完全平方公式2
- 格式:docx
- 大小:35.54 KB
- 文档页数:10
复习提问:用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.1、多项式的乘法法则是什么?am+an bm+bn+=(m+n)(a+b)算一算:(a+b)2(a -b)2= a 2+2ab+b2= a 2-2ab+b 2= a 2+ab +ab +b2= a 2-ab -ab +b2=(a+b)(a+b)=(a -b)(a -b)§12.2完全平方公式(一)完全平方公式的数学表达式:完全平方公式的文字叙述:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
= a+b 2+2ab = a +b 2-2ab(a+b)2= a 2+2ab+b 2(a -b)2= a 2-2ab+b 2b ba a =+2)(b a (a+b)²a²2a b²2bababab 2++完全平方和公式:完全平方公式的图形理解判断(x+y)2=x 2+y 2×a a b(a-b)²=-2)(b a 2a ab -222a ab b =-+a²ab abab -2b +b²b 完全平方差公式:完全平方公式的图形理解公式特点:4、公式中的字母a ,b 多项式。
(a+b)2= a 2+2ab+b2(a -b)2= a 2-2ab+b21、积为二次三项式;2、积中两项为两数的平方和;3、另一项是两数积的2倍,且与乘式中间的符号相同。
首平方,末平方,首末两倍中间放下面各式的计算是否正确?如果不正确,应当怎样改正?(1)(x+y)2=x2+y 2(2)(x -y)2=x 2 -y 2(3) (x -y)2=x 2+2xy +y 2(4) (x+y)2=x2+xy +y 2错错错错(x +y)2=x 2+2xy +y 2(x -y)2=x 2 -2xy +y 2(x -y)2=x 2 -2xy +y 2(x +y)2=x 2+2xy +y2例1 运用完全平方公式计算:解:(x+2y)2==x 2(1)(x+2y)2(a +b)2= a 2+ 2 ab + b2x2+2•x •2y +(2y)2+4xy +4y 2例1 运用完全平方公式计算:解:(x-2y)2==x 2(2)(x-2y)2(a -b)2= a 2-2 ab + b 2x2-2•x •2y +(2y)2-4xy+4y2例2、运用完全平方公式计算:(1) ( 4a 2 -b 2 )2分析:4a 2ab2b解:(4a 2 -b 2)2=( )2-2( )·( )+( )2 =16a 4-8a 2b 2+b4记清公式、代准数式、准确计算。
完全平方公式与平方差公式
1. 完全平方公式:
完全平方公式是一个用于计算平方数的公式,它的形式为:
(a + b)²= a²+ 2ab + b²
其中,a和b是任意实数。
这个公式的意思是,如果你想求出一个由两个实数a和b相加的数的平方,那么你可以使用这个公式。
首先,将a²和b²分别计算出来,然后将它们相加。
接着,你需要计算2ab,这个2ab的意思是a和b的乘积的两倍。
最后,将这些结果相加就得到了(a + b)²的值。
2. 平方差公式:
平方差公式是一个用于计算两个实数之差的平方的公式,它的形式为:
(a - b)²= a²- 2ab + b²
其中,a和b是任意实数。
这个公式的意思是,如果你想求出两个实数a和b之间的差的平方,那么你可以使用这个公式。
首先,将a²和b²分别计算出来,然后将它们相减。
接着,你需要计算-2ab,这个-2ab的意思是a和b的乘积的两倍的相反数。
最后,将这些结果相加就得到了(a - b)²的值。
这两个公式在数学中非常有用,它们可以帮助我们在计算中快速求出平方数和差的平方。
了解它们的含义和用法可以帮助我们更好地理解数学的基本概念。
完全平方的12个公式完全平方是一种数学计算的方法,它可以帮助我们快速解决一些数学问题和计算。
它可以帮助我们快速计算一个数的平方。
完全平方有12种计算公式,它们分别是:1.平方根:平方根是所有完全平方计算的基础,它用来计算一个数的平方根,表达式为:√a = x。
2.除法法则:除法法则是一种简单的完全平方计算方法,它用来计算一个数的平方,表达式为:a÷b = x,其中a和b都是完全平方数。
3.乘法法则:乘法法则是一种基本的完全平方计算方法,它用来计算一个数的平方,表达式为:a×b = x,其中a和b都是完全平方数。
4.加法法则:加法法则是一种有用的完全平方计算方法,它用来计算一个数的平方,表达式为:a+b = x,其中a和b都是完全平方数。
