中山市2013—2014学年高三上学期期末统一考试数学(理)
- 格式:doc
- 大小:942.50 KB
- 文档页数:9
中山市2014届高三上学期期末统一考试地 理本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,共8页。
满分100分,考试时间90分钟。
注意事项:1.答题前,考生必须将自己的姓名、统考考号、座号和考试科目用铅笔涂写在答题卡上。
2.第I 卷共22小题,每小题选出答案后,用铅笔把答题卡上对应的答案标号涂黑,如要改动,必须用橡皮擦干净后,再选涂其他答案。
第II 卷则用黑色的钢笔(或签字笔)按各题要求答在答题卡相应的位置上。
3.考试结束时,将答题卡交回。
第I 卷(选择题,共44分)一、单选题:(本大题共22小题,每小题2分,共44分。
在每题给出的四个选项中,只有一项是符合题目要求的)。
读某日我国地质灾害指数和限电指数分布示意图,回答1—2题。
1.若图1中所示现象同时出现,最有可能发生的季节是 A .春季 B .夏季C .秋季D .冬季2.地质灾害指数和限电指数较高的地区,天气分别最可能是 A .沙尘暴、寒潮 B .暴雨、高温 C .干旱、台风D .暴雨、低温3.广东省大部分地区位于北回归线附近,与世界同纬度大陆西岸相比,广东 A .夏季温度高、降水多B .冬季温度低、降水少C .冬季温度低、夏季降水多D .夏季温度高、冬季降水少 4.造成广东省上述特征的主要原因是 A .地形因素B .太阳辐射C .季风影响D .洋流影响5.目前遭受严重破坏,且恢复程度最低的自然地带是 A .中国温带草原带B .巴西热带雨林带C .北美温带落叶阔叶林带 6.读图2,下面分析不正确...的是 A .1953年是典型的年轻型人口结构,是我国劳动力最充裕的时期B .未来20年中国将面临严重人口老龄化问题C .1997年是我国劳动力充裕的时期D .中国人口增长模式正处在传统型图1向现代型转变 图27.图3为某省1985~2010年就业结构与城镇人口比重变化,据图中的信息推测下列说法正确的是A .2010年该省城市化水平进入了后期阶段B .2010年城镇新增就业人口第二产业超过第三产业C .劳动力主要由第一产业向第二、三产业转移D .农村人口向东部沿海城市迁移数量增加 8.图4为华北某小镇略图,该城镇依托矿产资 源,调整工业结构,发展循环经济,你认为 最适宜在该城市布局的工厂是图4A .冶炼厂B .水泥厂C .化肥厂D .电镀厂9.与图5中甲、已、丙、丁所反映的土地利用类型相吻合的国家依次可能是A .澳大利亚-印度-巴西-埃及B .巴西-澳大利亚-印度-埃及C .埃及-澳大利亚-巴西--印度D .澳大利亚-巴西-印度-埃及 图5 10.表1反映了某企业在不同地方生产同一批产品的成本费用。
广东省中山市2014届高三上学期期末试题政治nba(体育)2014-01-29 201427(中山市高三级2014—2014学年度第一学期期末统一考试文科政治试卷注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号、试室号和座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
第Ⅰ卷选择题(48分)一、选择题(每小题只有一个选项最符合题意,共24题,每小题2分,共48分)1.2014年中国人民银行连续多次上调金融机构人民币存贷款基准利率。
下图中,比较能正确反映银行利率上调对居民消费产生变化的是注:图中虚线为银行利率上调条件下的消费量,实线为原银行利率水平下的消费量,横轴x为消费需求量纵轴Y为价格2.2014年美国国债负担重,政府财政收紧,减少公共支出,寡头独占金融,引发了“占领华尔街”罢工潮。
出现这一罢工的路径是A.欧元狂发——通货膨胀——福利下降——引发罢工B.美元紧缩——经济下滑——生活下降——引发罢工C.国债比重过大——减少财政支出——贫富差距恶化——引发罢工D.国债比重过低——增加财政支出——劳动就业困难——引发罢工3.中央决定将农民人均纯收入2300元作为新的国家扶贫标准,这个标准比2014年提高了92%。
这意味着①将会改革和调整国民收入分配格局②加快实现同步富裕的发展目标③提高劳动生产率,促进经济发展④更多低收入人口消费结构将会有所变化A.②③ B.①③ C.②④ D.①④4.国务院发文要求各地坚决遏制房价过快上涨。
下列能正确反映国家政策与房价之间关系的选项是①利率上调→购房成本增加→购房需求下降→房价下跌②保障房建设→住房供给增加→住房供求矛盾缓解→房价下跌③居住用地供应增加→建筑成本降低→住房供过于求→房价下跌④上调房产税率→购房成本减少→购房需求下降→房价下跌A.①② B.④③ C.②④ D.③④5.CPI 是物价涨跌状况,从供求关系方面考虑,CPI这个经济数据对股市大盘的影响是①一般情况下,物价上涨,股价上涨;物价下跌,股价也下跌②产品价格上涨高于借贷成本时,公司利润上升,股票价格也会上升③物价上涨引起公司成本上升,利润降低,股价也随之降低④物价上涨引起投资者退出股市而转向房产、贵金属等保值性强的物品,使股价下跌A.①③④ B.①②④ C.②③④ D.①②③④6.美国国会参议院高票通过《2014年货币汇率监督改革法案》,中国外交部、商务部及央行纷纷发表言论,表示强烈反对。
中山市高二级2012—2013学年度第一学期期末统一考试数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷(选择题共40分)一、选择题(本大题共8小题,每小题5分,共40分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.)1.在△ABC 中,60A =︒,75B =︒,c =20,则边a 的长为 A.B.C.D.2.不等式(50)(60)0x x -->的解集是 A .(,50)-∞B .(60,)+∞C .(50,60)D .(,50)(60,)-∞+∞3.十三世纪初,意大利数学家斐波那契(Fibonacci ,1170~1250)从兔子繁殖的问题,提出了世界著名数学问题“斐波那契数列”,该数列可用递推公式121,1,2;, 3.n n n n F F F n --=⎧=⎨+≥⎩由此可计算出8F = A .8B .13C .21D .344.函数()ln f x x x =的单调递减区间是 A .(0,)eB .(,)e +∞C .1(0,)eD .1(,)e +∞5.等差数列{}n a 的前n 项和12...n n S a a a =+++,若1031S =,20122S =,则30S = A .153B .182C .242D .2736.关于双曲线22916144y x -=,下列说法错误的是 A .实轴长为8,虚轴长为6 B .离心率为54C .渐近线方程为43y x =±D .焦点坐标为(5,0)±7.下列命题为真命题的是 A .x ∀∈N ,32x x >B .0x ∃∈R ,200220x x ++≤C .“3x >”是“29x >”的必要条件D .函数2()f x ax bx c =++为偶函数的充要条件是0b =8.已知函数32()f x x ax bx c =+++,x ∈[-2,2]表示的曲线过原点,且在x =±1处的切线斜率均为-1,有以下命题:① f (x )的解析式为:3()4f x x x =-,x ∈[-2,2];② f (x )的极值点有且仅有一个; ③ f (x )的最大值与最小值之和等于零. 则下列选项正确的是( ). A .①②B .①③C .②③D .①②③第Ⅱ卷(非选择题共110分)二、填空题(本大题共6小题,每小题5分,共30分,把答案填在答题卡相应横线上) 9.一个等比数列的第3项和第4项分别是12和18,则它的第2项为 .10.与椭圆221259x y +=焦点相同的等轴双曲线的标准方程为 . 11.小明用TI-Nspire™ CAS 中文图形计算器作出函数1()(2)(3),[4,4]8f x x x x x =+-∈-的图像如右图所示,那么不等式()0f x ≥的解集是 .(用区间表示)12.已知(2,1,3)a = ,(4,2,)b x =-,且a b ⊥ ,则||a b -=.13.在周长为定值P 的扇形中,当半径为 时,扇形的面积最大,最大面积为 . 14.已知抛物线2()2f x x x =-上一点(3,(3))P f 及附近一点'(3,(3))P x f x +∆+∆,则割线'PP 的斜率为'(3)(3)PP f x f k x+∆-==∆ ,当x ∆趋近于0时,割线趋近于点P 处的切线,由此可得到点P 处切线的一般方程为 .三、解答题(本大题共6小题,共80分,解答须写出文字说明、证明过程和演算步骤.) 15.(13分)已知函数()(2)(3)f x x x x =+-.(1)求导数()f x '; (2)求()f x 的单调区间.16.(13分)设数列{}n a 的前n 项和为n S ,点(,)()n S n n N n*∈均在直线12y x =+上.(1)求数列{}n a 的通项公式;(2)设123n a n b +=,n T 是数列{}n b 的前n 项和,试求n T .17.(13分)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c . (1)若边BC 上的中线AD 记为a m,试用余弦定理证明:a m =. (2)若三角形的面积S =2221()4a b c +-,求∠C 的度数.18.(13分)某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.但国家每天分配给该厂的煤、电有限, 每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产值大?最大日产值为多少?19.(14分)如图,在长方体1AC 中,12,AB BC AA ==E 、F 分别是面11AC 、面1BC 的中心.以D 为坐标原点,DA 、DC 、D D 1所为直线为x ,y ,z 轴建立空间直角坐标系,试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.AA 1BC D B 1C 1D 1 EF20. (14分)已知椭圆的一个顶点为(0,1)A-,焦点在x轴上, 右焦点到直线0x y-+的距离为3.(1)求椭圆的标准方程;(2)设椭圆与直线(0)=时,求y kx m k=+≠相交于不同的两点M、N,当AM AN实数m的取值范围.中山市高二级2012—2013学年度第一学期期末统一考试高二数学试卷(理科)答案一、选择题:ACCCD DDB二、填空题:9. 8; 10. 22188x y -=; 11. [2,0][3,4]- ;; 13. 4P ,216P ; 14. 112x +∆,11180x y --=. (前空3分,后空2分)三、解答题:15. 解:(1)由原式得32()6f x x x x =--,……………(3分)∴2()326f x x x '=--. ……(6分) (2)令()0f x '<x <<, ……………(9分)令()0f x '>,解得x <x >,……………(11分)所以()f x的单调递减区间为, ……………(12分)单调递增区间为(-∞,)+∞. ……………(13分)16. 解:(1)依题意得,1,2n S n n =+即212n S n n =+. ……………(2分)当n≥2时, 221111()(1)(1)2222n n n a S S n n n n n -⎡⎤=-=+--+-=-⎢⎥⎣⎦; ………(5分) 当n=1时,2111311121222a S ==+⨯==⨯-. ……………(6分) 所以*12()2n a n n N =-∈.……………(7分)(2)由(1)得12233n a n n b +==,……………(8分) 由2(1)2123393n n n n b b ++===,可知{}n b 为等比数列. ……………(10分) 由21139b ⨯==,……………(11分)故19(19)99198n n n T +--==-. ……(13分)17.解:(1)在ABD ∆中,222()2cos 22a ac m B a c +-=; ……………(2分)在ABC ∆中,222cos 2c a b B c a+-= .……………(4分)∴ 222222()2222a ac m c a b a c a c +-+-=, ………………(5分)化简为:2222222222()424a a c ab bc a m c +-+-=+-=, ∴ a m =.………………(7分) (2)由S =2221()4a b c +-,得12ab sin C =12cos 4ab C .………………(10分) ∴ tan C =1,得C =45︒.………………(13分)18. 解:设该厂每天安排生产甲产品x 吨,乙产品y 吨,则日产值812z x y =+,…(1分)线性约束条件为735620504500,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩.…………(3分)作出可行域.…………(6分)把812z x y =+变形为一组平行直线系8:1212zl y x =-+,由图可知,当直线l 经过可行域上的点M 时,截距12z最大,即z 取最大值. 解方程组73562050450x y x y +=⎧⎨+=⎩,得交点(5,7)M ,……………(10分) max 85127124z =⨯+⨯=.……………(12分)所以,该厂每天安排生产甲产品5吨,乙产品7吨,则该厂日产值最大,最大日产值为124万元.………………(13分)19. 解:(1)A (2,0,0),F (1,2),∴((1,AF BE =-=-- , ……(4分) ∴ 1210AF BE →→∙=-+=.……(6分)所以AF 和BE 所成的角为90︒ . ……(7分)(2)设平面BEC 的一个法向量为(,,),n x y z =又 (2,0,0),BC =-(1,BE =--则:20n BC x ∙=-=,0n BE x y ∙=--=.∴0x =, 令1z =,则:y =,∴ n →=. …………(10分)∴ ,AF nCOS AF n AF n∙<>===∙. ……………(12分)设直线AF 和平面BEC 所成角为θ,则:Sin θ=. 即 直线AF 和平面BEC……………(14分)20. 解:(1)依题意可设椭圆方程为 2221(1)x y a a+=> ,……………(1分)则右焦点F . ……(2分)3=, 解得:23a =.……………(4分) 故 所求椭圆的标准方程为:2213x y +=.……………(5分)(2)设P 为弦MN 的中点,联立2213y kx m x y =+⎧⎪⎨+=⎪⎩ , ………………(6分)消y 得: 222(31)63(1)0k x mkx m +++-=. ………………(7分)由于直线与椭圆有两个交点, 0,∴∆>即 2231m k <+ ① …………(8分)23231M N p x x mk x k +∴==-+, 从而 231p p my kx m k =+=+,21313p Ap py m k k x mk+++∴==-. 又 ,AM AN AP MN =∴⊥,则: 23113m k mk k++-=- ,即: 2231m k =+ ② ,……………(12分)把②代入①得:22m m >,解得: 02m <<; 由②得:22103m k -=>,解得:12m > . 所以,122m <<.………………(14分)。
