移时间x (分钟)的变化规律.已知救援船返程速度是前往速度的23.根据图象提供的信息,解答下列问题:(1)救援船行驶了_____________海里与故障渔船会合; (2)求救援船的前往速度;(3)若该故障渔船在发出救援信号后40分钟内得不到营救就会有危险,请问求援船的前往速度每小时至少是多少海里,才能保证渔船的安全.26.(本题满分12分)如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA 长为半径的⊙P与AB、OA的另一个交点分别为点C、D,连结CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系,并求S的最大值?(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.27.(本题满分14分)小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD 中,AD ∥BC ,点E 为DC 边的中点,连结AE 并延长交BC 的延长线于点F .求证:S 四边形ABCD =S △ABF .(S 表示面积)问题迁移:如图2,在已知锐角∠AOB 内有一定点P .过点P 任意作一条直线MN ,分别交射线OA 、OB 于点M 、N .小明将直线MN 绕着点P 旋转的过程中发现,△MON 的面积存在最小值.请问当直线MN 在什么位置时,△MON 的面积最小,并说明理由.实际应用:如图3,若在道路OA 、OB 之间有一村庄Q 发生疫情,防疫部分计划以公路OA 、OB 和经过防疫站的一条直线MN 为隔离线,建立一个面积最小的三角形隔离区△MON .若测得∠AOB =66º,∠POB =30º,OP =4km ,试求△MON 的面积.(结果精确到0.1km 2)(参考数据:sin66º≈0.91,tan66º≈2.25,3≈1.73)拓展延伸:如图4,在平面直角坐标系中,O 为坐标原点,点A 、B 、C 、P 的坐标分别为(6,0)、(6,3)、(92,92)、(4,2),过点P 的直线l 与四边形OABC 一组对边相交,将四边形OABC 分成两个四边形,求其中以点O 为顶点的四边形的面积的最大值.。
江苏省连云港市2019-2020学年中考中招适应性测试卷数学试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差2.已知:二次函数y=ax2+bx+c(a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )A.2个B.3个C.4个D.5个3.2016的相反数是()A.12016-B.12016C.2016-D.20164.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×1065.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C6.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°7.若a=10,则实数a在数轴上对应的点的大致位置是()A.点E B.点F C.点G D.点H8.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 9.在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.10.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为()A.(2,1)B.(1,2)C.(1,3)D.(3,1)11.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是A.B.C.D.12.如图所示,a∥b,直线a与直线b之间的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段CD的长度二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:34= .a a14.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是______.15.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是»AD的中点,CE⊥AB于点E,过点D 的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD =∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).16.计算(5+3)(5-3)的结果等于________.17.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是.18.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+6.其中正确结论的序号是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.20.(6分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为,并补全条形统计图;该区今年共种植月季8000株,成活了约株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.21.(6分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cosA=,求CG的长.22.(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)23.(8分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,,,作轴于E点.求一次函数的解析式和反比例函数的解析式;求的面积;根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.24.(10分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?25.(10分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.26.(12分)已知:如图,△MNQ中,MQ≠NQ.(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD 中,180ACB CAD ∠+∠=︒,∠B=∠D .求证:CD=AB .27.(12分)如图,点A 的坐标为(﹣4,0),点B 的坐标为(0,﹣2),把点A 绕点B 顺时针旋转90°得到的点C 恰好在抛物线y=ax 2上,点P 是抛物线y=ax 2上的一个动点(不与点O 重合),把点P 向下平移2个单位得到动点Q ,则:(1)直接写出AB 所在直线的解析式、点C 的坐标、a 的值;(2)连接OP 、AQ ,当OP+AQ 获得最小值时,求这个最小值及此时点P 的坐标;(3)是否存在这样的点P ,使得∠QPO=∠OBC ,若不存在,请说明理由;若存在,请你直接写出此时P 点的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A .