14.2.2完全平方公式(1)教案集体备课
- 格式:doc
- 大小:127.00 KB
- 文档页数:4
14.2.2 完全平方公式教学设计一、教学目标:1.理解并掌握完全平方公式的运算法则.2.从广泛意义上理解公式中的字母含义,会运用完全平方公式进行计算.二、教学重、难点:1.理解并掌握完全平方公式的运算法则.2.从广泛意义上理解公式中的字母含义,会运用完全平方公式进行计算.三、教学过程:一、创设情境,导入新知明明订购了一个6寸的大披萨,不久店员打电话告知6寸的披萨卖完了,问能否换购一个4寸和一个2寸的小披萨(披萨近似看作圆). 你认为明明应该同意吗?你发现了什么?教师引导学生发现 (2 + 1)2≠ 22 + 12,并引出后续探究.二、小组合作,探究概念和性质知识点一:完全平方公式探究 1:计算下列多项式的积,你能发现什么规律?(1) ( p + 1 )2 =(2) ( m + 2 )2 =(3) (p-1)2 = (p-1)(p-1) = .(4) (m-2)2 = (m-2)(m-2) = .定义总结:完全平方公式:(a + b)2 = a2 + 2ab + b2(a–b)2 = a2– 2ab + b2文字说明:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.这两个公式叫做(乘法的)完全平方公式.猜想验证:你能几何的形式证明公式成立吗?问题1:你有几种方法求边长为 (a + b) 的正方形的面积?问题2:你有几种方法求边长为 (a−b) 的正方形的面积?想一想:问题:观察这两个公式,回答下列问题.师生活动:学生观察公式并填写表格(如下)典例精析例1 运用完全平方公式计算:(1) (4m + n)2;(2) .例2.运用完全平方公式计算:(1)1022; (2)992.=10404 =9801方法总结:运用完全平方公式进行简便计算,要熟记完全平方公式的特征,将原式转化为能利用完全平方公式的形式。
例3.已知x-y=6,xy=-8.求:(1)x2+y2的值; (2)(x+y)2的值.=20 =4方法总结:本题要熟练掌握完全平方公式的变式:x2+y2=(x-y)2+2xy=(x+y)2-2xy,(x-y)2=(x+y)2-4xy.三、课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。
《完全平方公式》教案【教学目标】1.知识与技能(1)经历完全平方公式的探索及推导过程,掌握完全平方公式的结构特征并能熟练应用。
(2)学会将多项式进行添括号的变形。
2.过程与方法通过观察、操作、交流等活动发展空间观念和推理能力。
3.情感态度和价值观通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。
【教学重点】完全平方公式及其它的应用。
【教学难点】完全平方公式的应用。
【教学方法】引导发现,启发讨论相结合的教学方法【课前准备】教学课件。
【课时安排】1课时【教学过程】一、复习导入【过渡】上节课我们学习了平方差公式,大家能快速说出什么是平方差公式吗?(a+b)(a-b)=a2-b2【过渡】接着,我们来进行几道简单的计算,复习一下这个公式吧。
(1)(3+2a)(-3+2a)(2)(b2+2a3)(2a3-b2)(3)(-4a-1)(4a-1)【过渡】大家计算的都很快而且准确,看来大家已经掌握了平方差公式。
今天,我们就接着学习另一个公式——完全平方公式。
二、新课教学1.完全平方公式【过渡】首先,我们来看一下课本的探究内容。
你能正确计算这几个式子吗?课件展示探究内容,引导学生思考。
【过渡】从这几个式子中,如果我们分别换成a和b,又能得到什么样的结果呢?探究:计算: (a+b)2, (a- b)2解:(a+b)2= (a+b) (a+b)=a2+ab+ab+b2=a2+2ab+b2(a-b)2= (a-b) (a-b)=a2-ab-ab+b2=a2-2ab+b2【过渡】由此,我们就可以得到我们需要的完全平方公式:(a+b)2= a2 +2ab+b2(a-b)2= a2 - 2ab+b2文字叙述:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
【过渡】现在,老师想问大家一个问题,从这两个公式,你能总结出都有哪些特点吗?(1)积为二次三项式;(2)其中两项为两数的平方和;(3)另一项是两数积的2倍,且与左边乘式中间的符号相同。
人教版数学八年级上册14.2.2.1《完全平方公式》教学设计1一. 教材分析人教版数学八年级上册14.2.2.1《完全平方公式》是初中数学中的一项重要内容。
本节课的主要内容是完全平方公式的探究和应用。
完全平方公式是代数中一个重要的公式,它可以帮助学生简化二次方程的求解过程,对于学生理解和掌握二次函数、二次不等式等知识点有着重要的作用。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方、平方差公式等知识点,对于二次方程的求解有一定的了解。