一、选择题1 .(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )若0>x 、0>y ,则1>+y x 是122>+y x 的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件 【答案】B 2 .(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))在四边形ABCD中,“AB DC =,且0AC BD ⋅=”是“四边形ABCD 是菱形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 3 .(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)下列命题正确的是 ( )A .2000,230x R x x ∃∈++=B .32,x N x x ∀∈> C .1x >是21x >的充分不必要条件 D .若a b >,则22a b >【答案】C4 .(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)如果命题“()p q ⌝∨”是假命题,则下列说法正确的是( )A .p q 、均为真命题B .p q 、中至少有一个为真命题C .p q 、均为假命题D .p q 、中至少有一个为假命题【答案】B5 .(广东省汕头一中2013年高三4月模拟考试数学理试题 )已知命题p :,(0,)a b ∃∈+∞,当1a b +=时,113a b+=;命题2:,10q x R x x ∀∈-+≥恒成立,则下列命题是假命题的是( )A .()()p q ⌝∨⌝B .()()p q ⌝∧⌝C .()p q ⌝∨D .()p q ⌝∧【答案】B6 .(广东省茂名市2013届高三第一次模拟考试数学(理)试题)已知向量(1,2),(2,1)a x b =-=,则a b⊥的充要条件是 ( )A .0x =B .5x =C .1x =-D .12x =-【答案】A7 .(广东省珠海一中等六校2013届高三第二次联考数学(理)试题)“1a =”是“(1)(2)0a a --=”成立的A . 充分非必要条件 .B 必要非充分条件.C 充要条件 .D 既不充分也不必要条件 【答案】A 8 .(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)给出下述四个命题中:①三角形中至少有一个内角不小于60°; ②四面体的三组对棱都是异面直线;③闭区间[a ,b ]上的单调函数f (x )至多有一个零点;④当k >0时,方程x 2+ ky 2= 1的曲线是椭圆.其中正确的命题的个数有 ( ) A .1 B .2 C .3 D .4【答案】解:当k =1时,曲线是圆,故D 错误.其余三个命题都是正确的.选 C . 9 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))已知x R ∈,则1x ≥是|1||1|2||x x x ++-=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】A10.(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)不等式10x x->成立的一个充分不必要条件是( ) A .10x -<<或1x > B .1x <-或01x <<C .1x >- D .1x >【答案】D 画出直线y x =与双曲线1y x=,两图象的交点为(1,1)、(1,1)--,依图知10x x->10x ⇔-<<或1x >(*),显然1x >⇒(*);但(*)⇒/1x >. 11.(广东省广州市2013届高三调研测试数学(理)试题)设向量=a ()21x ,-,=b ()14x ,+,则“3x =”是“a //b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A分析:当//a b 时,有24(1)(1)0x x ,解得3x =±;所以3//x a b =⇒,但//3a bx =,故“3x =”是“//a b ”的充分不必要条件12.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))如果命题“)(q p ∧⌝”是真命题,则 ( )A .命题p 、q 均为假命题B .命题p 、q 均为真命题C .命题p 、q 中至少有一个是真命题D .命题p 、q 中至多有一个是真命题 【答案】D 13.(广东省汕头市2013届高三上学期期末统一质量检测数学(理)试题)设命题p:函数y=sin2x 的最小正周期为2π; 命题q:函数y=cosx 的图象关于直线x=2π对称,则下列的判断正确的是 ( )A .p 为真B .⌝q 为假C .p ∧q 为假D .p q ∨为真【答案】C14.(广东省中山市2013届高三上学期期末统一考试数学(理)试题)“22ab >”是 “22log log a b >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B15.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)下面是关于复数21z i=- 的四个命题:1p :2z =, 2:p 22z i = 3:p z 的共轭复数为1i -+ 4:p z 的虚部为1其中真命题为.A 23,p p .B 12,p p .C 24,p p .D 34,p p【答案】C 16.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)设x,y ∈R,则“x=0”是“复数x+yi为纯虚数”的A 充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B 17.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))“|x -1|<2成立”是“x(x -3)<0成立”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B 18.(广东省汕头市东厦中学2013届高三第三次质量检测数学(理)试题 )50<<x 是不等式4|4|<-x 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A19.(广东省韶关市2013届高三4月第二次调研测试数学理试题)给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”; ③“2,11x x ∀∈+≥R ”的否定是“2,11x x ∃∈+≤R ”④等比数列{}n a 中,首项10a <,则数列{}n a 是递减数列的充要条件是公比1q >; 其中不正确...的命题个数是 ( )A .4B .3C .2D .1【答案】C20.(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))设命题p:“若对任意x R ∈,|x+1|+|x-2|>a,则a<3”;命题q:“设M 为平面内任意一点,则 ( ) A . B .C 三点共线的充要条件是存在角α,使22sin cos MB MA MC αα=+⋅”,则( )A .p q ∧为真命题B .p q ∨为假命题C .p q ⌝∧为假命题D .p q ⌝∨为真命题 【答案】C解析:P 正确,q 错误:22sin cos MB MA MC αα=+⋅,<==>BA=MA-MB=(cosa)^2*(MC-MB)=(cosa)^2*BC,==>A,B,C 三点共线.反之,不成立.例如,A(0,0),B(1,0),C(2,0),BA=(-1,0),BC=(1,0),不存在角a,使向量MA=(sina)^2*向量MB+(cosa)^2*向量 M C .所以这个命题是假的. 21.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)已知:230p x x ---≤,:3q x ≤,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】A22.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)命题:p 2,11x x ∀∈+≥R ,则p ⌝是( )A .2,11x x ∀∈+<R B .2,11x x ∃∈+≤R C .2,11x x ∃∈+<RD .2,11x x ∃∈+≥R【答案】C 二、填空题 23.(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)命题“∃0x ∈R,0x e ≤0”的否定是______________.【答案】∀x ∈R,x e >0 24.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)已知函数()4||21f x a x a =-+.若命题:“0(0,1)x ∃∈,使0()0f x =”是真命题,则实数a 的取值范围为____________.【答案】由“∃)1,0(0∈x ,使得0)(0=x f ”是真命题,得(0)(1)0f f ⋅<⇒(12)(4||21)0a a a --+<0(21)(21)0a a a ≥⎧⇔⎨+->⎩或0(61)(21)0a a a <⎧⎨--<⎩⇒12a >. 25.(广东省珠海一中等六校2013届高三第二次联考数学(理)试题)已知命题2:,10,p x R x x ∃∈+-<则命题p ⌝是______________________. 【答案】2,10x R x x ∀∈+-≥三、解答题26.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))已知0a >,设命题p :函数()2212f x x ax a =-+-在区间[]0,1上与x 轴有两个不同的交点;命题q :()g x x a ax =--在区间()0,+∞上有最小值.若()p q ⌝∧是真命题,求实数a 的取值范围.【答案】(本小题主要考查二次函数的交点与分段函数的最值、常用逻辑用语等基础知识,考查数形结合思想、分类讨论思想和运算求解能力、抽象概括能力等,本小题满分14分) 解:要使函数()2212f x x ax a =-+-在[]0,1上与x 轴有两个不同的交点,必须()()0101,0.f f a ⎧⎪⎪⎨<<⎪⎪∆>⎩≥0,≥0,即()()2,1224012412a a a a a -⎧⎪-⎪⎨<<⎪⎪--->⎩≥0,≥0,0.解得1212a -<≤.所以当1212a -<≤时,函数()2212f x x ax a =-+-在[]0,1上与x 轴有两个不同的交点下面求()g x x a ax =--在()0,+∞上有最小值时a 的取值范围:方法1:因为()()()1,,1,.a x a x a g x a x a x a --⎧⎪=⎨-++<⎪⎩≥①当1a >时,()g x 在()0,a 和[),a +∞上单调递减,()g x 在()0,+∞上无最小值; ②当1a =时,()1,,21,1.x g x x x -⎧=⎨-+<⎩≥1()g x 在()0,+∞上有最小值1-; ③当01a <<时,()g x 在()0,a 上单调递减,在[),a +∞上单调递增,()g x 在()0,+∞上有最小值()2g a a =-所以当01a <≤时,函数()g x 在()0,+∞上有最小值方法2:因为()()()1,,1,.a x a x a g x a x a x a --⎧⎪=⎨-++<⎪⎩≥因为0a >,所以()10a -+<.所以函数()()110y a x a x a =-++<<是单调递减的要使()g x 在()0,+∞上有最小值,必须使()21y a x a =--在[),a +∞上单调递增或为常数 即10a -≥,即1a ≤所以当01a <≤时,函数()g x 在()0,+∞上有最小值若()p q ⌝∧是真命题,则p ⌝是真命题且q 是真命题,即p 是假命题且q 是真命题所以101,,20 1.a a a ⎧<>⎪⎨⎪<⎩≤或解得01a <-或112a <≤ 故实数a的取值范围为(11,12⎛⎤⎤ ⎥⎦⎝⎦。
2014届中山市华侨中学高三四模考试试卷数学(理科)本试卷共4页,20题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设{}1,2,3,4,5U =-,{}1,5A =-,{}2,4B =,则()UB A = ?( )A. {2}B. {1,3,4,5}C. {2,3,4}D. {2,4}2. 复数(i 是虚数单位)的实部和虚部的和是( ) A .4 B .6 C .2 D .33. 已知x 、y 满足0020350x y x y x y ≥⎧⎪≥⎪⎨-≤⎪⎪-+≥⎩,则2x y +的最大值为( )A .3B .4C .5D .64. 沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()5. 已知2(3,log 15)a →=,2(2,log 3)b →=,2(2,log )c m →=,若()a b →- c →,则m 的值为( )A .25B .C .10D6. 甲乙等5个人站成一排,若甲乙两人之间恰有1个人,则不同站法有( ) A .18种 B .24种 C .36种 D .48种7. 与直线1y x =-及4x =所围成的封闭图形的面积为( ) A .2ln 2B .2ln 2-C .4ln 2- D .42ln 2-8.把已知正整数n 表示为若干个正整数(至少3个,且可以相等)之和的形式,若这几个正整数可以按一定顺序构成等差数列,则称这些数为n 的一个等差分拆.将这些正整数的不同排列视为相同的分拆.如:(1,4,7)与(7,1,4)为12的相同等差分拆.正整数27的不同等差分拆有( )个. Ks5uA. 9B. 10C. 11D. 12二、填空题:本大题共6小题,每小题5分,满分30分.9. 4(1)x -的展开式中2x 的系数是10. 等比数列{}n a 中,12a =,且23642a a a =,则数列{}n a 的前n 项和公式是n S =.11. ,则tan α的值为 12.如图,正方形ABCD 的边长为1,点E 是CD 的中点,则AE AB的值为Ks5u13.一个几何体的三视图如下图所示,则该几何体的体积为14. 函数()|2|f x x a x a =++-,x R ∈的最小值为3,则a 的值为三.解答题。
中山市高一级2013—2014学年度第一学期期末统一考试数学科试卷本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分。
共150分,考试时间100分钟。
注意事项:1、答第I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上.2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上.3、不可以使用计算器.4、考试结束,将答题卡交回,试卷不用上交.5、参考公式:球的体积公式34,3V R π=球,其中R 是球半径. 锥体的体积公式V锥体13Sh =,其中S 是锥体的底面积,h 是锥体的高. 台体的体积公式V台体1()3h S S '=+,其中,S S '分别是台体上、下底面的面积,h 是台体的高.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一选项是符合题目要求的)1.已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},则A .AB ⊆ B .C B ⊆ C .D C ⊆ D .A D ⊆ 2.下列函数中,在区间()0,1上是增函数的是( )A .x y =B .x y -=3C .xy 1=D .42+-=x y3.在同一坐标系中,函数y =x-2与y =log 2 x 的图象是( ).ABCD4.如左图是一个物体的三视图,则 此三视图所描述的物体是下列几何 体中的( )5.已知lg 2,lg3,a b ==则lg 45的值用a ,b 表示为 ( ) A .21b a +-B .12b a +-C .3a b +D .2a b b ++6.若函数22)(23--+=x x x x f 的一个正数零点附近的函数值用二分法逐次计算,得到如下参考数据:那么方程02223=--+x x x 的一个近似根(精确到0.1)为 A .1.2B .1.3C .1.4D .1.57.若213211()(),22a a +-<则实数a 的取值范围是A .(1,)+∞B .1(,)2+∞C .(,1)-∞D .1(,)2-∞8.已知直线b kx y +=经过一、二、三象限,则有( )A .k<0,b <0B .k<0,b>0C .k>0,b>0D .k>0,b<09.已知两条直线,m n ,两个平面,αβ,给出下面四个命题:①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒ ③//,////m n m n αα⇒④//,//,m n m n αβαβ⊥⇒⊥其中正确命题的序号是( ) A .①③B .②④C .①④D .②③10.若()21231log log log 0a a a x x x ++==>,则123,,x x x 之间的大小关系为( ).A .3x <2x <1xB .2x <1x <3xC .1x <3x <2xD .2x <3x <1x第Ⅱ卷(非选择题 共100分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卡的横线上) 11.点(1,1) 到直线:3430l x y ++=的距离为 .ABCD12.某同学利用TI-Nspire 图形计算器作图作出幂函数34()f x x =的图象如右图所示. 结合图象,可得到34()f x x =在区间[1,4]上的最大值为 .(结果用最简根式表示)13.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .14.过点P (3,0)的直线m ,夹在两条直线03:1=++y x l 与022:2=--y x l 之间的线段恰被点P 平分,那么直线m 的方程为三、解答题:(本大题共 6 小题,共 80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分12分) (I)求值:022*******log 9log 3log 3log --+;(Ⅱ)设函数f (x )是定义在R 上的偶函数,且)2()(-=x f x f ,当x ∈[0,1]时,1)(+=x x f ,求)23(f 的值.16.(本小题满分14分)(I)求两条平行直线01243=-+y x 与068=++y mx 之间的距离; (Ⅱ)求两条垂直直线022=++y x 与024=-+y nx 的交点坐标.17.(本小题满分13分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC ;(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.B 1 BDC 1A 118.(本小题满分13分)A 、B 两城相距100km ,在两地之间距A 城x km 处D 地建一核电站给A 、B两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数25.0=λ.若A 城供电量为20亿度/月,B 城为10亿度/月. (I)把月供电总费用y 表示成x 的函数,并求定义域; (Ⅱ)核电站建在距A 城多远,才能使供电费用最小.19.