【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.2.B【解析】【分析】根据二次函数的图象与性质判断即可.【详解】①由抛物线开口向上知: a >1; 抛物线与y 轴的负半轴相交知c <1; 对称轴在y 轴的右侧知:b >1;所以:abc<1,故①错误;②Q 对称轴为直线x=-1,12b a∴-=-,即b=2a, 所以b-2a=1.故②错误;③由抛物线的性质可知,当x=-1时,y 有最小值,即a-b+c <2am bm c ++(1m ≠-),即a ﹣b <m (am+b )(m≠﹣1),故③正确;④因为抛物线的对称轴为x=1, 且与x 轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;⑤由图像可得,当x=2时,y >1,即: 4a+2b+c >1,故⑤正确.故正确选项有③④⑤,故选B.【点睛】本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.3.C【解析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.4.C【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C .考点:科学记数法—表示较大的数.5.A【解析】【详解】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.6.B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.7.C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∴3<4,∵,∴3<a<4,故选:C.【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<4是解题关键.8.C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.9.A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集.2(1– x)<4去括号得:2﹣2x<4移项得:2x>﹣2,系数化为1得:x>﹣1,故选A.“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.10.D【解析】【分析】过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.【详解】如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO =∠CAD.在△ABO和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。
2019年江苏省连云港市中考数学二模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( ) 2.如图,BD 是△ABC 的角平分线,∠ADB=∠DEB ,则与△ABD 相似的三角形是( )A . △DBCB .△DECC .△ABCD .△DBE3.下列抛物线中,开口方向与对称轴都相同的抛物线是( )①2234y x x =+−;②2234y x x =−+−;③2462y x x =−−−;④246y x x =+; ⑤23124y x x =++ A .①②④B .①③④C .①④③D .①③4.沿着虚线将矩形剪成两部分,既能拼成三角形又能拼成梯形的是( )A .B .C .D .5.命题“垂直于同一条直线的两条直线互相平行”的题设是( )A .垂直B .两条直线C .同一条直线D .两条直线垂直于同一条直线6.已知四个命题:①甲比乙年轻;②丙是丁的表哥;③丙叫甲哥哥;④丁是乙的表弟,它们都是真命题,据此可推断甲、乙、丙、丁的年龄从大到小的顺序是( ) A .甲、乙、丙、丁 B .乙、甲、丁、丙 C .丙、丁、乙、甲D .乙、甲、丙、丁7.下列说法中,正确的是( ) A .棱柱的侧面可以是三角形A. B. C. .B .由六个大小一样的正方形所组成的图形是立方体的表面展开图C .立方体的各条棱长度都相等D .棱柱的各条校长度都相等8.在下列长度的四根木棒中,能与4 cm ,9 cm 长的两根木棒钉成一个三角形的是( ) A .4 cm B .5 cmC .9cmD .13 cm9.已知方程组234(1)21(2)x y y x −=⎧⎨=−⎩,把②代入①,正确的是( )A .4234y y −−=B .2614x x −+=C .2614x x −−=D .2634x x −+=10.如图所示,S △ABC=l ,若S △BDE =S △DEC =S △ACE ,则S △ADE 等于( ) A .15B .16C .17D .1811.已知∠AOB=150°,0C 平分∠AOB ,OD 在∠AOB 的内部,且∠AOD=13∠AOB ,则∠COD= ( ) A .15°B .25°C .35°D .45°12.下面说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .任何实数都有立方根C .任何一个实数必有立方根和平方根D .负数没有立方根二、填空题13.如图,AB 是⊙O 的直径,AM 为弦,30MAB ∠=,过M 点的⊙O 的切线交AB 延长线于点N .若12cm ON =,则⊙O 的半径为 cm .14.从1~4这4个数中任取一个数作分子,从2~4这3个数中任取一个数作分母,组成一个分数,则出现分子、分母互质的分数的概率是______.15.在前100个正整数中,3的倍数出现的频数是 ,其频率是 ,4的倍数出现的频率是 . 16.已知点P(m ,n),满足21230m n x y −−+=是二元一次方程,则点P 的坐标为 . 17.当12s t =+时,代数式222s st t −+的值为 . 18.在多项式2343253x x y x π−+−中,最高次项的系数是 ,最低次项是 . 19.判断线段相等的定理(写出2个) ; .三、解答题20.有分别写着 1、2、3、4、5、6 中一个数字的 6张卡片,求下列各事件的概率.(1)从中任抽一张,上面的数是 3 的倍数;(2)从中任抽两张,上面的两个数的积是奇数;(3)从中任抽两张,上面的两个数的和是 6.21.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC•交⊙O于点F.①请问AB与AC的大小有什么关系?为什么?②按角的大小分类,请你判断△ABC是哪一类的三角形,请说明理由.22.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上一点,且OE⊥CD,垂足为F,EF=90m,求这段弯路的半径.23.如图,BD是△ABC角平分线,DE∥BC,EF∥AC,求证:BE=CF.