但是,对于完全平方公式的推导和应用还需要进一步的学习。
此外,学生对于数学公式的记忆和理解能力不同,需要教师在教学中进行针对性的引导和帮助。
三. 教学目标1.知识与技能目标:学生能够理解完全平方公式的含义,并能够运用完全平方公式进行简单的计算。
2.过程与方法目标:学生通过自主探究、合作交流的方式,培养自己的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:学生能够感受到数学的趣味性和实用性,增强对数学的学习兴趣。
四. 教学重难点1.教学重点:完全平方公式的推导和应用。
2.教学难点:完全平方公式的记忆和灵活运用。
五. 教学方法1.引导发现法:教师通过提出问题,引导学生发现完全平方公式的规律。
2.合作交流法:学生在小组内进行讨论和交流,共同解决问题。
3.实践操作法:学生通过实际的计算练习,加深对完全平方公式的理解。
六. 教学准备1.教师准备:教师需要准备相关的教学材料,如PPT、黑板、粉笔等。
2.学生准备:学生需要准备好笔记本、笔等学习用品。
七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生回忆平方差公式,从而引出完全平方公式。
2.呈现(10分钟)教师通过PPT或者黑板,呈现完全平方公式的定义和推导过程。
3.操练(10分钟)学生根据完全平方公式,进行一些简单的计算练习。
4.巩固(10分钟)学生在小组内进行讨论,共同解决一些关于完全平方公式的应用问题。
14.2.2完全平方公式(1)我的说课课题是完全平方公式。
以下我就四个方面来介绍这堂课的说课内容:第一方面教材分析,第二方面教学方法与学法指导,第三方面教学程序,第四方面设计说明与评价。
一、教材分析说课内容:《整式的乘除与因式分解》的《完全平方公式》。
教材的地位和作用:完全平方公式是初中数学中的重要公式,在整个中学数学中有着广泛的应用,重要的数学方法“配方法”的基础也是依据完全平方公式的。
而且它在整式乘法,因式分解,分式运算及其它代数式的变形中起作十分重要的作用。
本节内容共安排两个课时,这次说课是其中第一个课时。
完全平方公式这一教学内容是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,教材从具体到抽象,由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,逐步培养学生的逻辑推理能力和建模思想。
教学目标和要求:由课标要求以及学生的情况我将三维目标定义为以下三点:知识与技能目标:了解公式的几何背景,理解并掌握公式的结构特征,能利用公式进行计算。
过程与方法目标:在学习的过程中使学生体会数、形结合的优势,进一步发展符号感和推理能力,培养学生数学建模的思想。
情感与态度目标:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立自信心。
教学的重点与难点:根据对学生学习过程分析及课标要求我把重点定为:完全平方公式的结构特点及公式的直接运用。
而难点应为完全平方公式的应用以及对公式中字母A.b的广泛含义的理解与正确应用。
在教学过程中多处留有空白点以供学生独立研究思考。
二、教法与学法(1)多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。
(2)教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。
(3)由易到难安排例题、练习,符合八年级学生的认知结构特点。
(4)课堂中,对学生激励为主,表扬为辅,树立其学习的自信心。
三、教学过程一、创设情景,推导公式 计算1.想一想(电脑演示) 一块边长为a 米的正方形实验田,因需要将其边长增加b 米,形成四块实验田,以种植不同的新品种,(如图所示)⑴、分别写出每块实验田的面积;⑵、用不同的形式表示实验田的总面积,并进行比较,你发现了什么?2.算一算①、=?你能用多项式乘法法则说明理由吗?(引10397⨯2)(b a +导学生说理)②、3.做一做你能利用面积知识,仿照课本以及演示的动画,自己给出的示意图吗?二、自主探究,合作交流板书公式:①②学生的逻辑推理能力。