(本小题满分14分)已知函数2()21x f x a =-+,其中a 为常数. (I)当1a =时,讨论函数()f x 的奇偶性; (Ⅱ)讨论函数()f x 的单调性; (Ⅲ)当3a =时,求函数()f x 的值域.20.(本小题满分14分)已知函数121()log 1kxf x x -=-为奇函数. (I)求常数k 的值;(Ⅱ)若1a b >>,试比较()f a 与()f b 的大小;(Ⅲ)若函数1()()()2x g x f x m =-+,且()g x 在区间[]3,4上没有零点,求实数m 的取值范围.中山市高一级2013—2014学年度第一学期期末统一考试数学科试卷参考答案一、选择题(本大题共10小题,每小题5分,共50分)1.B 2.A 3.A 4.D 5.B 6.C 7.B 8.C 9.C 10.D 二、填空题(本大题共4小题,每小题5分,共20分)11.2 12. 13.3- 14.248-=x y 三、解答题(本大题共5小题,共80分)15.解:(I)0; ………………………………………………………………(6分) (Ⅱ)23121)21()21()223()23(=+==-=-=f f f f . ……………………(12分) 16.解: (I由平行知斜率相等,得6=m ; ……………………………………(3分)再由平行线的距离公式求得3=d ………………………………………………(7分) (Ⅱ)由垂直,得2-=n ;…………………………………………………………(10分) 交点为(-1,0) ………………………………………………………………(14分) 17.(I)证明:由题知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC=C , 所以BC ⊥平面AC C 1A 1,又DC 1⊂平面AC C 1A 1,所以DC 1⊥BC. ………………………………………………………(3分)由题知∠A 1 DC 1=∠A DC=45o ,所以∠CDC 1=90 o ,即DC 1⊥DC , …………………(5分) 又DC∩BC=C ,所以DC 1⊥平面BDC ,又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC. ……………………………………………………………………………………(7分) (Ⅱ)解:设棱锥B —DACC 1的体积为V 1,AC=1,由题意得 V 1 =211122131=⨯⨯+⨯…………………………(10分)又三棱柱ABC —A 1B 1C 1的体积为V=1,所以(V-V 1):V 1=1:1,故平面BDC 1分此棱柱为两部分体积的比为1:1. …………………………(13分) 18.解. (I)y =5x 2+25(100—x )2=152x 2-500x +25000 (10≤x ≤90); …………(6分)(Ⅱ)由y =152x 2-500x +25000=15221003x ⎛⎫- ⎪⎝⎭+500003. ……………………(10分) 则当x =1003米时,y 最小. …………………………………………(12分) 故当核电站建在距A 城1003米时,才能使供电费用最小. …………………………(13分)19.解:(I)1a =时,2()121x f x =-+,函数的定义域为R . ……………………(1分) 22()()(1)(1)2121x x f x f x --+=-+-++ …………………………………………(2分)=2222(21)221x x x x ---++ =2(21)221x x +-+=0 ……………………………………………………………(5分)∴ 1a =时,函数()f x 为奇函数. ………………………………………………(6分) (Ⅱ)设12x x <,则121222()()()()2121x x f x f x a a -=---++=12122(22)(21)(21)x x x x -++, …………(8分) 12x x < , 1212220,(21)(21)0x x x x ∴-<++>,12()()0,f x f x ∴-<即12()()f x f x <. ……………………………(10分)所以不论a 为何实数()f x 总为增函数. ……………………………(11分)(Ⅲ)3a =时,211x +> ,20221x ∴<<+, 22021x ∴-<-<+,213321x ∴<-<+.∴ 3a =时,函数()f x 的值域为(1,3). ………………………………………(14分) 20. 解:(I)∵ 121()log 1kxf x x -=-为奇函数∴ ()()f x f x -=-, ………………………………………………………………(1分) 即111222111log log log 111kx kx x x x kx+--=-=---- ………………………………………(2分) ∴1111kx x x kx+-=---,即22211k x x -=-,整理得21k =. ………………………(3分)∴ 1k =- (1k =使()f x 无意义而舍去) …………………………………(4分) (Ⅱ)121()log 1xf x x +=-. 1112221111()()log log log 1111a a ba f a fb b a b b +++--=-=+--- ……………………………………(5分)1122(1)(1)1log log (1)(1)1a b ab a b a b ab a b +--+-==-++-- ………………………………………(6分) 当1a b >>时,110ab a b ab a b +-->-+->, ……………………………………(7分) 所以1011ab a b ab a b -+-<<+--,从而11221log log 101ab a b ab a b -+->=+--, ………………………(8分) 即()()0f a f b ->.所以()()f a f b >. ………………………………………………(9分) (Ⅲ)由(2)知,()f x 在(1,)+∞递增, …………………………………………(10分) 所以1()()()2x g x f x m =-+在[]3,4递增. …………………………………(11分) ∵ ()g x 在区间[]3,4上没有零点, ∴ 3121119(3)log ()03128g m m +=-+=-+>- …………………………………(12分) 或4112214151(4)log ()log 0412316g m m +=-+=-+<-, ……………………(13分) ∴ 98m >或1215log 163m <-. ……………………………………………………(14分)。
2017-2018学年河南省南阳市高三(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知:如图,集合U为全集,则图中阴影部分表示的集合是()A.∁U(A∩B)∩C B.∁U(B∩C)∩A C.A∩∁U(B∪C)D.∁U(A∪B)∩C 2.已知1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,则a+b=()A.﹣1 B.1 C.﹣3 D.33.已知双曲线C的一条渐近线的方程是:y=2x,且该双曲线C经过点,则双曲线C的方程是()A.B.C.D.4.已知:f(x)=asinx+bcosx,,若函数f(x)和g(x)有完全相同的对称轴,则不等式g(x)>2的解集是()A.B.C.D.5.已知各项均为正数的等比数列{a n},a3•a5=2,若f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),则f'(0)=()A.B.C.128 D.﹣1286.已知:,则目标函数z=2x﹣3y()A.z max=﹣7,z min=﹣9 B.,z min=﹣7C.z max=﹣7,z无最小值D.,z无最小值7.设f(x)=e1+sinx+e1﹣sinx,x1、,且f(x1)>f(x2),则下列结论必成立的是()A.x1>x2B.x1+x2>0 C.x1<x2D.>8.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=()A.10πB.C.D.12π9.执行如图的程序框图,若输出S的值是2,则a的值可以为()A.2014 B.2015 C.2016 D.201710.我们把顶角为36°的等腰三角形称为黄金三角形.其作法如下:①作一个正方形ABCD;②以AD的中点E为圆心,以EC长为半径作圆,交AD延长线于F;③以D为圆心,以DF长为半径作⊙D;④以A为圆心,以AD长为半径作⊙A交⊙D于G,则△ADG为黄金三角形.根据上述作法,可以求出cos36°=()A.B.C.D.11.已知抛物线E:y2=2px(p>0),过其焦点F的直线l交抛物线E于A、B=﹣tan∠AOB,则p的值是()两点(点A在第一象限),若S△OABA.2 B.3 C.4 D.512.已知:m>0,若方程有唯一的实数解,则m=()A.B.C.D.1二、填空题:13. 1.028≈(小数点后保留三位小数).14.已知向量=(1,2),=(﹣2,﹣4),||=,若(+)=,则与的夹角为.15.已知:,则cos2α+cos2β的取值范围是.16.在四边形ABCD中,∠ABC=90°,,△ACD为等边三角形,则△ABC的外接圆与△ACD的内切圆的公共弦长=.三、解答题:17.(12.00分)已知数列{a n}的前n项和为S n,且满足a n=2S n+1(n∈N*).(1)求数列{a n}的通项公式;(2)若b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.18.(12.00分)如图1,在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,现把平行四边形ABB1A11沿CC1折起如图2所示,连接B1C、B1A、B1A1.(1)求证:AB1⊥CC1;(2)若,求二面角C﹣AB 1﹣A1的正弦值.19.(12.00分)为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件最为样本,测量其直径后,整理得到下表:经计算,样本的平均值μ=65,标准差=2.2,以频率值作为概率的估计值.(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ﹣σ<X≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.(2)将直径小于等于μ﹣2σ或直径大于μ+2σ的零件认为是次品(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望E(Y);(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望E(Z).20.(12.00分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.21.(12.00分)已知函数,且函数f(x)的图象在点(1,﹣e)处的切线与直线x+(2e+1)y﹣1=0垂直.(1)求a,b;(2)求证:当x∈(0,1)时,f(x)<﹣2.[选修4-4:极坐标与参数方程选讲](本小题满分10分)22.(10.00分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B,求|PA|+|PB|的最小值.[选修4-5:不等式选讲](本小题满分0分)23.已知a>0,b>0,函数f(x)=|x﹣a|+|x+b|的最小值为2.(1)求a+b的值;(2)证明:a2+a>2与b2+b>2不可能同时成立.2017-2018学年河南省南阳市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知:如图,集合U为全集,则图中阴影部分表示的集合是()A.∁U(A∩B)∩C B.∁U(B∩C)∩A C.A∩∁U(B∪C)D.∁U(A∪B)∩C 【分析】阴影部分所表示的为在集合B中但不在集合A中的元素构成的部分,即在B中且在A的补集中.【解答】解:阴影部分所表示的为在集合A中但不在集合B,C中的元素构成的,故阴影部分所表示的集合可表示为A∩∁U(B∪C),故选:C.【点评】本题考查利用集合运算表示韦恩图中的集合、考查韦恩图是研究集合关系的常用工具.2.已知1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,则a+b=()A.﹣1 B.1 C.﹣3 D.3【分析】利用实系数方程的虚根成对定理,列出方程组,求出a,b即可.【解答】解:1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,一元二次方程虚根成对(互为共轭复数)..得:a=1,b=﹣2,a+b=﹣1.故选:A.【点评】本题考查实系数方程成对定理的应用,考查计算能力.3.已知双曲线C的一条渐近线的方程是:y=2x,且该双曲线C经过点,则双曲线C的方程是()A.B.C.D.【分析】设出双曲线方程代入点的坐标,然后求解双曲线方程即可.【解答】解:由题可设双曲线的方程为:y2﹣4x2=λ,将点代入,可得λ=﹣4,整理即可得双曲线的方程为.故选:D.【点评】本题考查双曲线的简单性质的应用以及双曲线方程的求法,考查计算能力.4.已知:f(x)=asinx+bcosx,,若函数f(x)和g(x)有完全相同的对称轴,则不等式g(x)>2的解集是()A.B.C.D.【分析】若函数f(x)和g(x)有完全相同的对称轴,则这两个函数的周期是一样的,即ω=1.通过解不等式g(x)>2求得x的取值范围.【解答】解:由题意知,函数f(x)和g(x)的周期是一样的,故ω=1,不等式g(x)>2,即,解之得:.故选:B.【点评】考查了正弦函数的对称性.根据函数的对称性求、求出ω是解决本题的关键.5.已知各项均为正数的等比数列{a n},a3•a5=2,若f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),则f'(0)=()A.B.C.128 D.﹣128【分析】令f(x)=x•g(x),其中g(x)=(x﹣a1)(x﹣a2)…(x﹣a7),利用函数的导数求解即可.【解答】解:令f(x)=x•g(x),其中g(x)=(x﹣a1)(x﹣a2)…(x﹣a7),则f'(x)=g(x)+x•g'(x),故,各项均为正数的等比数列{a n},a3•a5=2,,故.故选:B.【点评】本题考查函数的导数的应用,数列的简单性质的应用,考查转化思想以及计算能力.6.已知:,则目标函数z=2x﹣3y()A.z max=﹣7,z min=﹣9 B.,z min=﹣7C.z max=﹣7,z无最小值D.,z无最小值【分析】画出可行域,利用目标函数的几何意义,求解函数的最值即可.【解答】解:画出的可行域,如图:A(0,3),,C(4,5),目标函数z=2x﹣3y经过C时,目标函数取得最大值,z max=﹣7,没有最小值.故选:C.【点评】本题考查线性规划的简单应用,目标函数的最值考查数形结合的应用,是基础题.7.设f(x)=e1+sinx+e1﹣sinx,x1、,且f(x1)>f(x2),则下列结论必成立的是()A.x1>x2B.x1+x2>0 C.x1<x2D.>【分析】根据条件判断函数是偶函数,结合条件判断函数的单调性,进行判断即可.【解答】解:f(x)=f(﹣x),故f(x)是偶函数,而当时,f'(x)=cosx•e1+sinx﹣cosx•e1﹣sinx=cosx•(e1+sinx﹣e1﹣sinx)>0,即f(x)在是单调增加的.由f(x1)>f(x2),可得f(|x1|)>f(|x2|),即有|x1|>|x2|,即,故选:D.【点评】本题主要考查函数单调性的应用,根据条件判断函数的奇偶性和单调性是解决本题的关键.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=()A.10πB.C.D.12π【分析】判断三视图复原的几何体的形状,通过已知的三视图的数据,求出该多面体的外接球的表面积.【解答】解析:该多面体如图示,外接球的半径为AG,HA为△ABC外接圆的半径,HG=1,,故,∴该多面体的外接球的表面积.故选:B.【点评】本题考查多面体的外接球的表面积的求法,考查空间几何体三视图、多面体的外接球等基础知识,考查空间想象能力、运算求解能力,考查函数与方程思想,是中档题.9.执行如图的程序框图,若输出S的值是2,则a的值可以为()A.2014 B.2015 C.2016 D.2017【分析】根据题意,模拟程序框图的运行过程,根据输出的S值即可得出该程序中a的值.【解答】解:模拟程序的运行,可得:S=2,k=0;满足条件k<a,执行循环体,可得:S=﹣1,k=1;满足条件k<a,执行循环体,可得:,k=2;满足条件k<a,执行循环体,可得:S=2,k=3;…,∴S的值是以3为周期的函数,当k的值能被3整除时,不满足条件,输出S的值是2,a的值可以是2016.故选:C.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,从而得出正确的结论,是基础题.10.我们把顶角为36°的等腰三角形称为黄金三角形.其作法如下:①作一个正方形ABCD;②以AD的中点E为圆心,以EC长为半径作圆,交AD延长线于F;③以D为圆心,以DF长为半径作⊙D;④以A为圆心,以AD长为半径作⊙A交⊙D于G,则△ADG为黄金三角形.