流体力学1-简介
- 格式:ppt
- 大小:2.41 MB
- 文档页数:38
流体力学知识点范文流体力学是研究流体静力学和流体动力学的一个学科,涉及到流体的运动、力学性质以及相关实验和数值模拟方法。
流体力学的应用广泛,包括气象学、海洋学、土木工程、航空航天工程等领域。
以下是流体力学的一些重要知识点。
1.流体的性质流体是一种能够自由流动的物质,包括气体和液体。
与固体不同,流体具有可塑性、可挤压性和物质变形后恢复自然形状的性质。
流体的密度、压力、体积、温度和粘度是流体性质的基本参数。
2.流体的运动描述流体的运动包括膨胀、收缩、旋转和流动等。
为了描述流体的运动,需要引入一些描述流体运动的物理量,如速度、流速、加速度和流量。
流体的速度矢量表示流体粒子的运动方向和速度大小。
3.流体静力学流体静力学研究的是在静压力的作用下,流体内各点之间的静力平衡关系。
流体的静力压力与深度成正比,由于流体的可塑性,静压力会均匀传输到容器中的各个部分。
流体静力学应用于液压系统、液态储存设备和液压机械等领域。
4.流体动力学流体动力学研究的是流体在外力作用下的运动行为。
流体动力学分为流体动力学和流体动量守恒两个方面。
流体动力学研究的是流体的速度和加速度,以及流体流动的力学性质。
流体动量守恒研究的是流体在内外力作用下动量的转移和守恒。
流体动力学应用于气象学、水力学、航空航天工程等领域。
5.流体的流动方程流体力学的基本方程是质量守恒方程、动量守恒方程和能量守恒方程。
质量守恒方程描述了流体的质量守恒原理,即质量在流体中是守恒的。
动量守恒方程描述了流体的动量守恒原理,即外力对流体的动量变化率等于流体的加速度乘以单位质量的流体体积。
能量守恒方程描述了流体的能量守恒原理,即流体在流动过程中能量的转化和传输。
6.流体力学问题的数值模拟由于流体力学问题具有复杂性和非线性性,很多问题难以通过解析方法得到解析解。
因此,数值模拟成为解决流体力学问题的一种重要方法。
数值模拟方法包括有限元法、有限差分法和有限体积法等。
这些方法通过将流体力学问题离散化为一组代数方程来进行数值求解。
一、著名科学家介绍* 钱学森中国现代科学家,1911年生于上海。
1934年毕业于上海交通大学,1935至1938年在美国麻省理工学院和加利福尼亚理工学院航空工程系学习。
1938年获博士学位,后在著名的喷气推进实验室、麻省理工学院等院校所从事研究。
1955年回国,任中国科学院力学所所长、国防科工委副主任等职。
主要成就有:提出跨声速流动相似律,建立卡门--钱学森公式。
著作有《工程控制论》、《星际航行概论》、《论系统工程》等。
* 卡门近代力学家,1881年5月11日生于匈牙利布达佩斯;中学毕业后,卡门进入皇家约瑟夫综合技术大学(现在为布达佩斯技术大学)学习,在那里他开始对力学产生兴趣,并发表了最初几篇论文。
1902年,卡门大学毕业。
1906年,卡门到德国格丁根大学作了力学家L.普朗特(Prandtl)的博士研究生。
1908年完成博士论文,并留校作试用教员,提出了著名的卡门涡街理论。
1913年初,在克莱因的推荐下,出任德国亚琛工业大学的航空学教授。
1926年,迁居美国。
1930年,就任美国加州理工学院古根海姆航空实验室(GALCIT)主任,我国当代的许多著名科学家,如钱学森、钱伟长、郭永怀等就是在这一时期来到GALCIT的。
第二次世界大战期间,他作为加州理工学院新成立的喷气推进实验室主任(1938--1944),与美国军方进行了密切合作。
1951年,卡门发起成立了北约组织内的航空研究发展咨询局(AGARD)。
1956年,根据他的建议成立了国际航空科学理事会。
后来他又创立了国际航天学院,他任这两个机构的领导职务直至逝世。
他的一生,在固体力学和流体力学的理论研究方面取得了许多卓越的学术成就。
* 普朗特1875年2月4日生于德国慕尼黑附近的弗赖辛;1894年--1898年在慕尼黑工业大学学习机械工程,毕业留校任教,从事工程力学教学及材料实验室工作。
1900年初加入纽伦堡机械制造协会,同年获慕尼黑大学哲学博士学位。
流体力学简介及其应用领域流体力学是研究流体在各种情况下的力学性质的学科。
流体力学的研究对象是流体,即液体和气体。