提示:BE=ED=FC.24.如图所示,在甲、乙两地之间要修一条公路,从甲地测得公路的走向是北偏东55°(即∠α),如果甲、乙两地同时开工,那么在乙地公路按是多少度施工时,才能使公路准确接通?25.某校七年级甲、乙两个班共103人(其中甲班超过50人,乙班不足50人)去景点游玩,如果两班都以班为单位分别购票,那么一共需付486元.购票人数(人)1-50人51-100人100人以上每人门票单价5元 4.5元4元1.两班分别有多少名学生?2.若两班联合起来,作为一个团体购票,可以节约多少钱?26.如图,在△ABC 内找一点 P,使得 PB=PC,且P到 AB、BC 的距离相等.27.在如图所示的图案中,黑白两色的直角三角形都全等. 将它作为一个游戏盘,游戏规则是:按一定距离向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜. 你认为这个游戏公平吗?为什么?28.如图所示,在Rt△ABC中,∠A=∠B,CD是∠ACB的平分线,请判定CD与AB的位置关系,并说明理由.29.8箱苹果,以每箱5千克为准,称重记录如下:(超过记为正数,单位:千克)1.5,-1,3,0, 0.5,-1.5,2,-0.5这8箱苹果的总重量是多少?30.已知等腰三角形的底边长为2010033求这个等腰三角形的三个内角度数及腰长.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.C4.D5.D6.D7.C8.C9.D10.B11.B12.B二、填空题13.614.715.1233,0.33, 0.2516.(1,3)17.118.4−,-32π19.全等三角形的对应边相等;在一个三角形中,等角对等边三、解答题20.(1)3 的倍数是3、6,∴21P⋅==63(2)积是奇数概率1P=5(3)和是6概率2P=.1521.①AB=AC,连AD;②锐角三角形,连BF,证∠ABC<90°,∠ACB<90°,∠BAC<90°22.545m.23.24.125°25.(1)设甲班有x 名学生,乙班有y 名学生. 根据题意得:⎩⎨⎧=+=+48655.4103y x y x ,解得:⎩⎨⎧==4558y x(2)744103486=⨯− .26.BC 的垂直平分线与∠AEC 的角平分线的交点27.公平,理由略28.CD ⊥AB ,理由略29.44千克30.如图所示,AB=AC,∵BC=20,1003ABC S ∆=∴1033AH =,∵BH=10,∴3tan B =∴∠B= 30°, ∴∠C= 30°, ∴∠BAC= 120°. Rt △ABH 中,20233AB AH ==即△ABC 的三个内角分别为 30°, 30°,120°,腰2033。
江苏省连云港初中毕业升学考试数 学 试 题一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣8的相反数是 A .﹣8 B .18 C .8 D .18- 2.下列运算正确的是A .2x x x -=-B .2x y xy -=-C .224x x x +=D .22(1)1x x -=-3.地球上陆地的面积约为150 000 000 km 2,把“150 000 000”用科学记数法表示为 A .1.5×108B .1.5×107C .1.5×109D .1.5×1064.一组数据2,1,2,5,3,2的众数是A .1B .2C .3D .55.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是 A .23 B .16 C .13 D .126.右图是由5个大小相同的正方体搭成的几何体,这个几何体的俯 视图是7.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式h =﹣t 2+24t +1.则下列说法中正确的是A .点火后9s 和点火后13s 的升空高度相同B .点火后24s 火箭落于地面C .点火后10s 的升空高度为139mD .火箭升空的最大高度为145m8.如图,菱形ABCD 的两个顶点B 、D 在反比例函数ky x=的图像上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A(1,1),∠ABC =60°,则k 的值是A .﹣5B .﹣4C .﹣3D .﹣2二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.使2x -有意义的x 的取值范围是 .10.分解因式:216x -= .11.如图,△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,AD :DB =1:2,则△ADE 与△ABC 的面积的比为 . 12.已知A(﹣4,1y )、B(﹣1,2y )是反比例函数4y x=-图像上的两个点,则1y 与2y 的大小关系为 . 13.一个扇形的圆心角是120°,它的半径是3cm ,则扇形的弧长为 cm .14.如图,AB 是⊙O 的弦,点C 在过点B 的切线上,且OC ⊥OA ,OC 交AB 于点P ,已知∠OAB =22°,则∠OCB = °.15.如图,一次函数y =kx +b 的图像与x 轴、y 轴分别相交于A 、B 两点,⊙O 经过A 、B 两点,已知AB =2,则kb的值为 . 16.如图,E 、F 、G 、H 分别为矩形ABCD 的边AB 、BC 、CD 、DA 的中点,连接AC 、HE 、EC 、GA 、GF ,已知AG⊥GF ,AC =6,则AB 的长为 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:20(2)201836-+-.18.(本题满分6分)解方程:3201x x-=-.19.(本题满分6分)解不等式组:3242(1)31 xx x-<⎧⎨-≤+⎩.20.(本题满分8分)随着我国经济社会的发展,人民对于美好生活的追求越来越高.某社区为了了解家庭对于文化教育的消费情况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调查,根据调查结果绘制成两幅不完整的统计图表.(1)本次被调查的家庭有户,表中m=;(2)本次调查数据的中位数出现在组,扇形统计图中,D组所在扇形的圆心角是度;(3)这个社区有2500户家庭,请你估计家庭年文化教育消费10 000元以上的家庭有多少户?21.(本题满分10分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完..........,赢得三局及以上的队获胜.假如甲、乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?22.(本题满分10分)如图,矩形ABCD中,E是AD的中点,延长CE、BA交于点F,连接AC、DF.(1)求证:四边形ACDF是平行四边形;(2)当CF 平分∠BCD 时,写出BC 与CD 的数量关系,并说明理由.23.(本题满分10分)如图,在平面直角坐标系中,一次函数y =k 1x +b 的图像与反比例函数2k y x的图像交于A(4,﹣2)、B(﹣2,n )两点,与x 轴交于点C .