根据上述作法,可以求出cos36°=()A.B.C.D.【分析】根据做法,图形如图所示,△ADG即为黄金三角形,不妨假设AD=AG=2,则,由余弦定理即可求出【解答】解:根据做法,图形如图所示,△ADG即为黄金三角形,不妨假设AD=AG=2,则,由余弦定理可得cos36°==故选:B.【点评】本题考查了黄金三角形的定义作法和余弦定理,属于中档题11.已知抛物线E:y2=2px(p>0),过其焦点F的直线l交抛物线E于A、B=﹣tan∠AOB,则p的值是()两点(点A在第一象限),若S△OABA.2 B.3 C.4 D.5【分析】利用三角形的面积推出,设A(x1,y1),B(x2,y2),则x1x2+y1y2=﹣3,通过,代入求解即可.【解答】解:,即,不妨设A(x1,y1),B(x2,y2),则x1x2+y1y2=﹣3,即有,又因为,故:p=2.故选:A.【点评】本题考查抛物线的简单性质的应用,直线与抛物线的位置关系的应用,是中档题.12.已知:m>0,若方程有唯一的实数解,则m=()A.B.C.D.1【分析】方法一:验证,当时,f(x)=lnx与g(x)=x2﹣x在点(1,0)处有共同的切线,即可;方法二:将方程整理得,设,则由题意,直线是函数f(x)的一条切线,不妨设切点为(x0,y0),列出方程组求解即可.【解答】解:方法一:验证,当时,f(x)=lnx与g(x)=x2﹣x在点(1,0)处有共同的切线y=x﹣1.方法二:将方程整理得,设,则由题意,直线是函数f(x)的一条切线,不妨设切点为(x0,y0),则有:,解之得:x0=1,y0=1,.故选:B.【点评】本题考查函数与方程的应用,求出方程的平方,直线与抛物线的位置关系的应用.二、填空题:13. 1.028≈ 1.172(小数点后保留三位小数).【分析】根据1.028=(1+0.02)8,利用二项式定理展开,可得它的近似值.【解答】解:1.028=(1+0.02)8=+++×0.023+…+≈=+++×0.023=1+8×0.02+28×0.0004+56×0.000008=1.172,故答案为:1.172【点评】本题主要考查二项式定理的应用,属于基础题.14.已知向量=(1,2),=(﹣2,﹣4),||=,若(+)=,则与的夹角为.【分析】设=(x,y),根据题中的条件求出x+2y=﹣,即=﹣,再利用两个向量的夹角公式求出cosθ的值,由此求得θ的值.【解答】解:设=(x,y),由向量=(1,2),=(﹣2,﹣4),||=,且(+)=,可得﹣x﹣2y=,即有x+2y=﹣,即=﹣,设与的夹角为等于θ,则cosθ===﹣.再由0≤θ≤π,可得θ=,故答案为:.【点评】本题主要考查两个向量的夹角公式的应用,求出=﹣是解题的关键,属于中档题15.已知:,则cos2α+cos2β的取值范围是.【分析】由已知利用二倍角公式化简可求cos2α+cos2β=3(cosβ﹣sinα),由,得sinα的范围,从而可求,进而得解.【解答】解:∵,∴cos2α+cos2β=1﹣2sin2α+2cos2β﹣1=2(sinα+cosβ)(cosβ﹣sinα)=3(cosβ﹣sinα),∵由,得,,易得:,∴,∴.故答案为:.【点评】本题主要考查了二倍角公式在三角函数化简求值中的应用,考查了正弦函数的性质及其应用,考查了计算能力和转化思想,属于基础题.16.在四边形ABCD中,∠ABC=90°,,△ACD为等边三角形,则△ABC的外接圆与△ACD的内切圆的公共弦长=1.【分析】以AC为x轴,AC的中点为坐标原点建立坐标系,分别求出△ABC的外接圆与△ACD的内切圆的方程,联立求得交点,利用两点间的距离公式求得两圆公共弦长.【解答】解:以AC为x轴,AC的中点为坐标原点建立坐标系,则A(﹣1,0),C(1,0),B(0,1),D(0,﹣),∴△ABC的外接圆的方程x2+y2=1,①△ACD的内切圆方程为,即,②联立①②可得两圆交点坐标为(,﹣),(,﹣),∴两圆的公共弦长为.故答案为:1.【点评】本题考查圆的方程的求法,考查圆与圆位置关系的应用,是中档题.三、解答题:17.(12.00分)已知数列{a n}的前n项和为S n,且满足a n=2S n+1(n∈N*).(1)求数列{a n}的通项公式;(2)若b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.【分析】(1)当n=1时计算可知a1=﹣1,当n≥2时将a n=2S n+1与a n﹣1=2S n﹣1+1作差可知a n=﹣a n﹣1,进而可知数列{a n}是首项为﹣1,公比为﹣1的等比数列;(2)通过(1)可知,分n为奇偶两种情况讨论即可.【解答】解:(1)当n=1时,a1=2S1+1=2a1+1,解得a1=﹣1.当n≥2时,有:a n=2S n+1,a n﹣1=2S n﹣1+1,两式相减、化简得a n=﹣a n﹣1,所以数列{a n}是首项为﹣1,公比为﹣1的等比数列,从而.(2)由(1)得,当n为偶数时,b n+b n=2,;﹣1当n为奇数时,n+1为偶数,T n=T n+1﹣b n+1=(n+1)﹣(2n+1)=﹣n.所以数列{b n}的前n项和.【点评】本题考查数列的通项公式和前n项和公式,考查分类讨论的思想,注意解题方法的积累,属于中档题.18.(12.00分)如图1,在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,现把平行四边形ABB1A11沿CC1折起如图2所示,连接B1C、B1A、B1A1.(1)求证:AB1⊥CC1;(2)若,求二面角C﹣AB 1﹣A1的正弦值.【分析】(1)取CC1的中点O,连接OA,OB1,AC1,说明AO⊥CC1,OB1⊥CC1,推出CC1⊥平面OAB1,然后证明AB1⊥CC1;(2)证明AO⊥OB1,以O为原点,以OC,OB1,OA为x,y,z轴建立空间直角坐标系,求出平面AB1C的法向量,平面A1B1A的法向量,利用空间向量的数量积求解二面角C﹣AB1﹣A1的正弦值即可.【解答】证明:(1)取CC1的中点O,连接OA,OB1,AC1,∵在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,∴△ACC1,△BCC1为正三角形,则AO⊥CC1,OB1⊥CC1,又∵AO∩OB1=O,∴CC1⊥平面OAB1,∵AB1⊂平面OAB1∴AB1⊥CC1;…4分(2)∵∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,∴AC=2,,∵,则,则三角形AOB1为直角三角形,则AO⊥OB1,…6分以O为原点,以OC,OB1,OA为x,y,z轴建立空间直角坐标系,则C(1,0,0),B1(0,,0),C1(﹣1,0,0),A(0,0,),则则,=(0,,),=(1,0,),设平面AB 1C的法向量为,则,令z=1,则y=1,,则,设平面A 1B1A的法向量为,则,令z=1,则x=0,y=1,即,…8分则…10分∴二面角C﹣AB1﹣A1的正弦值是.…12分.【点评】本题考查二面角的平面角的求法,直线与平面垂直的判定定理以及性质定理的应用,考查计算能力与空间想象能力.19.(12.00分)为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件最为样本,测量其直径后,整理得到下表:经计算,样本的平均值μ=65,标准差=2.2,以频率值作为概率的估计值.(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ﹣σ<X≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.(2)将直径小于等于μ﹣2σ或直径大于μ+2σ的零件认为是次品(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望E(Y);(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望E(Z).【分析】(Ⅰ)利用条件,可得设备M的数据仅满足一个不等式,即可得出结论;(Ⅱ)易知样本中次品共6件,可估计设备M生产零件的次品率为0.06.(ⅰ)由题意可知Y~B(2,),于是E(Y)=2×=;(ⅱ)确定Z的取值,求出相应的概率,即可求出其中次品个数Z的数学期望E (Z).【解答】解:(Ⅰ)P(μ﹣σ<X≤μ+σ)=P(62.8<X≤67.2)=0.8≥0.6826,P(μ﹣2σ<X≤μ+2σ)=P(60.6<X≤69.4)=0.94≥0.9544,P(μ﹣3σ<X≤μ+3σ)=P (58.4<X≤71.6)=0.98≥0.9974,因为设备M的数据仅满足一个不等式,故其性能等级为丙;…(4分)(Ⅱ)易知样本中次品共6件,可估计设备M生产零件的次品率为0.06.(ⅰ)由题意可知Y~B(2,),于是E(Y)=2×=;…(8分)(ⅱ)由题意可知Z的分布列为故E(Z)=0×+1×+2×=.…(12分)【点评】本题考查概率的计算,考查正态分布曲线的特点,考查数学期望,考查学生的计算能力,属于中档题.20.(12.00分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.【分析】(1)运用椭圆的离心率公式和过焦点垂直于对称轴的弦长,结合a,b,c的关系解得a,b,可得椭圆的方程;(II)方法一、(i)讨论直线AB的斜率为0和不为0,设A(x1,y1),B(x2,y2),AB方程为x=my﹣2,代入椭圆方程,运用韦达定理和判别式大于0,运用直线的斜率公式求斜率之和,即可得证;(ii)求得△MNF的面积,化简整理,运用基本不等式可得最大值.方法二、(i)由题知,直线AB的斜率存在,设直线AB的方程为:y=k(x+2),设A(x1,y1),B(x2,y2),联立椭圆方程,消去y,可得x的方程,运用韦达定理和判别式大于0,再由直线的斜率公式,求得即可得证;(ii)求得弦长|MN|,点F到直线的距离d,运用三角形的面积公式,化简整理,运用换元法和基本不等式,即可得到所求最大值.【解答】解:(1)由题意可得,令x=﹣c,可得y=±b=±,即有,又a2﹣b2=c2,所以.所以椭圆的标准方程为;(II)方法一、(i)当AB的斜率为0时,显然∠AFM=∠BFN=0,满足题意;当AB的斜率不为0时,设A(x1,y1),B(x2,y2),AB方程为x=my﹣2,代入椭圆方程,整理得(m2+2)y2﹣4my+2=0,则△=16m2﹣8(m2+2)=8m2﹣16>0,所以m2>2.,可得==.则k MF+k NF=0,即∠AFM=∠BFN;(ii)当且仅当,即m2=6.(此时适合△>0的条件)取得等号.则三角形MNF面积的最大值是.方法二(i)由题知,直线AB的斜率存在,设直线AB的方程为:y=k(x+2),设A(x1,y1),B(x2,y2),联立,整理得(1+2k2)x2+8k2x+8k2﹣2=0,则△=64k4﹣4(1+2k2)(8k2﹣2)=8﹣16k2>0,所以.,可得=∴k MF+k NF=0,即∠AFM=∠BFN;(ii),点F(﹣1,0)到直线MN的距离为,即有==.令t=1+2k2,则t∈[1,2),u(t)=,当且仅当,即(此时适合△>0的条件)时,,即,则三角形MNF面积的最大值是.【点评】本题考查椭圆的方程的求法,注意运用离心率公式和过焦点垂直于对称轴的弦长,考查直线和椭圆方程联立,运用韦达定理和判别式大于0,以及直线的斜率公式,考查基本不等式的运用:求最值,属于中档题.21.(12.00分)已知函数,且函数f(x)的图象在点(1,﹣e)处的切线与直线x+(2e+1)y﹣1=0垂直.(1)求a,b;(2)求证:当x∈(0,1)时,f(x)<﹣2.【分析】(1)由f(1)=﹣e,得a﹣b=﹣1,由f'(1)=2e+1,得到a﹣4b=2,由此能求出a,b.(2)f(x)<﹣2,即证,令g(x)=(2﹣x3)e x,,由此利用导数性质能证明f(x)<﹣2.【解答】解:(1)因为f(1)=﹣e,故(a﹣b)e=﹣e,故a﹣b=﹣1①;依题意,f'(1)=2e+1;又,故f'(1)=e(4a﹣b)+1=2e+1,故4a﹣b=2②,联立①②解得a=1,b=2;(2)由(1)得,要证f(x)<﹣2,即证;令g(x)=(2﹣x3)e x,,g'(x)=﹣e x(x3+3x2﹣2)=﹣e x(x+1)(x2+2x﹣2)令g'(x)=0,因为x∈(0,1),e x>0,x+1>0,故,所以g(x)在上单调递增,在单调递减.而g(0)=2,g(1)=e,当时,g(x)>g(0)=2当时,g(x)>g(1)=e故当x∈(0,1)时,g(x)>2;而当x∈(0,1)时,,故函数所以,当x∈(0,1)时,ϕ(x)<g(x),即f(x)<﹣2.【点评】本题考查导数的应用,考查导数的几何意义,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.[选修4-4:极坐标与参数方程选讲](本小题满分10分)22.(10.00分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B,求|PA|+|PB|的最小值.【分析】(I)利用x=ρcosθ,y=ρsinθ可将圆C极坐标方程化为直角坐标方程;(II)先根据(I)得出圆C的普通方程,再根据直线与交与交于A,B两点,可以把直线与曲线联立方程,用根与系数关系结合直线参数方程的几何意义,表示出|PA|+|PB|,最后根据三角函数的性质,即可得到求解最小值.【解答】解:(Ⅰ)由ρ=6sinθ得ρ2=6ρsinθ,化为直角坐标方程为x2+y2=6y,即x2+(y﹣3)2=9.(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得t2+2(cosα﹣s inα)t﹣7=0.由△=(2cosα﹣2sinα)2+4×7>0,故可设t1,t2是上述方程的两根,所以,又直线l过点(1,2),故结合t的几何意义得|PA|+|PB|=|t1|+|t2|=|t1﹣t2|====2.所以|PA|+|PB|的最小值为2.【点评】此题主要考查参数方程的优越性,及直线与曲线相交的问题,在此类问题中一般可用联立方程式后用韦达定理求解即可,属于综合性试题有一定的难度.[选修4-5:不等式选讲](本小题满分0分)23.已知a>0,b>0,函数f(x)=|x﹣a|+|x+b|的最小值为2.(1)求a+b的值;(2)证明:a2+a>2与b2+b>2不可能同时成立.【分析】(1)运用绝对值不等式的性质可得f(x)的最小值为a+b,即可得到所求最小值;(2)运用反证法,结合二次不等式的解法,即可得证.【解答】解:(1)∵a>0,b>0,∴f(x)=|x﹣a|+|x+b|≥|(x﹣a)﹣(x+b)|=|a+b|=a+b,∴f(x)min=a+b,由题设条件知f(x)min=2,∴a+b=2;证明:(2)∵a+b=2,而,故ab≤1.假设a2+a>2与b2+b>2同时成立.即(a+2)(a﹣1)>0与(b+2)(b﹣1)>0同时成立,∵a>0,b>0,则a>1,b>1,∴ab>1,这与ab≤1矛盾,从而a2+a>2与b2+b>2不可能同时成立.【点评】本题考查绝对值不等式的性质以及不等式的证明,考查反证法的运用,以及运算能力和推理能力,属于中档题.。