本文将介绍流体力学的基本概念和原理,以及它在各个领域中的应用。
一、流体力学概述流体力学是研究流体在力学作用下的运动规律和力学性质的学科。
流体力学基于质点力学的基本原理,结合了质点力学和连续介质力学的概念和方法进行研究。
它主要包含两个方面的内容:流体静力学和流体动力学。
1. 流体静力学流体静力学是研究静止的流体的力学性质和平衡条件的学科。
静止的流体受重力的作用下,压力在不同位置上会有不同的分布。
通过应用压力梯度的概念和压强的定义,可以得到流体静力学的基本方程。
2. 流体动力学流体动力学是研究流体在外力作用下的运动规律和力学性质的学科。
流体动力学研究的是流体的流动状态,包括速度场、压力场等各个方面的特性。
通过应用质量守恒、动量守恒和能量守恒等基本原理,可以得到流体动力学的基本方程,如连续方程、动量方程和能量方程。
二、流体力学的应用领域流体力学的理论和方法广泛应用于各个领域,涵盖了自然科学、工程技术和生物医学等多个领域。
以下将介绍一些典型的应用领域。
1. 工程力学流体力学在工程力学中的应用非常广泛。
例如,水利工程中的水流运动、水力发电和水污染控制等问题,以及空气动力学、飞行器的设计与优化等问题,都离不开流体力学的理论和方法。
2. 汽车工程在汽车工程中,流体力学被广泛应用于汽车空气动力学和燃烧过程等方面的研究。
通过流体力学的理论和模拟方法,可以对汽车的空气动力学特性进行研究和优化,提高汽车的性能和燃油利用率。
3. 航空航天工程流体力学在航空航天工程中的应用也非常重要。
例如,飞行器的气动外形设计、空气动力学特性的研究、喷气发动机的燃烧过程等问题,都需要运用流体力学的理论和方法进行分析和研究。
4. 生物医学生物医学领域中的许多问题也涉及到流体力学的研究。
例如,血液在血管中的流动、气体交换和呼吸过程等问题,都可以通过流体力学的分析和计算方法进行研究和模拟,对疾病的诊断和治疗有一定的指导意义。
流体力学(简介)流体力学是在人类与自然界相处和生产实践中逐步发展起来的。
对流体力学学科的形成做出卓越贡献的是古希腊哲学家阿基米德(《论浮体》,公元前250年)建立了包括浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。
流体力学原理主要指计算流体动力学中的数值方法的现状;运用基本的数学分析,详尽阐述数值计算的基本原理;讨论流域和非一致结构化边界适应网格的几何复杂性带来的困难等。
一、发展简史各物理量关系构成牛顿内摩擦定律,τ=μ*du/dy动压和总压。
显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。
飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。
据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。
在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。
在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。
图为验证伯努利方程的空气动力实验。
补充:p1+1/2ρv1^2+ρgh1=p2+1/2ρv2^2+ρgh2(1)p+ρgh+(1/2)*ρv^2=常量(2)均为伯努利方程其中ρv^2/2项与流速有关,称为动压强,而p和ρgh称为静压强。
伯努利方程揭示流体在重力场中流动时的能量守恒。
由伯努利方程可以看出,流速高处压力低,流速低处压力高。
后人在此基础上又导出适用于可压缩流体的N-S方程。
N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。
它是一个非线性偏微分方程,求解非常困难和复杂,目前只有在某些十分简单的流动问题上能求得精确解;但在有些情况下,可以简化方程而得到近似解。
例如当雷诺数Re1时,绕流物体边界层外,粘性力远小于惯性力,方程中粘性项可以忽略,N-S方程简化为理想流动中的欧拉方程(=-Ñp+ρF);而在边界层内,N-S方程又可简化为边界层方程,等等。