5.减法法则:减法法则是一种常用的完全平方计算方法,它用来计算一个数的平方,表达式为:a-b = x,其中a和b都是完全平方数。
6.指数规律:指数规律是一种常用的完全平方计算方法,它用来计算一个数的平方,表达式为:a^2 = x,其中a是完全平方数。
7.分数规律:分数规律是一种比较复杂的完全平方计算方法,它用来计算一个数的平方,表达式为:a/b = x,其中a和b都是完全平方数。
8.积分规律:积分规律是一种复杂的完全平方计算方法,它用来计算一个数的平方,表达式为:a×b = x,其中a和b都是完全平方数。
9.多项式规律:多项式规律是一种常用的完全平方计算方法,它用来计算一个数的平方,表达式为:ax^2+bx+c=0,其中a,b,c都是完全平方数。
10.四平方和定理:四平方和定理是一种复杂的完全平方计算方法,它用来计算一个数的平方,表达式为:a+b+c+d = x,其中a,b,c,d都是完全平方数。
11.指数公式:指数公式是一种复杂的完全平方计算方法,它用来计算一个数的平方,表达式为:a^2+b^2+c^2 = x,其中a,b,c都是完全平方数。
完全平方公式:两个数的和(或差)的平方,等于它的平方和,加上(或减去)它们的积的2倍.这两个公式叫做乘法的完全平方公式.(a+b)2=a2-2ab+b2(a-b)2=a2-2ab+b2公式中字母a和b可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.一、把握运用公式四步曲1、“察”:计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用相应乘法法则进行计算。
2、“导”:正确地选用完全平方公式,关键是确定式子中a、b 分别表示什么数或式。
3、“算”:注意每步的运算依据,即各个环节的算理。
4、“验”:完成运算后学会检验,既回过头来再反思每步的计算依据和符号等各方面是否正确无误,又可通过多项式的乘法法则进行验算,确保万无一失。
二、公式的变换应用1. a2+b2=(a+b)2-2ab(已知a+b、ab的值)2.a2-b2=(a-b)2+2ab(已知a+b、ab的值)3.(a-b) 2=(a+b) 2-4ab4. (a+b) 2=(a-b) 2+4ab三、公式的逆用1、x2 +2x+1=(x+1) 2 x2 -2x+1=(x-1) 22、x2 +2+1/x2=(x+1/x) 2x2 -2+1/x2=(x-1/x) 2平方差公式:两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式。
(a+b)(a-b)= a2- b2公式中字母a和b可以是任意一个单项式或多项式等数学式.注意平方时不能只对字母平方,而忘记系数,如(2a)2不等于2a2而是4 a2。
1、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
公式表示:a m a n= a m+n(mn都是正整数)。
2、幂的乘方法则(a m)n= a mn(mn都是正整数)。
3、积的乘方法则(ab)n= a n b n (n是正整数)。
完全平方公式口诀表
中国古代数学家华罗庚曾经提出完全平方公式,也叫华罗庚定理,它给了我们解决复杂问题的有效方法。
这个定理可以用来求解自然数的完全平方。
它的公式如下:完全平方公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²这个公式有一个口诀,可以帮助我们更好地记忆它:“加减同根,平方等于毕;加减
不同根,两边和等于积。
”完全平方公式的口诀表可以帮助我
们更好地理解它的用法:
1、当两个数字的平方相加时,可以直接用完全平方公式:
(a + b)² = a² + 2ab + b²
2、当两个数字的平方相减时,也可以直接用完全平方公式:(a - b)² = a² - 2ab + b²
3、两个数字的平方相乘时,可以先用完全平方公式把它
们分解成两部分,然后再用乘法解决:(a + b) (a - b) = a² - b²
4、两个数字的平方相除时,可以先用完全平方公式把它
们分解成两部分,然后再用除法解决:(a² - b²) / (a - b) = a + b
完全平方公式口诀表给了我们一个有用的工具,可以帮助我们解决许多复杂的数学问题,比如二次方程的求解。
它的口诀表可以帮助我们更容易地记忆它的用法,从而更好地理解它的应用。
完全平方公式口诀表是一种有用的数学工具,它可以帮助我们更容易地理解和解决复杂的数学问题。
只要记住它的口诀表,就可以轻松地掌握它的用法,从而更好地理解和应用它。
1.知识与技能:会推导完全平方公式,掌握完全平方公式并能灵活运用公式进行简单运算.