一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a ;以D 为起点,其余顶点为终点的向量分别为12345,,,,d d d d d .若,m M 分别为()()i j k r s t a a a d d d ++⋅++的最小值、最大值,其中{,,}{1,2,3,4,5}i j k ⊆,{,,}{1,2,3,4,5}r s t ⊆,则,m M 满足( )A .0,0m M =>B .0,0m M <>C .0,0m M <=D .0,0m M <<【答案】D .3 .(2013年普通高等学校招生统一考试浙江数学(理))设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P 00∙≥∙.则 ( )A .090=∠ABCB .090=∠BAC C .AC AB =D .BC AC =【答案】D4 .(2013年普通高等学校招生统一考试福建数学(理))在四边形ABCD中,(1,2)AC =,(4,2)BD =-,则四边形的面积为 ( )A B .C .5D .10【答案】C5 .(2013年普通高等学校招生统一考试安徽数学(理))在平面直角坐标系中,O 是坐标原点,两定点,A B 满足2,OA OB OA OB ===则点集{}|,1,,P O P O A O B Rλμλμλμ=++≤∈所表示的区域的面积是 ( )A .B .C .D .【答案】D6 .(2013年普通高等学校招生统一考试重庆数学(理))在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+.若12OP <,则OA 的取值范围是 ( )A .0,2⎛ ⎝⎦B .,22⎛⎝⎦C .2⎛⎝ D .2⎛⎝【答案】D7 .(2013年高考湖南卷(理))已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是( )A.⎤⎦B.⎤⎦C.1⎡⎤⎣⎦D.1⎡⎤⎣⎦【答案】A9 .(2013年高考湖北卷(理))已知点()1,1A -.()1,2B .()2,1C --.()3,4D ,则向量AB在CD 方向上的投影为( )ABC.D. 【答案】A [12.(2013年普通高等学校招生统一考试山东数学(理))已知向量AB 与AC 的夹角为120°,且3AB =,2AC =,若AP AB AC λ=+,且AP BC ⊥, 则实数λ的值为__________.【答案】71214.(2013年高考北京卷(理))向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R),则λμ=_________.【答案】416.(2013年普通高等学校招生全国统一招生考试江苏卷)设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若21λλ+= (21λλ,为实数),则21λλ+的值为__________.【答案】1217.(2013年高考四川卷(理))在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_________.【答案】218.(2013年高考江西卷(理))设1e ,2e 为单位向量.且1e ,2e 的夹角为3π,若123a e e =+,12b e =,则向量a 在b 方向上的射影为 ___________【答案】5219.(2013年普通高等学校招生统一考试天津数学(理))在平行四边形ABCD 中, AD = 1,60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为______.【答案】12【答案】 A3.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( )A. 5B.10 C .2 5D .10【解析】 ∵a =(x,1),b =(1,y ),c =(2,-4), 由a ⊥c 得a ·c =0,即2x -4=0,∴x =2. 由b ∥c 得1×(-4)-2y =0,∴y =-2. ∴a =(2,1),b =(1,-2). ∴a +b =(3,-1),∴|a +b |=32+(-1)2=10.【答案】 B4.(2013·长沙质检)在△ABC 中,AB =2,AC =3,AB →·BC →=1,则BC =( )A. 3B.7 C .2 2D.23【解析】 ∵AB →·BC →=1,且AB =2, ∴1=|AB →||BC →|cos(π-B ),∴|BC →|cos B =-12.在△ABC 中,|AC |2=|AB |2+|BC |2-2|AB ||BC |cos B , 即9=4+|BC |2-2×2×(-12).∴|BC |= 3. 【答案】 A5.(2013·广东高考)设a 是已知的平面向量且a ≠0.关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μ c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μ c ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μ c . 上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是( )A .1B .2C .3D .4【解析】 显然命题①②是正确的.对于③,以a 的终点作长度为μ的圆,这个圆必须和向量λb 有交点,这个不一定能满足,③是错的,对于命题④,若λ=μ=1,|a |>2时,与|a |=|b +c |≤|b |+|c |=2矛盾,则④不正确.【答案】 B 二、填空题6.(2013·课标全国卷Ⅰ)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b ,若b ·c =0,则t =________.【解析】 ∵c =t a +(1-t )b ,且〈a ,b 〉=60°,∴c·b =t a·b +(1-t )·b 2=t ×1×1×cos 60°+(1-t )×12=0, 则1-12t =0,∴t =2. 【答案】 27.(2013·南京调研)如图2-3-2所示,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.图2-3-2【解析】 以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立平面直角坐标系,则A (0,0),B (2,0),E (2,1),F (x,2).故AB →=(2,0),AF →=(x,2),AE →=(2,1),BF →=(x -2,2).∴AB →·AF →=(2,0)·(x,2)=2, 则2x =2,∴x =1.因此AE →·BF →=(2,1)·(1-2,2)= 2. 【答案】28.(2013·浙江高考)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于________.【解析】 根据题意,得⎝ ⎛⎭⎪⎫|x ||b |2=x 2(x e 1+y e 2)2=x 2(x e 1)2+(y e 2)2+2xy e 1·e 2=x 2x 2+y 2+2xy cos π6=x 2x 2+y 2+3xy=11+⎝ ⎛⎭⎪⎫y x 2+3y x=1⎝ ⎛⎭⎪⎫y x +322+14.因为(y x +32)2+14≥14,所以0<⎝ ⎛⎭⎪⎫|x ||b |2≤4,所以0<|x ||b |≤2.故|x ||b |的最大值为2.【答案】 2 三、解答题9.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP →=2P A →,且OQ →·AB →=1,求P 点的轨迹方程.【解】 设A (x 0,0)(x 0>0),B (0,y 0)(y 0>0), ∵P (x ,y )与Q 关于y 轴对称,∴Q (-x ,y ), 由BP →=2P A →,即(x ,y -y 0)=2(x 0-x ,-y ),可得⎩⎨⎧x 0=32xy 0=3y(x ,y >0).又OQ →=(-x ,y ),AB →=(-x 0,y 0)=(-32x,3y ). ∵OQ →·AB →=1,∴32x 2+3y 2=1(x >0,y >0).∴点P 的轨迹方程为32x 2+3y 2=1(x >0,y >0).10.已知向量a =(cos 32x ,sin 32x ),b =(cos x 2,-sin x 2),且x ∈[0,π2].求:(1)a·b及|a+b|;(2)若f(x)=a·b-2λ|a+b|的最小值为-32,求正实数λ的值.【解】(1)a·b=cos 32x·cosx2-sin32x sinx2=cos 2x.∵a+b=(cos 32x+cosx2,sin32x-sinx2),∴|a+b|2=(cos 32x+cosx2)2+(sin 32x-sinx2)2=2+2(cos 32x cosx2-sin32x sinx2)=2+2cos 2x=4cos2x.∵x∈[0,π2],∴cos x≥0,因此|a+b|=2cos x.(2)由(1)知f(x)=cos 2x-4λcos x=2cos2x-4λcos x-1,∴f(x)=2(cos x-λ)2-1-2λ2,cos x∈[0,1].①若0<λ≤1,则当cos x=λ时,f(x)有最小值-1-2λ2=-3 2,解得λ=1 2.②若λ>1,则当cos x=1时,f(x)有最小值1-4λ=-3 2,解得λ=58与λ>1矛盾.综合①②知,λ=12为所求.11.(2013·济南模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos A2=255,AB→·AC→=3.(1)求△ABC 的面积;(2)若c =1,求a ,sin B 的值.【解】 (1)∵cos A =2cos 2A 2-1=2×(255)2-1=35, 而AB →·AC →=|AB →|·|AC →|·cos A =35bc =3, ∴bc =5.又A ∈(0,π),∴sin A =45,∴△ABC 的面积S △ABC =12bc sin A =12×5×45=2. (2)由(1)知bc =5,而c =1,∴b =5.∴a 2=b 2+c 2-2bc cos A =52+12-2×1×5×35=20,∴a =2 5.又a sin A =bsin B , ∴sin B =b ·sin A a =525×45=255. 2. 【江西九江市都昌一中 湖口中学 彭泽一中 瑞昌一中 修水一中 永修一中 德安一中2014届高三七校联考】设非零向量c b a ,,===+,则〉〈b a ,sin =A .12-B .12CD .3. 【江西九江市都昌一中 湖口中学 彭泽一中 瑞昌一中 修水一中 永修一中 德安一中2014届高三七校联考】(12分)斜三棱柱11B CA OAB -,其中向量,,OA a OB b OC c ===,三个向量之间的夹角均为3π,点,M N 分别在11,BA CA 上且111,2CM MA BN NA ==,2,2,OA OB OC == =4,如右图(Ⅰ)把向量AM 用向量,a c 表示出来,并求AM ; (Ⅱ)把向量ON 用,,a b c 表示; (Ⅲ)求AM 与ON 所成角的余弦值。
精品题库试题文数1.(安徽省合肥市2014届高三第二次教学质量检测) 设,,则在上的投影的取值范围是()A.B.C.D.[解析] 1.因为,所以,,又,则,所以,因为,所以.2.(广东省汕头市2014届高三三月高考模拟)如图1,在ΔABC中,若则()A. B. C. D.[解析] 2.因为,所以,因为.3.(山西省太原市2014届高三模拟考试)过双曲线的左焦点F(-c,0)(c>0), 作圆的切线,切点为E,延长FE交曲线右支于点P,若, 则双曲线的离心率为A.B. C.D.[解析] 3.因为,所以为的中点,令右焦点为,则为的中点,则,因为为切点,所以,,因为,所以,在中,,即,所以.4.(吉林省实验中学2014届高三年级第一次模拟考试) 在中,D是AB中点,E是AC 中点,CD与BE交于点F, 设,则为()A.B.C.D.[解析] 4.由题意知为中线和的交点,所以为的重心,得,,又,所以.5.(重庆一中2014年高三下期第一次月考) 向量,若的夹角为钝角,则的取值范围为()A B C D[解析] 5.因为的夹角为钝角,所以且,解得且.6.(河北省唐山市2014届高三第一次模拟考试)已知向量=(1, x ) ,=(x-1,2), 若∥, 则x=A.-1或2 B.-2或1C.1或2 D.-1或-2[解析] 6.因为,所以,解得或.7.(福建省福州市2014届高三毕业班质检) 在中,, 则下列等式成立的是 ( )A.B.C.D.[解析] 7.因为,所以,解得.8.(吉林省长春市2014届高中毕业班第二次调研测试) 已知向量, ,, 若为实数,,则的值为A.B.C.D.[解析] 8.,,又,所以,即,解得.9.(福建省政和一中、周宁一中2014届高三第四次联考)在中, , ,为的中点 , 则=()A.3 B. C.-3 D.[解析] 9.因为,所以10.(福建省政和一中、周宁一中2014届高三第四次联考)已知,,,若与共线,则等于( )A.5 B.1C. D.[解析] 10.因为,所以,得11.(广东省中山市2013-2014学年第一学期高三期末考试) 已知平面向量,,若∥,则等于( )A.B.C.D.[解析] 11.因为,所以12.(河北衡水中学2014届高三上学期第五次调研)已知向量a,b,c满足,,则的最小值为()A.B. C. D.[解析] 12.设,因为,所以可设,,则,整理得,所以的最小值为13.(河南省郑州市2014届高中毕业班第一次质量预测) 已知向量a是与单位向量夹角为的任意向量,则对任意的正实数t, 的最小值是A. 0B.C.D. 1[解析] 13.不妨设在上,如图所示,由的最小值为点到直线的距离,即14.(江西省七校2014届高三上学期第一次联考) 已知向量与垂直,则实数的值为()A. B. C. D.[解析] 14.因为,,,所以,即15.(2014年陕西省宝鸡市高三数学质量检测)设为向量。
2016级高二期末考试试卷理科数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.i 为虚数单位,则2013i = ( )A .i -B .1-C .iD .1 2.若()e x f x x =,则(1)f '=( )A .0B .eC .2eD .2e3.已知双曲线2219x y m-=的一个焦点坐标是()5,0,则双曲线的渐近线方程是 ( )A .34y x =±B .43y x =±C.y x = D.y x = 4.下列叙述:①若两条直线平行,则它们的方向向量方向相同或相反;②若两个向量均为同一个平面的法向量,则以这两个向量为方向向量的直线一定平行; ③若一条直线的方向向量与某一个平面的法向量垂直,则该直线与这个平面平行. 其中正确的个数是 ( ) A .0个 B .1个 C .2个 D .3个5.学校体育场南侧有4个大门,北侧有3个大门,西侧有2个大门,某学生到该体育场训练,但必须是从南或北门进入,从西门或北门出去,则他进出门的方案有( )A .7个B .12个C .24个D .35个 6.下列推理中属于归纳推理且结论正确的是( )A .设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =B .由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D .由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +>7.已知函数32()393f x x x x =--+,若函数()()g x f x m =-在[]2,5x ∈-上有3个零点,则m 的取值范围为( ) A .(-24,8)B .(-24,1]C .[1,8]D .[1,8)8.抛物线22(0)y px p =>的焦点为F ,已知点,A B 为抛物线上的两个动点,且满足90AFB ∠=.过弦AB的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为ABC .1D二、 75分,共35分.9.204sin xdx π=⎰10.已知01a <<,复数z 的实部为a ,虚部为1,则复数z 对应的点Z 到原点距离的取值范围是 11.曲线C :ln xy x=在点(1,0)处的切线方程是 . 12.棱长均为3的三棱锥S ABC -,若空间一点P 满足(1)SP xSA ySB zSC x y z =++++=,则SP 的最小值为 .13.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是 .14.椭圆22:143x y C +=的左、右顶点分别为12A A 、,点P 在椭圆C 上,记直线2PA 的斜率为2k ,直线1PA 的斜率为1k ,则 1k ·2k = . 15.函数2()ln(1)f x x a x =++有两个不同的极值点12,x x ,且12x x <,则实数a 的范围是 三、解答题:本大题共6个小题,共75分,解答题写出文字说明、证明过程或演算步骤.16.(本小题满分12分) 设p :实数x 满足22430x ax a -+<, :q 实数x 满足31x -<. (1)若1,a =且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围. 17.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=︒,12AC BC CC ===. (1)求证:11AB BC ⊥;(2)求二面角111C AB A --的大小.18.(本小题满分12分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的关系式()2462m y x x =+--,其中26x <<,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数). 19.(本小题满分13分)设数列{}n a 的前n 项和为n S (即123n n S a a a a =++++),且方程20n n x a x a --=有一根为n S -1,n =1,2,3…….(1)求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法给出严格的证明.20.(本小题满分13分)已知椭圆C :22221x y a b +=(0)a b >>2.(1)求椭圆C 的方程;(2)过点M (0,13-)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以A B 为直径的圆恒过定点T ?若存在,求出点T 的坐标;若不存在,请说明理由. 21.(本小题满分13分)已知),1ln()(+=x x f bx ax x g +=221)( (1)若0=a ,1=b 时,求证:0)()(≤-x g x f 对于),1(+∞-∈x 恒成立; (2)若2=b ,且)()1()(x g x f x h --=存在单调递减区间,求a 的取值范围;(3)利用(1)的结论证明:若y x <<0,则2ln )(ln ln yx y x y y x x ++>+.CCBBDADA 9.4 10.()1,2 11.1y x =- 12.6 13.24 14.-34 15.10,2⎛⎫⎪⎝⎭16.解:(1). 由22430x ax a -+<得(3)()0x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.……………2分由31x -<, 得131x -<-<, 得24x <<即q 为真时实数x 的取值范围是24x <<,……4分 若p q ∧为真,则p 真且q 真,所以实数x 的取值范围是23x <<.