14.2.2 完全平方公式学习目标:1.理解两数和的平方的公式,掌握公式的结构特征,并熟练地应用公式进行计算.2.经历探索两数和的平方公式的过程,进一步发展学生的符号感和推理能力.3.培养学生探索能力和概括能力,体会数形结合的思想.重点:对两数和的平方公式的理解,熟练完全平方公式运用进行简单的计算.难点:对公式的理解,包括它的推导过程,结构特点,语言表述及其几何解释.学习过程:一.温故知新,引入新知(1)两数和乘以这两数的差的公式是什么?(2)口述多项式乘以多项式法则.(3)计算(2x-1)(3x-4)(5x+3)(5x-3)二.自主学习,探求新知情景问题:有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果来招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,来三个,就给每人三块……(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩一起去了老人家,老人一共给了这些孩子多少块糖?(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?三.理解运用,提高认识1.(a+b)2=a2+b2对吗?为什么?2.仿照公式计算.(1)(x+y)2 (2)(x - y)2例1.计算:⑴(2a +3b )2;⑵(2)(2a +2b )2 ⑶()22y x +- 例2.计算:(1)(a -b )2;(2)(2x -3y )2 (3)221⎪⎪⎭⎫ ⎝⎛--x (4)()252b a -- 注意:本例题是两数差的平方,可将(a -b )看成是[a +(-b)],就将减法统一成加法,即:()()2222222)()(2][b ab a b b a a b a b a +-=-+-+=-+=-, ()2222b ab a b a +-=-在今后的计算中可直接应用.四.深入探究,活学活用例3.计算:⑴()()()22y x y x y x -+- ⑵()()()()221211513-+-+-+m m m m 例4.已知()(),4,722=-=+b a b a 求22b a +和ab 的值。
14.2.2完全平方公式一、教学目标1.完全平方公式的推导及其应用,完全平方公式的几何解释.2.利用去括号法则得到添括号法则,培养学生逆向思维能力.二、教学重难点重点:完全平方公式的推导过程、结构特征、几何解释及灵活应用.难点:理解完全平方公式的结构特征并能灵活应用公式进行计算.教学过程一、情境引入请同学们一起来探究下列问题:一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们,来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,来三个孩子,老人就给每个孩子三块糖……(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天有(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?解:(1)第一天老人一共给了这些孩子a2块糖.(2)第二天老人一共给了这些孩子b2块糖.(3)第三天老人一共给了这些孩子(a+b)2块糖.二、互动新授像研究平方差公式一样,我们探究一下(a+b)2的运算结果有什么规律.【探究】计算下列多项式的积,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)=__________;(2)(m+2)2=__________;(3)(p-1)2=(p-1)(p-1)=__________;(4)(m-2)2=__________.学生自主探究:(1)(p+1)2=(p+1)(p+1)=p2+p+p+1=p2+2p+1;(2)(m+2)2=(m+2)(m+2)=m2+2m+m·2+2×2=m2+4m+4;(3)(p-1)2=(p-1)(p-1)=p2+p·(-1)+(-1)·p+(-1)×(-1)=p2-2p+1;(4)(m-2)2=(m-2)(m-2)=m2+m·(-2)+(-2)·m+(-2)×(-2)=m2-4m+4.可以发现:(1)结果中的2p=2·p·1;(2)结果中4m=2·m·2;(3)、(4)与(1)、(2)比较只有一次项有符号之差.教师总结:上面的几个运算都是形如(a±b)2的多项式相乘,由于(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2,(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2,所以,对于具有与此相同形式的多项式相乘,我们可以直接写出运算结果,即(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.也就是说,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.教师说明:这两个公式叫做(乘法的)完全平方公式.完全平方公式是多项式乘法(a +b)(p +q)中p =a ,q =b 的特殊情形.【思考1】 你能根据教材图14.2-2和教材图14.2-3中图形的面积说明完全平方公式吗?教师引导学生自主探究.【例3】 运用完全平方公式计算:(1)(4m +n)2; (2)⎝ ⎛⎭⎪⎫y -122. 