2.过程与方法:会用几何拼图方式验证平方差公式
教学过程:
一.自主学习:
1.请同学们应用已有的知识完成下面的几道题:
(1)=
(2)= ; (3)= ; (4)= ; (5)= ;(6)= ;
归纳:完全平方公式:(a+b)2=
(a-b)2=
2.去括号和添括号
;
();()
添括号法则:语言叙述:
生练1:课本P111练习1题;
二.合作探究
1.你能计算吗?
(1)(2)
生练2::课本P111练习2题;
三.解决实际问题
例3.从一块直径为(a+b)的圆形钢板中,挖去直径分别为a与b的两个圆,请你求出剩下钢板的面积?
例4:计算:
例5:化简求值:
四.盘点提升
(1)
(2)
(3)
(4)
五.达标检测
1.已知y2+my+16是完全平方式,则m的值是()
A.8 B.4 C.±8 D.±4
2.下列多项式能写成完全平方式的是()
A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1 3.多项式 x4-2x2y2+y4是()计算的结果
A.(x-y)4 B.(x2-y2)4 C. D.
4.计算: ; 计算:
5.阅读材料并解答问题:我们已经知道,完全平方公式可以用平面几何图形的面
积来表示,实际上还有一些等式也可以用这种形式表示,例如:
就可以用图1或图2等图表示.
(1)请你写出图3中,能恒成立的代数等式:
(2)试画出一个几何图形,使它的面积能表示:
六.总结反思。
课题第一章:整式的运算8、完全平方公式课型新授课课标与教材学生在已经学习了整式的加法、乘法,以及平方差公式的基础上,经历探索完全平方公式的过程,并能运用公式进行简单的计算。
整式是初中数学研究范围内的一块重要内容,整式的运算又是整式中的一大主干,乘法公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结。
同时,乘法公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。
而且乘法公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算的重要教学重点:运用完全平方公式进行一些数的简便运算,进一步体会完全平方公式中字母的含义。
教学难点:培养学生综合分析问题解决问题的能力。
学情知识储备:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础。
学习优势:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力。
学困生分析:学生的分析,归纳,总结以及求简意识存在差异教学目标知识目标、1经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力。
2、从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。
3、了解完全平方公式的几何背景,培养学生的数形结合意识。
熟记完全平方公式,并能说出公式的结构特征,进一步发展学生的符号感。
能力目标1、熟记完全平方公式,并能说出公式的结构特征,进一步发展学生的符号感。
2、能够运用完全平方公式解决简单的实际问题,能够运用完全平方公式进行一些数的简便运算。
3、会在多项式、单项式的混合运算中,正确运用完全平方公式进行计算情感目标:培养学生合作意识教学方法与媒体讲练结合、类比法、课件展示教具准备直尺、彩笔师生活动过程复备修改及设计意图一、回顾与思考活动内容:复习已学过的完全平方公式。
完全平方公式西外学校代声亮教学建议一、知识结构:引入完全平方公式几何意义、代数特征公式应用二、重点、难点分析本节教学的重点是完全平方公式的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).完全平方公式是进行代数运算与变形的重要的知识基础。
1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:(a+b)2=a2 +2ab+b2(a-b)2=a2 -2ab+b2这两个公式是根据乘方的意义与多项式的乘法法则得到的.这两个公式的结构特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.2.只要符合这一公式的结构特征,就可以运用这一公式.在运用公式时,有时需要进行适当的变形,例如(a+b+c)2可先变形为[a+(b+c)]2或[(a+b)+c)]2或者[(a+c+b)]2,再进行计算在运用公式时,防止发生(a±b)2=a2±b2这样错误.3.