……6分(2) 由22430x ax a -+<得(3)()0x a x a --< p ⌝是q ⌝的充分不必要条件,即p ⌝⇒q ⌝,且q ⌝⇒/p ⌝, ……………8分设A ={|}x p ⌝,B ={|}x q ⌝,则AB ,又A ={|}x p ⌝={|3}x x a x a ≤≥或, B ={|}x q ⌝={x|x≥4或x≤2},……………10分 则02a <≤,且34a ≥所以实数a 的取值范围是423a ≤≤12分 17.解::方法一:(1)∵11,AC BC AC CC BCCC C ⊥⊥=且∴11AC C CBB ⊥平面,又111BC C CBB ⊂平面∴1111,,AC BC B C BC AC B C C ⊥⊥=且 ∴1111BC AB C AB AB C ⊥⊂平面,又平面 ∴11AB BC ⊥(2)取11A B 的中点为H ,在平面11A ABB 内过H 作1HQ AB ⊥于点Q ,连接1C Q 则111C H A ABB ⊥平面,∴11C H AB ⊥,而1C H HQ H =∴1111AB C HQ AB C Q ⊥∴⊥平面,∴1C QH ∠是二面角111C AB A --的平面角,又1162C H A AB HQ ==,在内,解得∴111tan 3,60C HC QH C QH HQ∠==∠=︒∴二面角111C AB A --为60°.18.解:(1)因为4x =时,21y =, 代入关系式()2462m y x x =+--,得16212m +=, 解得10m =.……………………4分 (2)由(1)可知,套题每日的销售量()210462y x x =+--,……………5分 所以每日销售套题所获得的利润()()()()()223210()24610462456240278262f x x x x x x x x x x ⎡⎤=-+-=+--=-+-<<⎢⎥-⎣⎦……………………8分从而()()()()2'121122404310626f x x x x x x =-+=--<<.令()'0f x =,得103x =,且在102,3⎛⎫ ⎪⎝⎭上,0)('>x f ,函数)(x f 单调递增;在10,63⎛⎫⎪⎝⎭上,0)('<x f ,函数)(x f 单调递减, ……………………10分所以103x =是函数)(x f 在()2,6内的极大值点,也是最大值点,所以当103.33x =≈时,函数)(x f 取得最大值. 故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大. …………………12分19.解:(1)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.……………3分当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝⎛⎭⎫a 2-122-a 2⎝⎛⎭⎫a 2-12-a 2=0,解得a 2=16.……5分 (2)由题设(S n -1)2-a n (S n -1)-a n =0,即S 2n -2S n +1-a n S n =0. 当n ≥2时,a n =S n -S n -1,代入上式得S n -1S n -2S n +1=0.① 由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3…. ……………7分下面用数学归纳法证明这个结论. (ⅰ)n =1时已知结论成立.……………8分(ⅱ)假设n =k (k ≥1,k ∈N *)时结论成立,即S k =kk +1,当n =k +1时,由①得S k +1=12-S k,……………10分 即S k +1=k +1k +2,故n =k +1时结论也成立.……………12分综上,由(ⅰ)(ⅱ)可知S n =nn +1对所有正整数n 都成立.……………13分1CA BC1A1B20.解:(1)设椭圆的焦距为2c,则由题设可知2221a c ca a cb ⎧-=⎪⎪=⎨⎪⎪=+⎩,解此方程组得a =1b =. 所以椭圆C 的方程是2212x y +=. ……………………5分 (2)解法一:假设存在点T (u, v ). 若直线l 的斜率存在,设其方程为13y kx =-, 将它代入椭圆方程,并整理,得22(189)12160k x kx +--=.设点A 、B 的坐标分别为1122(,),(,)A x y B x y ,则 12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为1122(,),(,)TA x u y v TB x u y v =--=--及112211,,33y kx y kx =-=-所以1212()()()()TA TB x u x u y v y v =--+--2221212121(1)()()339v k x x u k kv x x u v =+-+++++++222222(666)4(3325)62u v k ku u v v k +--+++-=+ …………………9分 当且仅当0TA TB =恒成立时,以AB 为直径的圆恒过定点T ,所以2222618180,0,33250.u v u u v v ⎧+-=⎪=⎨⎪++-=⎩解得0, 1.u v ==此时以AB 为直径的圆恒过定点T (0,1). …………………11分 当直线l 的斜率不存在,l 与y 轴重合,以AB 为直径的圆为221x y +=也过点T (0,1). 综上可知,在坐标平面上存在一个定点T (0,1),满足条件. …………………13分解法二:若直线l 与y 轴重合,则以AB 为直径的圆是22 1.x y +=若直线l 垂直于y 轴,则以AB 为直径的圆是22116().39x y ++=……………7分 由22221,116().39x y x y ⎧+=⎪⎨++=⎪⎩解得01x y =⎧⎨=⎩.由此可知所求点T 如果存在,只能是(0,1). ………………8分 事实上点T (0,1)就是所求的点. 证明如下:当直线l 的斜率不存在,即直线l 与y 轴重合时,以AB 为直径的圆为221x y +=,过点T (0,1);当直线l 的斜率存在,设直线方程为13y kx =-,代入椭圆方程,并整理,得22(189)12160.k x kx +--= 设点A 、B 的坐标为1122(,),(,)A x y B x y ,则12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩…………………10分因为1122(,1),(,1)TA x y TB x y =-=-,21212121212416()1(1)()39TA TA x x y y y y k x x k x x =+-++=+-++222216161632160.189k k k k ---++==+所以TA TB ⊥,即以AB 为直径的圆恒过定点T (0,1).综上可知,在坐标平面上存在一个定点T (0,1)满足条件. …………………13分 21.解:(1)设x x x g x f x -+=-=)1ln()()()(ϕ,则.1111)('+-=-+=x x x x ϕ………………….2分当时,)(x 有最大值0 ∴0)(≤x 恒成立。
三角恒等变换---完整版三角函数 —— 三角恒等变换公式:1 -cos1 cos :sin - _, cos —=.2; 2 2,2tan [cos :」一cos— sin:2 X cos 二sin 二 1 cos 一:>升幂公式两角和与差的三角函数关系!i倍角公式 sin( x 二 I '1 )=sin 二 cos L ;二 cos 、;sin ”i sin2d =2sin d cos.zi 2 2cos2 用=cos 用-sin 二jcos(:; 二 L : )=cos 二匸 cos" " sin J.sin 1'' :2 2=2cos a -1=1-2sin a性tana ±tan P tan=1 +ta n a ta n P丄小2ta na tan2 =21 - ta n a半角公式平方关系 2 a1+coS'f=2C0S —2 :1=sin 2 -:: + cos 2 -■ 降幂公式.2一 1 -cos2: sin21 .sin 二 cos _:i = —sin2工 2 2 a1-cos 、;=2sin — 2 a asin : =2 sin — cos—2 2a a1 ± sin t =( sin —匸COS —)2 2 co 『—1 cos2sin 2 二 cos 2 二 =1考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。
等,余弦互为相反数。
互余两角的正余弦相等。
”(2) 二倍角公式的灵活应用,特别是降幕、 “互补两角正弦相 和升幕公式的 应用。
(3)结合同角三角函数,化为二次函数求最值 一求二 (7)辅助角公式逆向应用 (4)角的整体代换 (5 )弦切互化 (6 )知 sin :-------- =ta n工 cos: 2 2sin a + cos a =1,商数关糸126、 A.(补全公式) 1 B. 1 488. A. 9、 C . 2(2013六校联考回归课本题) 11 C. — D.— 常见变式:计算1632cos20 (构造两角和差因子 +两式平方后相加)若sin )A<(诱导公式) -cos40 ° • cos60 ° • cos80° =( sin 10 sin 30 sin 50 sin 70 a — sin 3=( cos(X — COS 的=13=-,贝U cos( a- B )的值为B<23C.^ D . 1【2015广东东莞高一期末】sin 163sin 223 + sin 253sin 313 等于 BB. D.(构造两角和差因子 10、(逆向套用公式) +两边平方)【2015高考四川,理12】 tan23 丰 tan 37 丰 J3tan 23 tan 37 的值是sin 15 sin 75 = (1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。
2013-2014学年江苏扬州中学树人学校七年级上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.2的相反数是( )A .2B .-2C .12D .12- 【答案】B【详解】2的相反数是-2.故选:B.2.江苏省的面积约为102 6002km ,这个数据用科学记数法表示正确的是( ) A .410.2610⨯B .41.02610⨯C .51.02610⨯D .61.02610⨯ 【答案】C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于102600有6位,所以可以确定n=6-1=5.【详解】解:102 600=1.026×105.故选C .【点睛】此题考查科学记数法表示较大的数的方法,准确确定n 值是关键. 3.实数、在数轴上的位置如图所示,则化简a b a -+的结果为A .B .C .D .【答案】D【详解】试题分析:由绝对值可以看出:a <0,b >0,|a|<|b|∴|a -b|+a=-(a -b)+a=-a+b+a=b .故选D .考点:绝对值.4.已知点在线段上,下列条件中不能确定点C 是线段AB 中点的是( ) A .AC BC =B .2AB AC = C .AC BC AB +=D .12BC AB = 【答案】C5.如图,OD∴AB于O,OC∴OE,图中与∴AOC互补的角有A.1个B.2个C.3个D.4个【答案】B【详解】试题分析:根据题意可得:∴∴∴AOC+∴BOC=180°,∴∴BOC与∴AOC互补.∴∴OD∴AB,OC∴OE,∴∴EOD+∴DOC=∴BOC+∴DOC=90°,∴∴EOD=∴BOC,∴∴AOC+∴EOD=180°,∴∴EOD与∴AOC互补.故图中与∴AOC互补的角有2个.故选B.考点:补角与余角.6.下图所示几何体的主视图是(▲ )A.B.C.D.【答案】A【详解】根据实物的形状和主视图的概念判断即可.解答:解:图中几何体的主视图如选项A所示.故选A.7.下列方程中,解为x=2的方程是()A.3x﹣2=3B.4﹣2(x﹣1)=1C.﹣x+6=2x D.110 2x+=8.如下数表是由从1开始的连续自然数组成,则自然数2014所在的行数是A.第45行B.第46行C.第47行D.第48行【答案】A【详解】试题分析:由数列知第n行第一个数为(n-1)2+1,第n行最后一个数为n2,而:1937<2014<2025即(45-1)2<2014<452所以:n=45.故选A.考点:数字变化规律.二、填空题9.有理数–3的绝对值是___.【答案】3.【详解】试题分析:根据绝对值的定义进行解答即可.试题解析:有理数-3的绝对值为3.考点:绝对值.10.单项式-5a 2b 3的次数是_____. 【答案】5.【详解】试题分析:根据单项式次数的定义直接进行解答.试题解析:单项式-5a 2b 3的次数是5.考点:单项式.11.如果a ,b 互为相反数,x ,y 互为倒数,则()20132014a b xy +-的值是_____. 【答案】-2014.【详解】试题分析:根据互为相反数的两个数的和可得a+b=0,互为倒数的两个数的积等于1可得xy=1,然后代入代数式进行计算即可得解.试题解析:∴a 、b 互为相反数,∴a+b=0,∴x 、y 互为倒数,∴xy=1,∴2013(a+b )-2014xy=0-2014×1=-2014.考点:1.代数式求值;2.相反数;3.倒数.12.一个角是5433︒',则这个角的补角与余角的差为____°.【答案】90°【详解】试题分析:先求出这个角的补角,再求出这个角的余角,再计算它们的差即可 试题解析:∴这个角的补角等于:180°-54°33′=125°27′,这个角的余角:90°-54°33′=35°27′,∴125°27′-35°27′=90°.考点:余角与补角.13.若x 2+2x 的值是8,则4x 2﹣5+8x 的值是_____.【答案】27【分析】原式结合变形后,将已知等式代入计算即可求出值.【详解】解:∴x 2+2x=8,∴原式=4(x 2+2x )﹣5=32﹣5=27.故答案为:27.【点睛】本题考查代数式求值,利用整体代入思想解题是关键.14.一个平面上有三个点A 、B 、C ,过其中的任意两个点作直线,一共可以作______条直线. 【答案】3或1##1或3【详解】试题分析:分三点共线和不共线两种情况作出图形即可得解.试题解析:点A 、B 、C 三点共线时可以连成1条,三点不共线时可以连成3条, 所以,可以连成3条或1条.考点:直线、射线、线段.15.某书店把一本新书按标价的八折出售,仍可获利20%,若该书的进价为20元,则标价为___________元. 【答案】30【分析】设每本书的标价为x 元,根据八折出售可获利20%,可得出方程:80%x -20=20×20%,解出即可.【详解】解:设每本书的标价为x 元,由题意得:80%x -20=20×20%,解得:x=30.即每本书的标价为30元.故答案为:30.16.下列三个判断:∴两点之间,线段最短.∴过一点有且只有一条直线与已知直线垂直.∴过一点有且只有一条直线与已知直线平行.其中判断正确的是__________.(填序号)【答案】∴∴.【详解】试题分析:根据线段的性质、平行线公理以及垂线公理得∴两点之间,线段最短.∴过一点有且只有一条直线与已知直线垂直正确,∴过一点有且只有一条直线与已知直线平行错误.试题解析:根据以上分析知∴∴∴正确.考点:1.线段的性质;2.平行线公理;3.垂线公理.17.设一列数、、、…、2014a 中任意三个相邻的数之和都是30,已知a 3=3x ,a 200=15,9994a x =-,那么a 2014=______.【答案】12【详解】解:由任意三个相邻数之和都是30可知:a 1+a 2+a 3=30,a 2+a 3+a 4=30,a 3+a 4+a 5=30,…,an +an +1+an +2=30,可以推出:a 1=a 4=a 7=…=a 3n +1,a 2=a 5=a 8=…=a 3n +2,a 3=a 6=a 9=…=a 3n , 所以a 999=a 3,a 200=a 2,则3x =4-x .x =1.a 3=3.a 1=30-3-15=12,因此a 2014=a 1=12.故答案为:12.18.在连续整数1,2,3,…,2014这2014个数的每个数前任意添加“+”或“-”,其代数和的绝对值的最小值是_______.【答案】1.【详解】试题分析:在2014个自然数1,2,3,…,2013,2014的每一个数的前面任意添加“+”或“-”,则其代数和一定是奇数.试题解析:根据试题分析知:在连续整数1,2,3,•••…2014这2014个数的每个数前任意添加 “+"或“-”,其代数和的绝对值的最小值是1.考点:有理数的加减混合运算.三、解答题19.(1)543669⎛⎫-⨯- ⎪⎝⎭(2)()()()()215325⎡⎤-⨯-÷-+⨯-⎣⎦(3)23(4)()30(6)4-⨯-+÷- (4)【答案】(1)-14;(2)-5;(3)-17;(4)-4.20.化简求值(1) ()()3232a b b a -++(2)()()323233m n m n ---(3)()()2222243;ab b a b a b ⎡⎤--+--⎣⎦其中a=2,b=-3.【答案】(1)5a+b ;(2) -3n ;(3) 4ab -5b 2; (4)-69.【详解】试题分析:(1)去括号,合并同类项即可;(2)根据乘法对加法的分配律把括号去掉后,再合并同类项即可求解;(1)先去掉小括号,再去掉中括号后,进行合并同类项,再把a 、b 的值代入化简后的式子即可求值.