(1)求k 2,n 的值;(2)请直接写出不等式k 1x +b <2k x的解集; (3)将x 轴下方的图像沿x 轴翻折,点A 落在点A ′处,连接A ′B、A ′C,求△A ′BC 的面积.24.(本题满分10分)某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖,经过调查,获取信息如下:如果购买红色地砖4 000块,蓝色地砖6 000块,需付款86 000元;如果购买红色地砖10 000块,蓝色地砖3 500块,需付款99 000元.(1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12 000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6 000块,如何购买付款最少?请说明理由.25.(本题满分10分)如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34)26.(本题满分12分)如图1,图形ABCD是由两个二次函数21(0)y kx m k=+<与22(0)y ax b a=+>的部分图像围成的封闭图形,已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC、CD、AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标.27.(本题满分14分)在数学兴趣小组活动中,小亮进行数学探究活动,△ABC是边长为2的等边三角形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明;(2)当点E在线段AC上运动时,点F也随着运动,若四边形ABFC的面积为734,求AE的长;(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF 的面积S2之间的数量关系,并说明理由;(4)如图2,当△ECD的面积S1=3时,求AE的长.......。
江苏省连云港灌云县联考2019-2020学年中考数学模拟调研试卷一、选择题1.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:A.众数是2.3 B.平均数是2.4C.中位数是2.5 D.方差是0.012.某公司2018年获利润1000万元,计划到2020年年利润达到1210万元设该公司的年利润平均增长率为x,下列方程正确的是()A.1000(1+x)2=1210B.1210(1+x)2=1000C.1000(1+2x)=1210D.1000+10001+x)+1000(1+x)2=12103.如图,正比例函数y1=﹣2x的图象与反比例函数y2=kx的图象交于A、B两点,点C在x轴负半轴上,AC=AO,△ACO的面积为6.则k的值为()A.3B.﹣3C.﹣6D.64.如图,A为双曲线y=1x上任意一点,过点A作轴的垂线,交双曲线y=﹣2x于点B,连结OA,OB,则△AOB的面积等于()A.12B.32C.3D.65.不等式组1212xx-≥⎧⎨+>⎩的最小正整数解是()A.1 B.2 C.3 D.46.已知二次函数y=x2+bx+c(b,c是常数)的图象如图所示,则一次函数y=cx+b与反比例函数y=在同一坐标系内的大致图象是()A. B.C. D.7.关于x的不等式组23(3)1324x xxx a<-+⎧⎪⎨+>+⎪⎩有三个整数解,则a的取值范围是( )A.5924a-<-…B.5924a-<<-C.5924a--剟D.5924a-<-…8.如图,以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若23ADDB=,且AB=10,则CB的长为()A.B.C.D.49.下列命题正确的是()A.对角线互相垂直平分的四边形是正方形B.两边及其一角相等的两个三角形全等C3D.数据4,0,4,6,6的方差是4.810.如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc<0;②3a+c=0;③ax2+bx≤a+b;④若M(﹣0.5,y1)、N(2.5,y2)为函数图象上的两点,则y1<y2.其中正确的是()A.①③④B.①②3④C.①②③D.②③④11.已知y=0是关于y的一元二次方程(m﹣1)y2+my+4m2﹣4=0的一个根,那么m的值是()A.0 B.±1C.1 D.﹣112.已知过点(1,2)的直线y=ax+b(a≠0)不经过第四象限,设S=a+2b,则S的取值范围为()A.2<S<4 B.2≤S<4 C.2<S≤4D.2≤S≤4二、填空题13.七巧板是一种古老的中国传统智力游戏.小明利用七巧板(如图1)拼出了一个数字“7”(如图2),若图1中正方形ABCD的面积为32cm2,则图2的周长为_____cm14.若2a-b=5,则多项式6a-3b的值是______.15是最简二次根式,则最小的正整数=______16.计算:= .17.如图,在▱ABCD中,点E为CD的中点,点F在BC上,且CF=2BF,连接AE,AF,若AF AE=7,tan∠EAF=52,则线段BF的长为_____.18.某学习小组为了探究函数y=x2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=_____.19.如图,已知⊙O的半径为R,AB是⊙O的直径,C是AB的中点,动点M在BC上运动(不与B、C重合),AM交OC于点P,OM与PB交于点N.(1)求证:AP•AM是定值;(2)请添加一个条件(要求添加的条件是图中两条线段或多条线段之间的数量关系),使OM⊥PB.并加以证明.20.已知:在△ABC中,AB=AC,点D是AB上一点,以BD为直径的⊙0与AC边相切于点E,交BC于点F,FG⊥AC于点G.(1)如图l ,求证:GE =GF ;(2)如图2,连接DE ,∠GFC =2∠AED ,求证:△ABC 为等边三角形;(3)如图3,在(2)的条件下,点H 、K 、P 分别在AB 、BC 、AC 上,AK 、BP 分别交CH 于点M 、N ,AH =BK ,∠PNC ﹣12∠BAK =60°,CN =6,CM =BC 的长. 21.如图,过点P 作PA ,PB ,分别与以OA 为半径的半圆切于A ,B ,延长AO 交切线PB 于点C ,交半圆与于点D .(1)若PC=5,AC=4,求BC 的长; (2)设DC:AD=1:2,求PA CPPB+的值. 22.为了掌握我区中考模拟数学试题的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,将随机抽取的部分学生成绩(得分为整数,满分为130分)分为5组:第一组55∼70;第二组70∼85;第三组85∼100;第四组100∼115;第五组115∼130,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了__ _名学生; (2)补全频数分布直方图;(3)将得分转化为等级,规定:得分低于70分评为“D”,70∼100分评为“C”,100∼11评为“B”,115∼130分评为“A”,根据目前的统计,请你估计全区该年级4500名考生中,考试成绩评为“B”级及其以上的学生大约有多少名?23.