运用完全平方公式计算时,要注意:(1)切勿把此公式与公式(ab)2 =a2b2混淆,而随意写(a+b)2=a2+b2(2)切勿把“乘积项”2ab 中的2丢掉.(3)计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用乘法法则进行计算.4.(a+b)2 =a2+2ab+b2与(a-b)2 =a2-2ab+b2都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.三、教法建议1.在公式的运用上,与平方差公式的运用一样,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,教科书把公式中的字母同具体题目中的数或式子,用“↕”连结起来,逐项比较、对照,步骤写得完整,便于学生理解如何正确地使用完全平方公式进行计算.2.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.3.如何使学生记牢公式呢?我们注意了以下两点.(1)既讲“法”,又讲“理”在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式、法则道理的基础上进行记忆.我们引导学生借助面积图形对完全平方公式做直观说明,也是对说理的重视.在“明白道理”这个前提下的记忆,即使学生将来发生错误也易于纠正.(2)讲联系、讲对比、讲特点对于类似的内容学生容易混淆,比如在本节出现的(a+b)2=a2+b2的错误,其原因是把完全平方公式和“旧”知识(ab)2=a2b2及分配律弄混,排除新旧知识间相互干扰的一种作法是向学生指明新知识的特点.所以讲“理”是要讲联系、讲对比、讲特点.教学设计示例一、教学目标1.理解完全平方公式的意义,准确掌握两个公式的结构特征.2.熟练运用公式进行计算.3.通过推导公式训练学生发现问题、探索规律的能力.4.培养学生用数形结合的方法解决问题的数学思想.5.渗透数学公式的结构美、和谐美.二、学法引导1.教学方法:尝试指导法、讲练结合法.2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:(1)切勿把此公式与公式(ab)2 =a2b2混淆,而随意写成(a+b)2=a2+b2.(2)切勿把“乘积项”2ab中的2丢掉.(3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.三、重点·难点及解决办法(一)重点掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.(二)难点综合运用平方差公式与完全平方公式进行计算.(三)解决办法加强对公式结构特征的深入理解,在反复练习中掌握公式的应用.四、课时安排一课时.五、教具学具准备投影仪或电脑、自制胶片.六、师生互动活动设计1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.2.引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.3.举例分析如何正确使用完全平方公式,师生共练完成本课时重点内容.4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.七、教学步骤(一)明确目标本节课重点学习完全平方公式及其应用.(二)整体感知掌握好完全平方公式的关键在于能正确识别符合公式特征的结构,同时还要注意公式中2ab中2的问题,在解题过程中应多观察、多思考、多揣摩规律.(三)教学过程1.计算导入;求得公式(1)叙述平方差公式的内容并用字母表示;(2)用简便方法计算①103×97②103 × 103(3)请同学们自编一个符合平方差公式结构的计算题,并算出结果.学生活动:编题、解题,然后两至三个学生说出题目和结果.要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘法公式”.引例:计算(a+b)2.(a-b)2学生活动:计算 (a+b)2.(a-b)2,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.(a+b)2=a2 +2ab+b2 , (a-b)2=a2 -2ab+b2或合并为:(a±b)2=a2 ±2ab+b教师引导学生用文字概括公式.方法:由学生概括,教师给予肯定、否定或更正,同时板书.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.【教法说明】①复习平方差公式,主要是引起回忆,巩固公式;编题在于提高兴趣.②有了平方差公式的推导过程,学生基本建立起了一些特殊多项式乘法的认识方法,因此推导完全平方公式可以由计算直接得出.2.结合图形,理解公式根据图形完成下列问题:如图:A、B两图均为正方形,(1)图A中正方形的面积为____________,(用代数式表示)图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。