试题解析:(1)原式=3a-2b+3b+2a=5a+b;(2)原式=6m-9n-6m+6n=-3n;(3)原式=4ab-3b2-(a2+b2-a2+b2)=4ab-3b2-a2-b2+a2-b2=4ab-5b2当a=2,b=-3时,原式=4×2×(-3)-5×(-3)2=-24-45=-69.考点:整式的化简求值.21.解方程(1);(2);(3)1231. 23x x+--=(4)2105试题解析:(1)∴22.作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)从正面看到该几何体的形状图如图所示,请在下面方格纸中分别画出从左面,上面看到该几何体的形状图【答案】(1)11;(2)图形见解析.【分析】(1)根据如图所示即可得出图中小正方体的个数;(2)读图可得,左视图有2列,每列小正方形数目分别为2,2;俯视图有4列,每行小正方形数目分别为2,2,1,1.【详解】解:(1)2×5+1=11(块).即图中有11块小正方体,故答案为11;(2)如图所示;左视图,俯视图分别如下图:【点睛】此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.如图,直线AB CD EF 、、相交于点O .(1)BOE ∠的对顶角是_______.图中共有对顶角 对.(2)若AOC ∠:2:3AOE ∠=,130EOD ∠=︒ , 求BOC ∠的度数.24.列方程解应用题:甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.那么甲班原有多少人?【答案】52.【详解】试题分析:设甲班原有人数是x 人,根据甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等可列出方程.试题解析:设甲班原有人数是x 人,(98-x )+3=x -3.解得:x=52.答:甲班原有52人.考点:由实际问题抽象出一元一次方程.25.在一条数轴上有A 、B 两点,点A 表示数4-,点B 表示数6.点P 是该数轴上的一个动点(不与A 、B 重合)表示数x .点M 、N 分别是线段AP 、BP 的中点.(1)如果点P 在线段AB 上,则点M 表示的数是 , 则点N 表示的数是 (用含x 的代数式表示).并计算线段MN的长.(2)如果点P在点B右侧,请你计算线段MN的长.(3)如果点P在点A左侧,则线段MN的长度会改变吗?如果改变,请说明理由;如果不变,请直接写出结果.26.小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数(单位:公里)如下:设小明12:00时看到的两位数的个位数字为x.(1)小明12:00时看到的两位数的十位数字为.(用x表示)(2)小明13:00时看到的两位数为;14:30时看到的两位数为;(用x表示,需要化简).(3) 你能帮助小明求出摩托车的速度吗?试试看.27.一个长方体水箱,从里面量长25厘米,宽20厘米,深30厘米,水箱里已经盛有深为a 厘米的水.现在往水箱里放进一个棱长10厘米的正方体实心铁块(铁块底面紧贴水箱底部).(1)如果28a ≥,则现在的水深为 cm .(2)如果现在的水深恰好和铁块高度相等,那么a 是多少?(3)当028a <<时,现在的水深为多少厘米?(用含a 的代数式表示,直接写出答案)。
中山市高二级2012—2013学年度第一学期期末统一考试数学试卷(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试用时120分钟.第Ⅰ卷(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.)1. 在△ABC 中,60A =︒,45C =︒,c =20,则边a 的长为 A. B. C. D.2.一个等比数列的第3项和第4项分别是12和18,则它的第2项为 A .4B .8C .4±D .8±3. 不等式(50)(60)0x x -->的解集是A .(,50)-∞B .(60,)+∞C .(50,60)D .(,50)(60,)-∞+∞4. 不等式组36020x y x y -+≥⎧⎨-+<⎩表示的平面区域是A .B .C .D .5.十三世纪初,意大利数学家斐波那契(Fibonacci ,1170~1250)从兔子繁殖的问题,提出了世界著名数学问题“斐波那契数列”,该数列可用递推公式121,1,2;, 3.n n n n F F F n --=⎧=⎨+≥⎩由此可计算出7F =A .8B .13C .21D .34 6.函数()ln f x x x =的单调递减区间是A .(0,)eB .(,)e +∞C .1(0,)eD .1(,)e+∞7.等差数列{}n a 的前n 项和12...n n S a a a =+++,若1031S =,20122S =,则30S = A .153B .182C .242D .2738.关于双曲线221169y x -=,下列说法错误的是A .实轴长为8,虚轴长为6B .离心率为54C .渐近线方程为43y x =±D .焦点坐标为(5,0)±9.下列命题为真命题的是A .x ∀∈N ,32x x >B .0x ∃∈R ,200220x x ++≤C .“3x >”是“29x >”的必要条件D .函数2()f x ax bx c =++为偶函数的充要条件是0b = 10.已知函数3()4f x x x =-,x ∈[-2,2]. 有以下命题:① x =±1处的切线斜率均为-1; ② f (x )的极值点有且仅有一个; ③ f (x )的最大值与最小值之和等于零. 则下列选项正确的是( ).A .①②B .①③C .②③D .①②③第Ⅱ卷(非选择题共100分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡相应横线上)11.椭圆221259x y +=的离心率为 . 12.小明用TI-Nspire™ CAS 中文图形计算器作出函数1()(2)(3),[4,4]8f x x x x x =+-∈-的图像如右图所示,那么不等式()0f x ≥的解集是 .(用区间表示)13.在周长为定值8的扇形中,当半径为 时,扇形的面积最大,最大面积为 .14.已知抛物线2()2f x x x =-上一点(3,(3))P f 及附近一点'(3,(3))P x f x +∆+∆,则割线'PP 的斜率为'(3)(3)PP f x f k x+∆-==∆ ,当x ∆趋近于0时,割线趋近于点P 处的切线,由此可得到点P 处切线的斜率为 .三、解答题(本大题共6小题,共80分,解答须写出文字说明、证明过程和演算步骤.)15.(13分)已知函数()(2)(3)f x x x x =+-.(1)求导数()f x '; (2)求()f x 的单调递减区间.16.(13分)设数列{}n a 的前n 项和为n S ,点(,)()n S n n N n*∈均在直线12y x =+上.(1)求数列{}n a 的通项公式;(2)设3n a n b =,试证明数列{}n b 为等比数列.17.(14分)已知倾斜角为60 的直线L 经过抛物线24y x =的焦点F ,且与抛物线相交于A 、B 两点,其中O 坐标原点. (1)求弦AB 的长; (2)求三角形ABO 的面积.18.(13分)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c . (1)若边BC 上的中线AD 记为a m,试用余弦定理证明:a m =. (2)若三角形的面积S =2221()4a b c +-,求∠C 的度数.19.(13分)某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.但国家每天分配给该厂的煤、电有限, 每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产值大?最大日产值为多少?20.(14分)已知椭圆的一个顶点为(0,1)A -,焦点在x 轴上, 右焦点到直线0x y -+的距离为3.(1)求椭圆的标准方程;(2)设椭圆与直线1y kx =+相交于不同的两点M 、N ,当AM AN =时,求实数k 的值.中山市高二级2012—2013学年度第一学期期末统一考试高二数学试卷(文科)答案一、选择题:ABCBB CDDDB 二、填空题:11.45; 12. [2,0][3,4]- ; 13. 2,4; 14. 112x +∆, 11.三、解答题:15. 解:(1)由原式得32()6f x x x x =--,………………(3分)∴2()326f x x x '=--. ……(6分)(2)令()0f x '<x <<, ………………(10分)所以()f x 的单调递减区间为.………………(13分)16. 解:(1)依题意得,1,2n S n n =+即212n S n n =+. ………………(2分)当n≥2时, 221111()(1)(1)2222n n n a S S n n n n n -⎡⎤=-=+--+-=-⎢⎥⎣⎦; ……(6分)当n=1时,2111311121222a S ==+⨯==⨯-.………………(7分)所以*12()2n a n n N =-∈.………………(8分)(2)证明:由(1)得12233nn a n b -==,……………………(9分) ∵12(1)2211223393n n n nb b +-+-===,………………(11分)∴ {}n b 为等比数列.………………(13分)17. 解:(1)由题意得:直线L的方程为1)y x -, ……………………(2分) 代入24y x =,得:231030x x -+=.………………(4分) 设点11(,)A x y ,22(,)B x y ,则: 12103x x +=. ………………(6分) 由抛物线的定义得:弦长121016233AB x x p =++=+=.………………(9分)(2)点O 到直线AB的距离d =, ………………(12分)所以三角形OAB的面积为12S AB d =⋅=.………………(14分)18. 解:(1)在ABD ∆中,222()2cos 22a ac m B c +-=; ………………(2分)在ABC ∆中,222cos 2c a b B c a+-= .………………(4分)∴ 222222()2222a ac m c a b a c a c +-+-=, ………………(5分)化简为:2222222222()424a a c ab bc a m c +-+-=+-=,∴ a m =.………………(7分) (2)由S =2221()4a b c +-,得12ab sin C =12cos 4ab C .………………(10分)∴ tan C =1,得C =45︒. ……(13分)19. 解:设该厂每天安排生产甲产品x 吨,乙产品y 吨,则日产值812z x y =+,…(1分)线性约束条件为735620504500,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩.…………(3分)作出可行域. ……(6分)把812z x y =+变形为一组平行直线系8:1212zl y x =-+,由图可知,当直线l 经过可行域上的点M 时,截距12z最大,即z 取最大值. 解方程组73562050450x y x y +=⎧⎨+=⎩,得交点(5,7)M ,…………(10分)max 85127124z =⨯+⨯=.………………(12分)所以,该厂每天安排生产甲产品5吨,乙产品7吨,则该厂日产值最大,最大日产值为124万元. ……(13分)解:(1)依题意可设椭圆方程为 2221(1)x y a a+=> ,………………(1分)则右焦点F . ……(2分)3=, 解得:23a =. ………………(4分)故 所求椭圆的标准方程为:2213x y +=.………………(5分)(2)设P 为弦MN 的中点,联立22113y kx x y =+⎧⎪⎨+=⎪⎩ , ………………(6分)消y 得: 22(31)60k x kx ++=.………………(8分)23231M N p x x k x k +∴==-+, 从而 21131p p y kx k =+=+, 21323p App y k k x k++∴==-. ………………(10分) 又 ,AM AN AP MN =∴⊥,则: 23213k k k+-=-,解得:k = ………………(14分)。
中山华侨中学2014届高三第二次模拟考试数 学 试 卷 (文)本试卷共4页,20小题,满分150分.考试用时120分钟.注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上. 3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 6. 不准使用计算器.一、选择题:(本大题共 10 小题;每小题 5 分,满分 50 分)1、 集合{}1,2,3M =,{}2,3,4N =,全集{}1,2,3,4,5I =, 则图中阴影部分表示的集合为------------------- (※)A . {}1B . {}2,3C . {}4D . {}52、下列函数为偶函数的是------------------------------------------------------------------------------- (※)A .y=sinx B. 1y x -= C. y=x e 3. 下列有关命题的说法正确的是 ---------------------------------------------------------------- (※) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. B .“5>x ”是“0542>--x x ”的必要不充分条件. C .命题“若x y =,则sin sin x y =”的逆否命题为真命题.“x R ∀∈, 均有210x x ++<”. 4※) 5.※)A B C D6、要得到()y f x =的图象,只须把sin y x ω=的图象------------------------------------ (※) AC .D .7. 则函数()f x 的零点个数为---------------------- (※)A .1B .2C .3D .48.则-() A 9※)A .3B .2C .1D 10.设()f x 是定义在R 3的周期函数,如图表示 该函数在区间(]1,2-上的图像,则(2011)(2012)f f +=--------- (※) A .2 B .3 C .1 D .0二.填空题(共4小题,每小题5分,共20分,将正确答案填在题中横线上) 11.函数1)1(log +-=x y a ()1,0≠>a a 的图象必定经过的点坐标为 .12.(2013广州二模)已知α为锐角,则 sin α=_______. 13、ABC ∆的三个内角A ,B ,C 对应的三条边长分别是a ,b ,c ,已知10,30,45=︒=︒=c C A ,则=a 14. 给出以下五个结论:①存在实数α,使sin α·cos α=1;③α是第二象限角时, ④ 的递减区间为),(∞+∞-的对称中心是)1,1(- 其中正确的结论是: __________ .三.解答题(共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)第10题图15、(13分)的最小正周期为6T π=,且(2)2f π=.(1)求函数)(x f y =的单调递增区间;(2;求cos()αβ-的值.15.解:(1 (2分)由(2)2f π=得即 ∴4A = (4分)(5分)(2(6分)(7分)(9分) (10分)(12分)16.(13分) ABC ∆的三个内角A ,B ,C 对应的三条边长分别是a ,b ,c ,①确定角C 的大小: ②若c 且△ABC 求a +b 的值。
中山市高三级2013—2014学年度第一学期期末统一考试数学试卷(理科)本试卷共4页,20小题,满分150分.考试用时120分钟. 注意事项:1、答卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上。
2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上。
3、不可以使用计算器。