【解】 (1)(4m +n)2=(4m)2+2·(4m)·n+n 2=16m 2+8mn +n 2;(2)⎝ ⎛⎭⎪⎫y -122=y 2-2·y·12+⎝ ⎛⎭⎪⎫122=y 2-y +14. 启发:对于第(2)题,你还有其他的解法吗?学生自主探究:⎝ ⎛⎭⎪⎫y -122=⎣⎢⎡⎦⎥⎤y +⎝ ⎛⎭⎪⎫-122=y 2+2·y·⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-122=y 2-y +14. 【例4】 运用完全平方公式计算:(1)1022; (2)992.【解】 (1)1022=(100+2)2=1002+2×100×2+22=10000+400+4=10404;(2)992=(100-1)2=1002-2×100×1+12=10000-200+1=9801.【思考2】 (a+b)2与(-a-b)2相等吗?(a-b)2与(b-a)2相等吗?(a-b)2与a2-b2相等吗?为什么?师生合作探究:因为互为相反数的两个数的偶次相等,所以(a+b)2=(-a-b)2,(a-b)2=(b-a)2.但(a-b)2=a2-2ab+b2,a2-b2=(a+b)(a-b),所以(a-b)2≠a2-b2.有些整式相乘需要先作适当变形,然后再用公式.【回顾】运用乘法公式计算,有时要在式子中添括号.在第二章中,我们学过去括号法则,即a+(b+c)=a+b+c;a-(b+c)=a-b-c.反过来,就得到添括号法则:a+b+c=a+(b+c);a-b-c=a-(b+c).也就是说,添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.【例5】运用乘法公式计算:(1)(x+2y-3)(x-2y+3);(2)(a+b+c)2.【解】 (1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)]=x2-(2y-3)2=x2-(4y2-12y+9)=x2-4y2+12y-9;(2)(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2ac+2bc.三、课堂小结四、板书设计五、教学反思本节课是在学习了平方差公式之后进行的,学习方法与上节课类似,但本课时中的内容多,难点也比较多,所以对课堂教学的组织要求就更高,因此在设计活动时,紧紧围绕着完全平方公式如何得到和应用这一中心问题展开,并根据活动情况不断地变换问题,以问题为核心调动学生参与活动的兴趣与积极性,在每一个教学环节都对学生提出不同的要求,指导他们自主探索与合作交流,更好地掌握模仿与记忆的学习方式.导学方案一、学法点津学生在运用完全平方公式时,要注意分清:两数和的平方,等于它们的平方和加上它们的积的2倍;两数差的平方,等于它们的平方和减去它们的积的2倍.公式的左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍.添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.二、学点归纳总结(一)知识要点总结1.完全平方公式(a +b)2=a 2+2ab +b 2,(a -b)2=a 2-2ab +b 2.即两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.2.添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.(二)规律方法总结1.运用完全平方公式时应注意以下几个方面:(1)(a +b)2=a 2+2ab +b 2与(a -b)2=a 2-2ab +b 2都叫完全平方公式,为了区别,把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(2)公式的特征中,a 与b 可以是单项式也可以是多项式.2.添括号与去括号是一个互逆过程,添括号是否正确可将添括号的式子按去括号的法则去掉括号,看结果是否与原式相同来验证变形的正确性.课时作业设计一、选择题1.下列等式能成立的是( ).A .(a -b)2=a 2-ab +b 2B .(a +3b)2=a 2+9b 2C .(a +b)2=a 2+2ab +b 2D .(x +9)(x -9)=x 2-92.(a +3b)2-(3a +b)2计算的结果是( ).A .8(a -b)2B .8(a +b)2C .8b 2-8a 2D .8a 2-8b 2二、填空题3.(a +b)2-(__________)=(a -b)2.4.⎝ ⎛⎭⎪⎫100122=__________. 三、解答题5.已知m +1m=3,求: (1)m 2+1m 2; (2)m 4+1m 4.【参考答案】1.C2.C3. 4ab4. 10100.255.解:(1)∵m+1m =3,∴⎝ ⎛⎭⎪⎫m +1m 2=9,m 2+2+1m 2=9,∴m 2+1m 2=7. (2)∵m 2+1m 2=7,∴⎝ ⎛⎭⎪⎫m 2+1m 22=49,m 4+2+1m 4=49,∴m 4+1m 4=47.。
