第4章-电容式传感器
- 格式:pps
- 大小:200.00 KB
- 文档页数:22
第四章习题答案1.某电容传感器(平行极板电容器)的圆形极板半径)(4mm r =,工作初始极板间距离)(3.00mm =δ,介质为空气。
问:(1)如果极板间距离变化量)(1m μδ±=∆,电容的变化量C ∆是多少?(2)如果测量电路的灵敏度)(1001pF mV k =,读数仪表的灵敏度52=k (格/mV )在)(1m μδ±=∆时,读数仪表的变化量为多少?解:(1)根据公式SSSd C d d d d d dεεε∆∆=-=⋅-∆-∆ ,其中S=2r π (2)根据公式112k k δδ∆=∆ ,可得到112k k δδ⋅∆∆==31001100.025-⨯⨯= 2.寄生电容与电容传感器相关联影响传感器的灵敏度,它的变化为虚假信号影响传感器的精度。
试阐述消除和减小寄生电容影响的几种方法和原理。
解:电容式传感器内极板与其周围导体构成的“寄生电容”却较大,不仅降低了传感器的灵敏度,而且这些电容(如电缆电容)常常是随机变化的,将使仪器工作很不稳定,影响测量精度。
因此对电缆的选择、安装、接法都有要求。
若考虑电容传感器在高温、高湿及高频激励的条件下工作而不可忽视其附加损耗和电效应影响时,其等效电路如图4-8所示。
图中L 包括引线电缆电感和电容式传感器本身的电感;C 0为传感器本身的电容;C p 为引线电缆、所接测量电路及极板与外界所形成的总寄生电容,克服其影响,是提高电容传感器实用性能的关键之一;R g 为低频损耗并联电阻,它包含极板间漏电和介质损耗;R s 为高湿、高温、高频激励工作时的串联损耗电组,它包含导线、极板间和金属支座等损耗电阻。
此时电容传感器的等效灵敏度为2200220/(1)(1)g e e k C C LC k d d LC ωω∆∆-===∆∆- (4-28)当电容式传感器的供电电源频率较高时,传感器的灵敏度由k g 变为k e ,k e 与传感器的固有电感(包括电缆电感)有关,且随ω变化而变化。
课题第四章电容式传感器第一节电容式传感器的基本概念及主要特点第二节电容式传感器的工作原理及结构形式课型新课授课班级授课时数 2教学目标1.理解电容式传感器的基本概念和特点。
2.掌握电容式传感器的工作原理及结构形式。
教学重点1.电容式传感器的基本概念。
2.电容式传感器的工作原理及3种结构形式。
教学难点三种类型电容式传感器的电容变化量计算。
学情分析教学效果新授课教后记A 、复习电阻式传感器。
B 、新授课第一节 电容式传感器的基本概念及主要特点一、基本概念电容式传感器是以不同类型的电容器作为传感元件,并通过电容传感元件把被测物理量的变化转换成电容量的变化,然后再经转换电路转换成电压、电流或频率等信号输出的测量装置。
二、主要特点① 结构简单,易于制造。
② 功率小、阻抗高、输出信号强。
③ 动态特性良好。
④ 受本身发热影响小。
⑤ 可获得比较大的相对变化量。
⑥ 能在比较恶劣的环境中工作。
⑦ 可进行非接触式测量。
⑧ 电容式传感器的不足之处。
主要是寄生电容影响比较大;输出阻抗比较高,负载能力相对比较大;输出为非线性。
(提问)(与电阻是对比介绍)(简要分析原因)第二节电容式传感器的工作原理及结构形式一、工作原理电容式传感器的工作原理可以从图4 - 1所示的平板式电容器中得到说明。
由物理学可知,由两平行极板所组成的电容器,如果不考虑边缘效应,其电容量为δAεC =式中,A ——两极板相互遮盖的面积(mm 2) δ——两极板之间的距离 (mm ) ε——两极板间介质的介电常数(F / m )由以上计算公式可见,当被测量使A ,δ,ε三个参数中任何一项发生变化时,电容量就要随之发生变化。
二、结构形式1.变面积(A )型电容式传感器变面积型电容传感器的结构原理如图4 - 2所示。
图中(a )、(b )为单边式,(c )为差分式;(a )、(b )也可做成差分式。
图中1,3为固定板,2是与被测物相连的可动板,当被测物体带动可动板2发生位移时,就改变了可动板与固定板之间的相互遮盖面积,并由此引起电容量C 发生变化。