如图,一次函数y =k 1x+b 的图象经过A (0,﹣2),B (1,0)两点,与反比例函数2k y x=的图象在第一象限内的交点为M ,若△OBM 的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.24.地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)25.甲、乙两车分别从A、B两地同时出发,相向而行.甲车中途因故停车一段时间,之后以原速维续行驶到达目的地B,此时乙车同时到达目的地A,如图,是甲、乙两车离各自出发地的路程y(km)与时间x(h)的函数图象.(1)甲车的速度是km/h,a的值为;(2)求甲车在整个过程中,y与x的函数关系式;(3)直接写出甲、乙两车在途中相遇时x的值.【参考答案】***一、选择题13.3614.1515.216..17.13 518.75 三、解答题19.(1)见解析;(2)当AM OMOM PM=时,OM⊥PB,见解析.【解析】【分析】(1)要证明AP•AM是定值,就要证明它们的积与圆的半径的关系,在圆中往往不变的量是圆的半径,本题中证明△AMO∽△ABP就可以.(2)是一个条件开放试题,要证明OM⊥PB,就与90°有联系,只要证明这两直线相交的四个角中有一个角是直角就可以了,如图就只要证明∠1+∠3=90°,∵∠1+∠2=90°,只要证明∠2=∠B,要证明∠2=∠B,只要证明△AOM∽△OPM,结论可以得出,而证这两个三角形相似就联想到了需要加的条件是边的关系,利用两边对应成比例且夹角相等的两三角形相似,就有AMOM=OMPM,而问题解决.【详解】(1)证明:∵C是弧AB的中点,且AB是直径, ∴弧AC=弧BC,∴∠AOC=∠BOC=90°∵AO=BO∴CO是AB的垂直平分线∴AP=BP∴∠A=∠B∵AO=MO∴∠A=∠M∴∠B=∠M,且∠A=∠A∴△AOM∽△APB∴AM AO AB AP=,∴AM•AP=AB•AO∵AO=R,AB=2R∴AM•AP=2R2在圆O中R是定值,∴2R2也是定值, ∴AM•AP=2R2是定值;(2)解:当AM OMOM PM=时,OM⊥PB.证明:∵AM OMOM PM=,∠M=∠M,∴△AOM∽△OPM ∴∠2=∠A∴∠2=∠B∵∠2+∠1=∠BOC=90°∴∠1+∠B=90°∴∠3=90°∴OM⊥PB.【点睛】本题考查了相似三角形的判定与性质,圆心角与弧的关系,垂径定理的运用,直角三角形的判定等多个知识点.20.(1)见解析;(2)见解析;(3)BC=10.【解析】【分析】(1)由切线的定义得到直角条件,由半径相等可证OFGE为正方形;(2)由圆周角定理可得直角条件,由2倍角关系可得60°条件,从而证明等边三角形;(3)结合(2)的结论和条件中角的关系,需要设置角参数,标识图形从而发现BC=BR,用勾股定理建立方程关系,求解方程即可.【详解】解:(1)如图1,连接OE和OF∵AC是⊙O的切线∴OE⊥AC,∴∠OEG=90°∵FG⊥AC,∴∠FGE=90°∵AB=AC,∴∠ABC=∠ACB∵OB=OF,∴∠OBF=∠OFB∴∠OFB=∠ACB,∴OF∥AC∴∠OFG+∠FGE=180°,∴∠OFG=90°∴∠OFG=∠FGE=∠OEG=90°∴四边形OFGE为矩形∵O F=OE,∴四边形OFGE为正方形∴GE=GF(2)如图2,连接OE,BE∵BD是⊙O的直径,∴∠BED=90°∴∠OED+∠OEB=90°∵∠OEG=90°,∴∠AED+∠OED=90°∵∠OEG=90°,∴∠AED+∠OED=90°∴∠OEB=∠AED∵OB=OE,∴∠OBE=∠OEB∴∠OBE=∠AED∴∠AOE=2∠OEB=2∠AED∵∠GFC=2∠AED∴∠AOE=∠GFC∵∠C+∠GFC=90°,∠A+∠AOE=90°∴∠C=∠A∴BA=BC,∵AB=AC∴AB=AC=BC∴△ABC为等边三角形(3)∵△ABC为等边三角形∴∠CAH=∠ABK=60°∵AH=BK,AC=AB,∴△CAH≌△ABK(SAS)∴∠ACH=∠BAK∵∠KMC=∠KAC+∠ACM∴∠KMC=∠KAC+∠BAK=60°过点C作CQ⊥AK,垂足为Q,过点B作BT⊥CH,垂足为T∴∠AQC=∠CTB=90°∵∠QAC=∠BAC﹣∠BAK=60°,∠TCB=∠ACB﹣∠ACH=60°﹣∠ACH ∴∠QAC=∠TCB,∵AC=BC∴△AQC≌△CTB(AAS)∴QC=BT在Rt△MQC中,∵CM=QMC=60°,sin∠QMC=QC CM∴QC=6设∠BAK=2α=∠ACH∵∠PNC﹣12∠BAK=60°,∴∠PNC=60°+α=∠BNH∴∠BCH=∠ACB﹣∠ACH=60°﹣2α延长NH到点R,使RT=TN,连接BR∴BT使RN的垂直平分线∴BR=BN∴∠BNR=∠BRN=60°+α∴∠CBR=180°﹣∠BCR﹣∠CRB=60°+α∴∠CBR=∠CRB=60°+α∴BC=RC设TN=RT=a,∵CN=6∴CT=a+6,CR=CB=2a+6∵CQ=BT=6在Rt△BTC中BT2+TC2=BC2∴62+(a+6)2=(2a+6)2∴a1=﹣6(舍),a2=2∴TN=2∴BC=10【点睛】本题考查了圆的基本性质和定理,等边三角形的性质,矩形和正方形的性质与判定,综合度较高,对图形的性质考查比较全面.21.(1)BC=2;(2)3【解析】【分析】(1)由切线的性质可得PA=PB,∠PAC=90°,由勾股定理可求AP=3,即可求BC的长;(2)由题意可得CD=OD=OB,可证△OBC∽△PAC,可得PC=2PA,即可求解.【详解】(1)∵PA,PB是⊙O的切线,∴PA=PB,∠PAC=90°,∴AP==3,∴PB=AP=3,∴BC=PC﹣PB=2.(2)连接OB.∵CD:AD=1:2,AD=2OD,∴CD=OD=OB,∴CO=2OB.∵PB是⊙O切线,∴OB⊥PC,∴∠OBC=90°=∠PAC,且∠C=∠C,∴△OBC∽△PAC,∴12 AP OBPC OC==,∴PC=2PA ,∴33PA CP PAPB PA+==.【点睛】本题考查了切线的性质,勾股定理,相似三角形的判定和性质,求出PC=2PA 是本题的关键. 22.(1) 50;(2)见解析;(3) 1620. 【解析】 【分析】(1)根据第三组的数据,用人数除以百分数得出结论即可;(2)根据抽取的总人数减去前4组的人数,即可得到第五组的频数,并画图;(3)用样本中考试成绩评为“B”级及其以上的学生数占抽取的总人数的百分比,乘上全区该年级4500名考生数,即可得出结论. 【详解】解:(1)20÷40%=50名, 故答案为:50; (2)50-4-8-20-14=4, 画图如下:(3)(4+14)÷50×4500=1620.答:估计全区该年级4500名考生中,考试成绩评为“B”级及其以上的学生大约有1620名. 【点睛】本题主要考查了直方图和扇形图以及用样本估计总体的知识,根据直方图和扇形图中都有的数据求出抽取的学生总数是解决此题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确. 23.(1)12y x=;(2)是,P 的坐标为(11,0). 