(2)图B中,正方形的面积为____________________,Ⅲ的面积为______________,Ⅰ、Ⅱ、Ⅳ的面积和为____________,用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。
分别得出结论:(a+b)2=a2 +2ab+b2(a-b)2=a2 -2ab+b2学生活动:在教师引导下回答问题.【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想。
3.探索新知,讲授新课(1)引例:计算(x+2y)2, (2x-3y)2 .教师讲解:在(x+2y)2中,把x看成a ,把2y看成b,在(2x-3y)2中把2x看成a ,把3y看成b,则(x+2y)2、(2x-3y)2,就可用完全平方公式来计算,即(x+2y)2 = x2+2x.2y+(2y)2 =x2+2xy+4y2↕↕↕↕↕↕↕↕↕(a+b)2 =a2+2ab+b2(2x-3y)2 =(2x)2+(2x).(3y)+(3y)2 =4x2+6xy+9y2↕↕↕↕↕↕( a-b)2 = a2 - 2a b + b2【教法说明】引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.(2)例1 运用完全平方公式计算:(4a-b)2 (y+1)2 (-2x-1)2学生活动:学生独立在练习本上尝试解题,3个学生板演.【教法说明】让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例呈中(3)的计算,可对照公式直接计算,也可变形成(-2x-1)2=[-(2x+1)]2然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.4.尝试反馈,巩固知识练习一运用完全平方公式计算:(1).(a+6)2(2).(4+x)2. (3).(x-7)2(4). (8-y)2(5).(3x+b)2 (6).(4x+3y) 2 (7).(-2x+5y) 2.(8).(-a-b) 2 .(9).( x−3y) 2 (10).( x- 4) 2学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.5.变式训练,培养能力练习二运用完全平方公式计算:(l)1022(2)1992(3)4982 (4)79.82学生活动:学生分组讨论,选代表解答.练习三(1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.甲的计算过程是:原式=[(x+2y)- 2][(x-2y)+2]=(x+2y)2-(2)2=x2+4xy+4y2-4乙的计算过程是:原式=[x+(2y-2)][x-(2y-2]=(x)2-(2y- 2)2=x2-4y-6y+4丙的计算过程是:原式原式=[x+(2y-2)][x-2y-2] =(x)2-(2y- 2)2 =x2-(4y2-6y+2) 丁的计算过程是:原式=[x+(2y-2)][x-(2y- 2)]=(x)2-(2y-2)2=x2-(4y2-2y+4)= x2-4y2+ 4(2)想一想,(a+b) 与(-a-b)2相等吗?为什么?(a-b)2与(b-a )2相等吗?为什么?学生活动:观察、思考后,回答问题.【教法说明】练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法.通过完成第(2)题使学生进一步理解a2与-a2之间的相等关系,同时加深理解代数中“a”具有的广泛意义练习四运用乘法公式计算:(1).(x+y+z)(x-y-z). (2).2a+b+1)(2a+b-1).(3) (a-2b+3c)(a+3b-3c). (4).(x+y+1)(1-x-y) .学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.【教法说明】这样做的目的是训练学生的快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.(四)总结、扩展这节课我们学习了乘法公式中的完全平方公式.引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.八、布置作业P133 1,2.(3)(4).参考答案略.。