4、考试结束,将答题卡交回,试卷不用上交。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数113i z =-,21i z =-,则12z z +在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.设全集U 是实数集,R {}22,M x x x =><-或{}2430N x x x =-+> 则图中阴影部分所表示的集合是 ( ) A .{|21}x x -≤< B .{|22}x x -≤≤ C .{|12}x x <≤D .{|2}x x < 3.已知平面向量()21=,a ,()2x =-,b ,若a ∥b , 则a +b 等于( ) A .()2,1-- B .()2,1C .()3,1-D .()3,1-4.定义某种运算a S b =⊗,运算原理如上图所示,则式子131100lg ln )45tan 2(-⎪⎭⎫⎝⎛⊗+⊗e π的值为( )A .4B .8C .11D .13 5.把边长为1的正方形ABCD 沿对角线BD 折起,使得平面⊥ABD 平面CBD,形成三棱锥ABD C -的正视图与俯视图如下图所示,则侧视图的面积为 ( ) ABCD .6①两个变量间的相关系数r 越小,说明两变量间的线性相关程度越低;②命题p :“R ∈∃0x ,01020>--x x ”的否定p ⌝:“R ∈∀x ,012<--x x ”;③用相关指数2R 来刻画回归效果,若2R 越大,则说明模型的拟合效果越好; ④若23.0=a ,3.02=b ,2log 3.0=c ,则b ac <<. A .①③④B .①④C .③④D .②③(第2题图)(第4题图)7.对a ∀、b R ∈,运算“⊕”、“⊗”定义为:a b ⊕=,().()a a b b a b <⎧⎨≥⎩,a b ⊗=,().()a a b b a b ≥⎧⎨<⎩,则下列各式其中不恒成立的是( )⑴a b a b a b =+⊗+⊕⑵a b a b a b =-⊗-⊕ ⑶[][]a b a b a b =⋅⊗⋅⊕ ⑷[][]a b a b a b =÷⊗÷⊕ A .⑴、⑶ B . ⑵、⑷C .⑴、⑵、⑶D .⑴、⑵、⑶、⑷8. 已知函数)(x f y =)(R x ∈满足(2)2()f x f x +=,且[1,1]x ∈-时,()1f x x =-+,则当[10,10]x ∈-时,)(x f y =与4()log g x x =的图象的交点个数为( )A .13B .12C .11D .10二、填空题:本大题共6小题,每小题5分,满分30分.9.已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f = .10.如图,一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为 375 颗,以此实验数据为依据可以估计出该不规则图形的面积为 平方米.(用分数作答)11.在二项式521x x ⎛⎫- ⎪⎝⎭的展开式中,含4x 的项的系数是 .12.已知20πα<<,=+)6cos(πα53,则=αcos .13.已知数列{}n a 为等差数列,若23a =,1612a a +=,则789a a a ++= .14.如图, //AB MN ,且2OA OM =,若OP xOA yOB =+, 15.(其中,x y R ∈),则终点P 落在阴影部分(含边界)时16.,21y x x +++的取值范围是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本题满分12分)设平面向量)sin ,(cos x x =,1)2b = ,函数()1f x a b =⋅+ . (Ⅰ)求函数)(x f 的值域和函数的单调递增区间;(Ⅱ)当9()5f α=,且263ππα<<时,求2sin(2)3πα+的值.某校从参加高三年级期末统考测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(Ⅰ)估计这次测试数学成绩的平均分和众数;(Ⅱ)假设在[90,100]段的学生的数学成绩都不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任意抽取2个数,有放回地抽取了3次,记这3次抽取中,恰好是两个学生的数学成绩的次数为ξ,求ξ的分布列及数学期望E ξ. 17.(本小题满分14分)如图,在底面是矩形的四棱锥ABCD P -中,PA ⊥平面ABCD , 2==AB PA ,4=BC . E 是PD 的中点,(Ⅰ)求证:平面PDC ⊥平面PAD ;(Ⅱ)求二面角D AC E --的余弦值; (Ⅲ)求直线CD 与平面AEC 所成角的正弦值18.(本小题满分14分)数列{n a }的前n 项和为n S ,2131(*)22n n S a n n n N +=--+∈. (Ⅰ)设n n b a n =+,证明:数列{}n b 是等比数列; (Ⅱ)求数列{}n nb 的前n 项和n T ; (Ⅲ)若1n n n b c b =-,数列{}n c 的前n 项和n T ,证明:n T <53.P B E D C A已知函数()xf x e kx =-,.(Ⅰ)若0k >,且对于任意0)(,>∈x f R x 恒成立,试确定实数k 的取值范围; (Ⅱ)设函数)()()(x f x f x F -+=,求证:1ln (1)ln (2)ln ()ln(2)()2n nF F F n e n N +*+++>+∈20.(本题满分14分)已知函数2()()f x x x a =-,2()(1)g x x a x a =-+-+(其中a 为常数); (Ⅰ)如果函数()y f x =和()y g x =有相同的极值点,求a 的值;(Ⅱ)设0a >,问是否存在0(1,)3a x ∈-,使得00()()f x g x >,若存在,请求出实数a 的取值范围;若不存在,请说明理由.(Ⅲ)记函数()[()1][()1]H x f x g x =-⋅-,若函数()y H x =有5个不同的零点,求实数a 的取值范围.中山市高三级2013—2014学年度第一学期期末统一考试理科数学参考答案一、选择题:本大题共8小题,每小题5分,共40分.DAAD BCBC二、填空题:本大题共6小题,每小题5分,满分30分. 9.14 ; 10. 8311. 10;12.; 13. 45; 14. 4[,4]3三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.解: 依题意)(x f ⋅=)sin ,(cos xx 11)1sin 122x x +=++………(2分) sin()13x π=++ ………………………………………………(4分)(Ⅰ) 函数)(x f 的值域是[]0,2;………………………………………………(5分)令πππππk x k 22322+≤+≤+-,解得52266k x k ππππ-+≤≤+………………(7分) 所以函数)(x f 的单调增区间为5[2,2]()66k k k Z ππππ-++∈.……………………(8分) (Ⅱ)由9()sin()1,35f παα=++=得4sin()35πα+=,因为2,63ππα<<所以,23ππαπ<+<得3cos()35πα+=-,………………………(10分)2sin(2+)sin 2()33ππαα=+ 432sin()cos()23355ππαα=++=-⨯⨯ 2425=-……………………………………………………………………(12分)16. 解:(I )利用中值估算抽样学生的平均分:45×0.05+55×0.15+65×0.2+75×0.3+85×0.25+95×0.05 =72. ……………(3分) 众数的估计值为75分 ……………(5分) 所以,估计这次考试的平均分是72分. ……………(6分) (注:这里的众数、平均值为估计量,若遗漏估计或大约等词语扣一分)(II )从95, 96,97,98,99,100中抽2个数的全部可能的基本结果数是2615C =, 有15种结果,学生的成绩在[90,100]段的人数是0.005×10×80=4(人),这两个数恰好是两个学生的数学成绩的基本结果数是246C =,两个数恰好是两个学生的数学成绩的概率62.155P == ……………(8分) 随机变量ξ的可能取值为0、1、2、3,则有.∴3323()()(),0,1,2,355k k k P k C k ξ-===∴变量ξ的分布列为:…………(10分)E ξ8365454601231251251251255=⨯+⨯+⨯+⨯=…………(12分) 解法二. 随机变量ξ满足独立重复试验,所以为二项分布, 即2~(3,)5B ξ………(10分)26355E np ξ==⨯= …………(12分)17.解法一:(Ⅰ)ABCD PA 平面⊥ ,ABC CD 平面⊂,CD PA ⊥∴. ---------------------------------------------------------------------------------(2分) 是矩形ABCD , CD AD ⊥∴.而A AD PA =⋂, ,PA AD ⊂平面PADPAD CD 平面⊥∴. ………………………(4分) PDC CD 平面⊂PDC PAD ∴⊥平面平面.………………………(5分) (Ⅱ)连结AC 、EC ,取AD 中点O , 连结EO , 则PA EO //, ∵⊥PA 平面ABCD , ∴⊥EO 平面ABCD . 过O 作AC OF ⊥交AC 于F ,连结EF ,则 EFO ∠就是二面角D AC E --所成平面角. ………………………(7分) 由2=PA ,则1=EO .在ADC Rt ∆中,h AC CD AD ⨯=⨯ 解得=h 554.因为O 是AD 的中点,所以552=OF . ………………………(8分)而1=EO ,由勾股定理可得553=EO . ………………………(9分)32553552cos ===∠EF OF EFO . ………………………(10分)(Ⅲ)延长AE ,过D 作DG 垂直AE 于G ,连结CG ,又∵AE CD ⊥,∴AE ⊥平面CDG , 过D 作DH 垂直CG 于H , 则DH AE ⊥, 所以⊥DH 平面AGC , 即⊥DH 平面AEC ,所以CD 在平面ACE 内的射影是CH ,DCH ∠是直线与平面所成的角.………………………(12分)554514sin sin =⨯=⋅=∠⋅=∠⋅=AE OE AD OAE AD DAG AD DG . 2=CD 556425516=+⨯=∴CG . 32556554sin ===∠∴CG DG DCG .……………(14分)解法二:以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,则A (0,0,0) , B (2,0,0), C (2,4,0) , D (0,4,0) ,E (0,2,1) , P (0,0,2) . ……………………(2分)∴AB =(2,0,0) , AD =(0,4,0) , AP=(0,0,2) , CD =(-2,0,0) , AE=(0,2,1) , AC =(2,4,0) . ……………………(3分)PB EDC AOFGH(Ⅰ)0=⋅AD CD , AD CD ⊥∴.又0=⋅AP CD , AP CD ⊥∴ .………………………(5分)A AD AP =⋂ , PAD CD 平面⊥∴,而PDC CD 平面⊂,∴平面PDC ⊥平面PAD . ………(7分) (Ⅱ)设平面AEC 的法向量=()z y x ,,,令1=z ,则()1,,y x =.由⎪⎩⎪⎨⎧=⋅=⋅00AC n 即()()()()⎪⎩⎪⎨⎧-==⇒⎩⎨⎧=+=+⇒⎩⎨⎧=⋅=⋅21104201200,4,21,,01,2,01,,y x y x y y x y x∴=⎪⎭⎫⎝⎛-1,21,1. ………………………(9分) 平面ABC 的法向量AP =(0,0,2) , 322232,cos =⨯==〉〈AP n .所以二面角D AC E --所成平面角的余弦值是32. ……………………(11分)(Ⅲ)因为平面的法向量是n =⎪⎭⎫⎝⎛-1,21,1,而CD =(-2,0,0) .所以322232cos -=⨯-==θ . ………………………(13分)直线CD 与平面AEC 所成角的正弦值 32. ………………………(14分)18.【解析】(I )因为213122n n a S n n +=--+,所以 ① 当1=n 时,121-=a ,则112a =-, ………………………………(1分)② 当2n ≥时,21113(1)(1)122n n a S n n --+=----+,……………………(2分)所以121n n a a n --=--,即12()1n n a n a n -+=+-,所以11(2)2n n b b n -=≥,而11112b a =+=, ……………………(3分)所以数列{}n b 是首项为12,公比为12的等比数列,所以12nn b ⎛⎫= ⎪⎝⎭.…………(4分)(II )由(1)得2n n nnb =.所以 ①n n n n n T 221..........242322211432+-+++++=-, ②1232221..........24232212--+-+++++=n n n nn T , ……………(5分)②-①得:n n n nT 221......2121112-++++=-, ……………(7分)n n nn n n T 2222211211+-=--⎪⎭⎫ ⎝⎛-=.……………(9分) (III )由(I)知121n nc =-……………(10分)(1)当1n =时,11151213c ==<-成立; ……………(11分)(2)当2n ≥时,2221(32)210n n n ----⋅=-≥ ,2112132nn n c -∴=≤-⋅, ………………(13分)所以221111212511[1()]1[1()]113232323312nn n n n k T -=≤+=+⋅-=+-<+=⋅-∑. ………(14分) (本题放缩方法不唯一,请酌情给分)19. 解:(Ⅰ)由()()f x f x -=可知()f x 是偶函数. 于是()0f x >对任意x ∈R 成立等价于()0f x >对任意0x ≥成立.………(1分) 由()e 0xf x k '=-=得ln x k =.①当(01]k ∈,时,()e 10(0)xf x k k x '=->->≥. 此时()f x 在[0)+∞,上单调递增. 故()(0)10f x f =>≥,符合题意.…(3分) ②当(1)k ∈+∞,时,ln 0k >.当变化时'的变化情况如下表: ……………………(4分)依题意,ln 0k k k ->,又11e k k >∴<<,.综合①,②得,实数k 的取值范围是0e k <<. ………………(7分) (Ⅱ)()()()e e0xxF x f x f x -=+-=+> ,112212ln ()ln ()ln[()()]x x x x F x F x e e e e --∴+=++又1122()()xxxxe e e e --++=12121212121212()()e e e e e e 2e 2x xx x x xx xx xx x x x+-+--++-+++++>++>+, ……………………(10分)1ln (1)ln ()ln(e 2)n F F n +∴+>+,11l n (2)l n (1)l n (e2)l n ()l n (1)l n (e2).n n F F n F n F +++->++>+……………………(12分)由此得:12[ln (1)ln (2)ln ()][ln (1)ln ()][ln (2)ln (1)][ln ()ln (1)]ln(e 2)n F F F n F F n F F n F n F n ++++=+++-+++>+故1ln (1)ln (2)ln ()ln(e 2)2n n F F F n n +*+++>+∈N ,成立. ………………(14分)20.解:(I )2322()()2f x x x a x ax a x =-=-+,则22()34(3)()f x x ax a x a x a '=-+=--,令()0f x '=,得x a =或3a ,而()g x 在12a x -=处有极大值,∴112a a a -=⇒=-,或1323a aa -=⇒=;综上:3a =或1a =-. ………………………………(3分) (II )假设存在,即存在(1,)3a x ∈-,使得22()()()[(1)]f x g x x x a x a x a -=---+-+2()()(1)x x a x a x =-+-+2()[(1)1]0x a x a x =-+-+>,当(1,)3a x ∈-时,又0a >,故0x a -<,则存在(1,)3ax ∈-,使得2(1)10x a x +-+<, ………………………………(4分)1当123a a ->即3a >时,2(1)1033a a a ⎛⎫⎛⎫+-+< ⎪ ⎪⎝⎭⎝⎭得332a a ><-或,3a ∴>; ………………………………(5分)2当1123a a--≤≤即03a <≤时,24(1)04a --<得13a a <->或,………(6分) a ∴无解;综上:3a >. ………………………………(7分)(III )据题意有()10f x -=有3个不同的实根,()10g x -=有2个不同的实根,且这5个实根两两不相等.(ⅰ)()10g x -=有2个不同的实根,只需满足1()1132a g a a ->⇒><-或; ………………………………(8分)(ⅱ)()10f x -=有3个不同的实根,1 当3aa >即0a <时,()f x 在x a =处取得极大值,而()0f a =,不符合题意,舍; ………………………………(9分)2 当3aa =即0a =时,不符合题意,舍;3当3a a <即0a >时,()f x 在3a x =处取得极大值,()13a f a >⇒>a > ………………………………(10分)因为(ⅰ)(ⅱ)要同时满足,故a >(注:343>a 也对)…………………(11分)下证:这5个实根两两不相等,即证:不存在0x 使得0()10f x -=和0()10g x -=同时成立;若存在0x 使得00()()1f x g x ==,由00()()f x g x =,即220000(1)x x ax a x a -=-+-+(),得20000(1)0x a x ax x --++=(),当0x a =时,00()()0f x g x ==,不符合,舍去;当0x a ≠时,既有200010x ax x -++= ①;又由0()1g x =,即200(1)1x a x a -+-+= ②; 联立①②式,可得0a =;而当0a =时,32()[()1][()1](1)(1)0H x f x g x x x x =-⋅-=----=没有5个不同的零点,故舍去,所以这5个实根两两不相等.综上,当2a >时,函数()y H x =有5个不同的零点. ………………………(14分)。