人教版数学八年级上册14.2.2.1《完全平方公式》教学设计2一. 教材分析《人教版数学八年级上册》第14章是关于二次根式的,而14.2节开始介绍完全平方公式。
本节课的重点是让学生理解并掌握完全平方公式的推导过程及其应用。
完全平方公式是初中学段数学的重要知识点,也是后续学习更高阶数学的基础。
它不仅在解决实际问题中有着广泛的应用,而且在学习代数式的恒等变形、函数的图像等高级内容时也会用到。
二. 学情分析八年级的学生已经掌握了有理数的运算、整式的乘法等基础知识,具备一定的逻辑思维能力和探索精神。
但是,对于完全平方公式的推导和理解,部分学生可能会感到困难,特别是对于完全平方公式的灵活运用,需要学生在实际问题中找到合适的切入点。
三. 教学目标1.知识与技能目标:学生能够理解完全平方公式的推导过程,掌握完全平方公式的结构特征及其应用。
2.过程与方法目标:通过小组合作、探究活动,培养学生的团队协作能力和问题解决能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:完全平方公式的推导过程及应用。
2.难点:完全平方公式的灵活运用,解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究完全平方公式的推导过程。
2.运用小组合作学习,培养学生的团队协作能力。
3.利用多媒体辅助教学,提高教学效果。
六. 教学准备1.多媒体教学设备。
2.教学课件。
3.练习题。
七. 教学过程导入(5分钟)通过一个实际问题引入:一个正方形的边长增加了1cm,求新的正方形的面积。
让学生尝试解决这个问题,从而引出完全平方公式的需求。
呈现(10分钟)呈现完全平方公式的推导过程,通过多媒体动画展示,让学生直观地理解公式是如何得出的。
操练(10分钟)给学生发放练习题,让学生独立完成。
题目包括填空题、选择题和解答题,涵盖完全平方公式的各个方面。
巩固(10分钟)学生分小组进行讨论,用完全平方公式解决实际问题。
双井中学八年级(数学)备课组
集体备课教案主备:辅备:
[师]像研究平方差公式一样,我们探究一下(a+b)2的运算结果有什么规律.(出示投影片)
计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;
(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;
(4)(m-2)2=________;
(5)(a+b)2=________;
(6)(a-b)2=________.
[生甲](1)(p+1)2=(p+1)(p+1)=p2+p+p+1=p2+2p+1
(2)(m+2)2=(m+2)(m+2)=m2+2m+m·2+2×2=m2+4m+4
(3)(p-1)2=(p-1)(p-1)=p2+p·(-1)+(-1)·p+(-1)×(-1)=p2-2p+1 (4)(m-2)2=(m-2)(m-2)=m2+m·(-2)+(-2)·m+(-2)×(-2)=m2-4m+4 (5)(a+b)2=(a+b)(a+b)=a2+ab+ba+b2=a2+2ab+b2
(6)(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2
[生乙]我还发现(1)结果中的2p=2·p·1,(2)结果中4m=2·m·2,(3)、(4)与(1)、(2)比较只有一次项有符号之差,(5)、(6)更具有一般性,我认为它可以做公式用.
[师]大家分析得很好.可以用语言叙述吗?
[生]两数和(或差)的平方等于这两数的平方和再加(或减)它们的积的2倍. [生]它是一个完全平方的形式,能不能叫完全平方公式呢?
[师]很有道理.它和平方差公式一样,使整式运算简便易行.•于是我们得到完全平方公式:
文字叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
符号叙述:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2
其实我们还可以从几何角度去解释完全平方差公式.
(出示投影片)
你能根据图(1)和图(2)中的面积说明完全平方公式吗?
[生甲]先看图(1),可以看出大正方形的边长是a+b.
[生乙]还可以看出大正方形是由两个小正方形和两个矩形组成,•所以大正方形的面积等于这四个图形的面积之和.
[生丙]阴影部分的正方形边长是a,所以它的面积是a2;另一个小正方形的边长是b,所以它的面积是b2;另外两个矩形的长都是a,宽都是b,所以每个矩形的面积都是ab;大正方形的边长是a+b,其面积是(a+b)2.于是就可以得出:(a+b)2=a2+ab+b2.这正好符合完全平方公式.。