《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书第4章 电容式传感器4-1 电容式传感器可分为哪几类?各自的主要用途是什么?答:(1)变极距型电容传感器:在微位移检测中应用最广。
(2)变面积型电容传感器:适合测量较大的直线位移和角位移。
(3)变介质型电容传感器:可用于非导电散材物料的物位测量。
4-2 试述变极距型电容传感器产生非线性误差的原因及在设计中如何减小这一误差?答:原因:灵敏度S 与初始极距0δ的平方成反比,用减少0δ的办法来提高灵敏度,但0δ的减小会导致非线性误差增大。
采用差动式,可比单极式灵敏度提高一倍,且非线性误差大为减小。
由于结构上的对称性,它还能有效地补偿温度变化所造成的误差。
4-3 为什么电容式传感器的绝缘、屏蔽和电缆问题特别重要?设计和应用中如何解决这些问题?答:电容式传感器由于受结构与尺寸的限制,其电容量都很小,属于小功率、高阻抗器,因此极易受外界干扰,尤其是受大于它几倍、几十倍的、且具有随机性的电缆寄生电容的干扰,它与传感器电容相并联,严重影响传感器的输出特性,甚至会淹没没有用信号而不能使用。
解决:驱动电缆法、整体屏蔽法、采用组合式与集成技术。
4-4 电容式传感器的测量电路主要有哪几种?各自的目的及特点是什么?使用这些测量电路时应注意哪些问题?4-5 为什么高频工作的电容式传感器连接电缆的长度不能任意变动?答:因为连接电缆的变化会导致传感器的分布电容、等效电感都会发生变化,会使等效电容等参数会发生改变,最终导致了传感器的使用条件与标定条件发生了改变,从而改变了传感器的输入输出特性。
4-6 简述电容测厚仪的工作原理及测试步骤。
4-7 试计算图P4-1所示各电容传感元件的总电容表达式。
4-8如图P4-2所示,在压力比指示系统中采用差动式变极距电容传感器,已知原始极距1δ=2δ=0.25mm ,极板直径D =38.2mm ,采用电桥电路作为其转换电路,电容传感器的两个电容分别接R =5.1k Ω的电阻后作为电桥的两个桥臂,并接有效值为U1=60V 的电源电压,其频率为f =400Hz ,电桥的另两桥臂为相同的固定电容C =0.001μF 。
部分习题参考答案第4章 电容式传感器如何改善单极式变极距型电容传感器的非线性答:非线性随相对位移0/δδ∆的增加而增加,为保证线性度应限制相对位移的大小;起始极距0δ与灵敏度、线性度相矛盾,所以变极距式电容传感器只适合小位移测量;改善方法:(1) 使用运算放大器构成的基本测量电路(2)变极距式电容传感器一般采用差动结构。
为什么高频工作时的电容式传感器连接电缆的长度不能任意变化 低频时容抗c X 较大,传输线的等效电感L 和电阻R 可忽略。
而高频时容抗c X 减小,等效电感和电阻不可忽略,这时接在传感器输出端相当于一个串联谐振,有一个谐振频率0f 存在,当工作频率0f f ≈谐振频率时,串联谐振阻抗最小,电流最大,谐振对传感器的输出起破坏作用,使电路不能正常工作。
通常工作频率10MHz 以上就要考虑电缆线等效电感0L 的影响。
差动式变极距型电容传感器,若初始容量1280C C pF ==,初始距离04mm δ=,当动极板相对于定极板位移了0.75mm δ∆=时,试计算其非线性误差。
若改为单极平板电容,初始值不变,其非线性误差有多大解:若初始容量1280C C pF ==,初始距离04mm δ=,当动极板相对于定极板位移了0.75mm δ∆=时,差动电容式传感器非线性误差为:2200.75()100%()100% 3.5%4L δγδ∆=⨯=⨯= 改为单极平板电容,初始值不变,其非线性误差为:00.75100%100%18.75%4L δγδ∆=⨯=⨯= 电容式传感器有哪几类测量电路各有什么特点差动脉冲宽度调制电路用于电容传感器测量电路具有什么特点答:参照课件和讲课内容自己回答,要求掌握。
一平板式电容位移传感器如图4-5所示,已知:极板尺寸4a b mm ==,极板间隙00.5mm δ=,极板间介质为空气。
求该传感器静态灵敏度;若极板沿x 方向移动2mm ,求此时电容量。