【解析】 【分析】(1)根据一次函数y= k 1x+b 的图象经过A (0,-2),B (1,0)可得到关于b 、k1的方程组,进而可得到一次函数的解析式,设M (m ,n )作MD ⊥x 轴于点D ,由△OBM 的面积为2可求出n 的值,将M (m ,4)代入y=2x-2求出m 的值,由M (3,4)在双曲线y=2k x上即可求出k 2的值,进而求出其反比例函数(2)过点M (3,4)作MP ⊥AM 交x 轴于点P ,由MD ⊥BP 可求出∠PMD=∠MBD=∠ABO ,再由锐角三角函数的定义可得出OP 的值,进而可得出结论.【详解】解:(1)∵直线y =k 1x+b 过A (0,﹣2),B (1,0)两点∴12+0b k b =-⎧⎨=⎩, ∴122b k =-⎧⎨=⎩ ∴一次函数的表达式为y =2x ﹣2.∴设M (m ,n ),作MD ⊥x 轴于点D∵S △OBM =2, ∴122OB MD ⋅= , ∴122n =∴n =4∴将M (m ,4)代入y =2x ﹣2得4=2m ﹣2,∴m =3∵M (3,4)在双曲线2k y x=上, ∴24=3k , ∴k 2=12 ∴反比例函数的表达式为12y x= (2)过点M (3,4)作MP ⊥AM 交x 轴于点P ,∵MD ⊥BP ,∴∠PMD =∠MBD =∠ABO∴tan ∠PMD =tan ∠MBD =tan ∠ABO =221OA OB == =2 ∴在Rt △PDM 中,2PD MD = , ∴PD =2MD =8,∴OP =OD+PD =11∴在x 轴上存在点P ,使PM ⊥AM ,此时点P 的坐标为(11,0)【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于将已知点代入解析式24.小亮说的对,CE 为2.6m .【分析】先根据CE ⊥AE,判断出CE 为高,再根据解直角三角形的知识解答.【详解】解:在△ABD 中,∠ABD =90°,∠BAD =18°,BA=10m,∵tan ∠BAD =,∴BD =10×tan18°,∴CD =BD ﹣BC =10×tan18°﹣0.5≈2.7(m ),在△ABD 中,∠CDE =90°﹣∠BAD =72°,∵CE ⊥ED,∴sin ∠CDE =,∴CE =sin ∠CDE×CD=sin72°×2.7≈2.6(m ),∵2.6m <2.7m,且CE ⊥AE,∴小亮说的对.答:小亮说的对,CE 为2.6m .【点睛】本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.25.(1)80,1.5;(2)()()()8001 801 1.58040 1.52y x x y x y x x ⎧=≤≤⎪=≤≤⎨⎪=-≤≤⎩;(3)43.【解析】【分析】()1根据题意和函数图象中的数据可以求得甲车的速度和a 的值;()2根据函数图象中的数据可以求得甲车甲车在整个过程中y 与x 之间的函数关系式;()3根据题意,乙车行驶80千米所用时间即为甲、乙两车在途中相遇时x 的值.【详解】解:()1由题意可得,甲车的速度是:80180km /h ÷=,()a 1212080 1.5=+-÷=,故答案为:80,1.5;()2当0x 1≤≤时,y 80x =;当1x 1.5≤≤时,y 80=,;当1.5x 2≤≤时,设甲车再次行驶过程中y 与x 之间的函数关系式是y kx b =+,{ 1.5k b 802k b 120+=+=, 解得{k 80b 40==-,即甲车再次行驶过程中y 与x 之间的函数关系式是y 80x 40=-.故甲车甲车在整个过程中y 与x 之间的函数关系式为:()()()y 80x 0x 1y 801x 1.5y 80x 40 1.5x 2⎧=≤≤⎪=≤≤⎨⎪=-≤≤⎩;()3乙车的速度为:120260(÷=千米/时),48060(3÷=小时), 甲、乙两车在途中相遇时x 的值为43. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.。
江苏省灌云县联考2019-2020学年中考数学模拟试卷一、选择题1.如图,已知在平面直角坐标系xOy 中,抛物线y=()2133x-3-182与y 轴交于点A ,顶点为B ,直线l :y=-43x+b 经过点A ,与抛物线的对称轴交于点C ,点P 是对称轴上的一个动点,若AP+35PC 的值最小,则点P 的坐标为( )A .(3,1)B .(3,114) C .(3,165) D .(3,125) 2.如图,AB ,AC 均为⊙O 的切线,切点分别为B ,C ,点D 是优弧BC 上一点,则下列关系式中,一定成立的是( )A .∠A+∠D =180°B .∠A+2∠D =180°C .∠B+∠C =270°D .∠B+2∠C =270°3.下列立体图形中,主视图是三角形的是( )A. B. C. D.4.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( )A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1) 5.计算3(2)- 的结果是( )A .-8B .-6C .8D .196.近似数1.23×103精确到( )A .百分位B .十分位C .个位D .十位7.如图,在矩形ABCD 中,AB =2,BC =4,把矩形折叠,使点D 与点B 重合,点C 落在点E 处,则折痕FG 的长为( )A .2.5B .3CD .8.下列运算正确的是( )A .236a a a ⋅=B .22122a a -=C .2242(3)6a b a b -=D .53222a a a a ÷+= 9.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )A .B .C .D .10.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( ).A.15°B.20°C.25°D.30° 11.如图,已知等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点O ,则下列判断不正确的是( )A .△ABC ≌△DCBB .△AOD ≌△COBC .△ABO ≌△DCOD .△ADB ≌△DAC 12.若11x m =-是方程mx ﹣2m+2=0的根,则x ﹣m 的值为( ) A .0 B .1 C .﹣1 D .2二、填空题13.如图,在每个小正方形的边长为1的网格中,△ABC 的顶点A ,B ,C 均在格点上,(I )△ABC 是_____________三角形(填“锐角”、“直角”或“钝角”):(Ⅱ)若P ,Q 分别为边AB ,BC 上的动点,当PC+PQ 取得最小值时,在如图所示的网格中,用无刻度的直尺,画出线段PC ,PQ ,并简要说明点2的位置是如何找到的(不要求证明). ________________________________________________________________________________14.考察反比例函数y =2x-的图象,当y≤1时,x 的取值范围是_____. 15.计算:= . 16.使得关于x 的分式方程111x k k x x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k +≥-⎧⎨-≤⎩有且仅有5个整数解的所有k 的和为_____.17.