动极板2图4-5 平板电容器基本原理 解:对于平板式变面积型电容传感器,它的静态灵敏度为:012111088.85107.0810g C b k Fm a εδ---===⨯⨯=⨯ 极板沿x 方向相对移动2mm 后的电容量为:12130()8.85100.0042 1.416100.5b a x C F εδ---∆⨯⨯⨯===⨯ 已知:圆盘形电容极板直径D=50mm ,间距δ0=0.2mm ,在电极间置一块厚0.1mm 的云母片(εr=7),空气(εr=1)。
《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第4章 电容式传感器4-1 电容式传感器可分为哪几类?各自的主要用途是什么? 答:(1)变极距型电容传感器:在微位移检测中应用最广。
(2)变面积型电容传感器:适合测量较大的直线位移和角位移。
(3)变介质型电容传感器:可用于非导电散材物料的物位测量。
4-2 试述变极距型电容传感器产生非线性误差的原因及在设计中如何减小这一误差?答:原因:灵敏度S 与初始极距0δ的平方成反比,用减少0δ的办法来提高灵敏度,但0δ的减小会导致非线性误差增大。
采用差动式,可比单极式灵敏度提高一倍,且非线性误差大为减小。
由于结构上的对称性,它还能有效地补偿温度变化所造成的误差。
4-3 为什么电容式传感器的绝缘、屏蔽和电缆问题特别重要?设计和应用中如何解决这些问题? 答:电容式传感器由于受结构与尺寸的限制,其电容量都很小,属于小功率、高阻抗器,因此极易受外界干扰,尤其是受大于它几倍、几十倍的、且具有随机性的电缆寄生电容的干扰,它与传感器电容相并联,严重影响传感器的输出特性,甚至会淹没没有用信号而不能使用。
解决:驱动电缆法、整体屏蔽法、采用组合式与集成技术。
4-4 电容式传感器的测量电路主要有哪几种?各自的目的及特点是什么?使用这些测量电路时应注意哪些问题?4-5 为什么高频工作的电容式传感器连接电缆的长度不能任意变动?答:因为连接电缆的变化会导致传感器的分布电容、等效电感都会发生变化,会使等效电容等参数会发生改变,最终导致了传感器的使用条件与标定条件发生了改变,从而改变了传感器的输入输出特性。
4-6 简述电容测厚仪的工作原理及测试步骤。
4-7 试计算图P4-1所示各电容传感元件的总电容表达式。
4-8如图P4-2所示,在压力比指示系统中采用差动式变极距电容传感器,已知原始极距1δ=2δ=0.25mm ,极板直径D =38.2mm ,采用电桥电路作为其转换电路,电容传感器的两个电容分别接R =5.1k Ω的电阻后作为电桥的两个桥臂,并接有效值为U1=60V 的电源电压,其频率为f =400Hz ,电桥的另两桥臂为相同的固定电容C =0.001μF 。
第四章电容式传感器§4-1 工作原理与类型
一、工作原理及分类电容传感器是以各种类型的电容器作为传感元件,将被测参数微小变化的信息转换成电容量的变化,然后通过测量电路转换成电压输出。
平板电容为δεεS C 0=ε−−极板介质的相对介电常数
ε0−−真空介电常数S −−极板面积
δ−−极板间距
二、类型
分类变极距型—变极板间距变面积型—变极板面积变介电常数型—介质变化
结构形式一
结构形式二
结构形式三
§4-2 电容传感器分类比较
电容传感器分类比较
§4-3 电容式传感器的应用
1.电容式压力传感器
2.电容式加速度传感器
3.电容式应变计
4.电容式荷重传感器
5.电容式测厚仪
6.差动电容法测差压
7.电容式流量计
8.电容式水份计
总结
传感元件
原始
输入量
变换
原理
物理
现象
能量
关系
输出量
电容式传感器位移结构型控制型电容
δ
εεA
C0
=
§4-4 电容式集成传感器
运用集成电路工艺可以把电容敏感元件与测量电路制作在一起,构成电容式集成传感器,它的核心部件是一个对被测量敏感的集成电容器。
加速度集成电容传感器
这是一种基于多晶硅表面微加工技术的加速度电容传感器。
压力集成电容传感器
这是采用硅腐蚀技术、硅和玻璃的静电键合以及常规集成电路工艺技术制造的集成电容传感器。
§4-5 容栅式传感器
容栅式传感器是在变面积型电容传感器的基础上发展起来的一种新型传感器。
它在具有电容式传感器优点的同时,又具有多极电容带来的平均效应,现已应用于数显卡尺、测长机等数显量具。
开环调幅式容栅传感器
闭环调幅式容栅传感器。