如图,▱ABCD 中,点E 是边BC 上一点,AE 交BD 于点F ,若BE =2,EC =3,△BEF 的面积是1,则▱ABCD 的面积为_____.18.如图,AB 是⊙O 的弦,点C 是AB 的中点,已知AO =5,OC =3,则AB 的长度为_____.三、解答题19.如图1,点E 为正方形ABCD 内部一点,AF ⊥BE 于点F ,G 为线段AF 上一点,且AG =BF .(1)求证:BG =CF ;(2)如图2,在图1的基础上,延长BG 交AE 于点M ,交AD 于点H ,连接EH ,移动E 点的位置使得∠ABH =∠GAM①若∠EAH =40°,求∠EBH 的度数;②求证:HE ∥AF .20.计算:021)()2π-+.21.甲、乙两地相距900km ,乘坐高铁列车从甲地到乙地比乘特快列车少用6h ,如果高铁列车的平均速度是特快列车的3倍,那么特快列车的速度是多少?22.某水果店经销一批柑橘,每斤进货价是3元.试销期间发现每天的销售量y (斤)与销售単价x (元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用800元.(2)如果每天获得1600元的利润,销售单价为多少元?(3)当销售价定为多少元时,每天的利润最大?最大利润是多少元?23.“淮南牛肉汤”是安徽知名地方小吃。
连云港市2020年初中毕业、升学统一模拟考试试题2数学(考试时间:120分钟 试卷总分:150分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上........) 1.3-的倒数是A .13- B .3-C .13D .32.下列计算正确的是 A .23x x x +=B .933x x x ÷=C .236x x x =gD .326()x x =3.地球绕太阳每小时转动经过的路程约为110 000千米,110 000用科学记数法可表示为A .11×104B .0.11×107C .1.1×105D .1.1×1064.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是劳动时间(小时)3 3.54 4.5 人 数1121A .中位数是4,平均数是3.75B .众数是4,平均数是3.8C .众数是2,平均数是3.75D .众数是2,平均数是3.85A B . C6.在△ABC 中,AB =AC =5,BC =6,D 为BC中点,则AD 的长为A .3B .4C .5D .67.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°, 那么∠2的度数是A .15°B .20°C .25°D .30°8.如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,∠AED =115°,则∠B 的度数是A .50° B.75° C .80° D .100°二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡...相应位置上.....) 第8题B第6题 DB第7题9.方程组⎩⎨⎧-=+=-124y x y x 的解是 .10.分解因式:21x -= .11.分式方程xx 213=+的解是 . 12.已知反比例函数y =kx(k 是常数,k ≠0),当x <0时,y 随着x 的增大而增大,那么这个反比例函数的解析式是 (写出一个即可). 13.若210x x --=,则2553x x -+的值是 .14.若一个多边形的每个外角都是30°,则它的边数是 .15.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是 .16.将抛物线y =x 2+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为 .17.如图,在平面直角坐标系中,将线段AB 绕点A 按逆时针方向旋转90°后,得到线段AB ’,则点B ’的坐标为 .18.如图1,四边形ABCD 中,AB ∥CD ,AD =DC =CB =a ,∠A =60°.取AB 的中点A 1,连接A 1C ,再分别取A 1C ,BC 的中点D 1,C 1,连接D 1C 1,如图2.取A 1B 的中点A 2,连接A 2C 1,再分别取A 2C 1,BC 1的中点D 2,C 2,连接D 2C 2,如图3.……,如此进行下去,则线段D n C n 的长度为 . 三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本小题满分12分)计算:(1)02(5)252(3)2π--++⨯-+ (2)2()2()a b a a b ++-20.(本小题满分6分)解不等式组:426113x x x x >-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.21.(本小题满分8分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线第17题第18题2D 2C 21D 1C 1C 1D 11C DC DCDAAA图1图2 图3FEDB于点F ,连接CF . (1)求证:AF =BD ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.22.(本小题满分8分)小明和小亮两人玩“石头、剪刀、布”的游戏,游戏规则为:石头胜剪刀,剪刀胜布,布胜石头,相同则不分胜负.(1)请用列表法或画树状图表示出所有可能出现的游戏结果; (2)求小明获胜的概率.23.(本小题满分8分)某学校开展课外体育活动,决定开展:篮球、乒乓球、踢毽子、跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了部分学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢篮球项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?24.(本小题满分8分)如图,Rt △ABC 中,∠BAC =60°,点O 为Rt △ABC 斜边AB 上的一点,以OA 为半径的⊙O 与BC 切于点D ,与AC 交于点E ,连接AD . (1)求∠CAD 的度数;(2)若OA = 2,求阴影部分的面积(结果保留π).篮球跑步乒乓球踢毽子篮球 乒乓球 踢毽子 跑步 项目乙(S ) (J) (B )石头 剪刀 布25.(本小题满分10分)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么月需售出多少辆汽车?(注:销售利润=销售价-进价)26.(本小题满分10分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC-CD-DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.27.(本小题满分12分)定义:长宽比为n:1(n为正整数)的矩形称为n矩形.(1)如图1所示,将一张矩形纸片ABCD进行如下操作:将点C沿着过点D的直线折叠,使折叠后的点C落在边AD上的点E处,折痕为DF,通过测量发现DF=AD,则矩形ABCD是2矩形吗?请说明理由.A D图1(22所示.操作1:将正方形ABCD 沿过点B 的直线折叠,使折叠后的点C 落在对角线BD 上的点G 处,折痕为BH .操作2:将AD 沿过点G 的直线折叠,使点A ,点D 分别落在边AB ,CD 上,折痕为EF .所得四边形BCEF28.(本小题满分14分)如图,矩形ABCD 中,AB =12,BC=O 是AB 的中点,点P 在AB 的延长线上,且BP =6.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停止运动.在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线PA 的同侧,设运动的时间为t 秒(0t ).(1)当t = 时,等边△EFG 的边FG 恰好经过点C 时;(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函图2E FHADCB数关系式和相应的自变量t 的取值范围;(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.第28题备用图3备用图2备用图1二模数学答案一、选择题(本大题共有8小题,每小题3分,共24分)1.A 2.D 3.C4.B 5.C6.B7.C8.D二、填空题(本大题共有 10小题,每小题3分,共30分)9.⎩⎨⎧-==31y x 10.(1)(1)x x -+ 11.x =2 12.x y 1-= 13.814.12 15.73 16.2(3)5y x =-+ 17.(4,2) 18.a n 21三、解答题(本大题共有10小题,共96分) 19.⑴原式11564=+-+………………4分 , =41………………6分 19.⑵原式=ab a b ab a 222222-+++……4分, =223b a + ……6分20.解不等式(1),得3x >- …… 1分, 解不等式(2),得x ≤2……3分所以不等式组的解集:-3<x ≤2 ……4分 它的整数解为-2,-1,0,1,2……6分 21.证明:(1)∵E 是AD 的中点,∴AE =ED .……1分∵AF ∥BC ,∴∠AFE =∠DBE ,∠FAE =∠BDE , ∴△AFE ≌△DBE , ∴AF =DB .……3分 ∵AD 是BC 边上的中线,∴DB =DC .……4分(2)四边形ADCF 是菱形.理由:由(1)知,DB =DC ,∴AF =DC ,∵AF ∥CD ,∴四边形ADCF 是平行四边形. ……5分又∵AB ⊥AC ,∴△ABC 是直角三角形. ∵AD 是BC 边上的中线,∴AD =12BC =DC . ……7分 ∴平行四边形ADCF 是菱形.……8分 22.画树状图得有9种等可能的结果;…………4分(2)∵小明胜出的结果有3种,故小明胜出的概率为:3193=.……8分 23.(1)40%,144° ……4分 (2)图略……6分(3)1000×10%=100(人).全校最喜欢踢毽子的学生人数约是100人. ……8分 24.(1)连接OD .∵BC 是⊙O 的切线,D 为切点,∴OD ⊥BC .……2分 又∵AC ⊥BC ,∴OD ∥AC ,∴∠ADO =∠CAD .……3分 又∵OD =OA ,∴∠ADO =∠OAD ,∴∠CAD =∠OAD =30°.……4分(2)连接OE ,ED .∵∠BAC =60°,OE =OA ,∴△OAE 为等边三角形,∴∠AOE =60°,∴∠ADE =30°.……5分又∵1302OAD BAC ∠=∠=︒,∴∠ADE =∠OAD ,∴ED ∥AO ,∴AED OED S S ∆∆= ……6分 ∴阴影部分的面积 = 60423603OEDS ππ⨯⨯==扇形.……8分 25.设月需售出x 辆汽车.……1分当0<x ≤5时,(3230)51025-⨯=<,不符合题意, ……2分 当5<x ≤30时,{32[300.1(5)]}25x x ---=, ……6分 解得:125x =-(舍去),210x =.……10分答:该月需售出10辆汽车.26.(1)设线段BC 所在直线对应的函数关系式为11y k x b =+.∵图象经过(3,0)、(5,50),∴ 11130550k b k b +=⎧⎨+=⎩,解得112575k b =⎧⎨=-⎩……3分 ∴线段BC 所在直线对应的函数关系式为2575y x =-.……4分设线段DE 所在直线对应的函数关系式为22y k x b =+. ∵乙队按停工前的工作效率继续工作, ∴225k =.∵图象经过(6.5,50),∴225 6.550b ⨯+=,解得2112.5b =-.∴线段DE 所在直线对应的函数关系式为25112.5y x =- ……6分 (2)甲队每小时清理路面的长为100520÷=,……7分 甲队清理完路面时,160208x =÷=. ……8分 把8x =代入25112.5y x =-,得258112.587.5y =⨯-=……10分答:当甲队清理完路面时,乙队铺设完的路面长为87.5米.27.(1)说明CDEF 是正方形……2分 得DF,……4分 得AD,所以矩形ABCD……6分(2)设正方形ABCD 的边长为1,则BD……7分由折叠性质可知BG =BC =1,∠AFE =∠BFE =90°,则四边形BCEF 为矩形.…8分 ∴∠A =∠BFE .∴EF ∥AD . ……10分∴BG BFBD AB =1BF = ……11分 ∴BF.∴BC :BF =1:1.∴四边形BCEF……12分 28.(1)当等边△EFG 的边FG 恰好经过点C 时(如图),∠CFB =60°,BF =3-,在Rt △CBF 中,BC =43,∴tan ∠CFB =BCBF,∴BF =4,∴t =6-t =4,∴t =2. ……4分(2)当0≤t <2时,S = 43t +163;当2≤t <6时,S= 23t 2+63t +314; 当6≤t <8时,S= -83t +803; 当8≤t <12时,S = 3t 2-243t +1443.……8分(3)存在,理由如下: 在Rt △ABC 中,tan ∠CAB =BCAB= 33,∴∠CAB=30°. 又∵∠HEO =60°,∴∠HAE =∠AHE =30°.∴AE =HE =6-t 或t -6.……9分(ⅰ)当AH =AO =6时,如图,过点E 作EM ⊥AH 于M ,则AM =12AH =3.在Rt △AME 中,cos ∠MAE =AMAE ,,∴AE =23,即6-t =23或t -6=23,t =6-23或6+23. (ⅱ)当HA =HO 时,如图,则∠HOA =∠HAO =30°, 又∵∠HEO =60°,∴∠EHO =90°.∴EO =2HE =2AE .又∵AE +EO =6,∴AE +2AE =6. ∴AE =2.即6-t =2或t -6=2,t =4或8. (ⅲ)当OH =OA 时,如图,则∠OHA =∠OAH =30°, ∴∠HOB =60°=∠HEB .∴点E 和O 重合,∴AE =6. 即6-t =6或t -6=6,t =12(舍去)或t =0.综上所述,存在5个这样的值,使△AOH 是等腰三角形,即: t =6-23或t =6+23或t =4或t =8或t =0.……14分CG。