最新细菌细胞壁
- 格式:ppt
- 大小:3.23 MB
- 文档页数:27
组成细菌细胞壁的成分细菌细胞壁是细菌细胞的外层结构,起到保护细胞内部结构的作用。
它由多种成分组成,包括多糖、蛋白质和脂类等。
本文将从这些成分的角度来介绍细菌细胞壁的组成。
一、多糖多糖是细菌细胞壁的主要成分之一,它们包括肽聚糖和聚糖。
肽聚糖是由多种氨基酸残基组成的聚合物,其中最常见的是N-乙酰葡聚糖(N-acetylglucosamine)和N-乙酰穀聚糖(N-acetylmuramic acid)。
这些氨基酸残基通过β-1,4-糖苷键连接在一起,形成肽聚糖链。
聚糖是由多糖分子组成的聚合物,常见的有聚半乳糖和聚肌醇糖。
二、蛋白质蛋白质是细菌细胞壁的另一个重要成分,它们可以分为两类:结构蛋白和酶类蛋白。
结构蛋白主要负责细胞壁的稳定性和形状维持,常见的有MreB蛋白和FtsZ蛋白。
MreB蛋白形成细胞壁内的纤维骨架,维持细胞的形状。
FtsZ蛋白则参与细胞分裂过程中的细胞膜收缩。
酶类蛋白主要参与细胞壁的合成和修复,如转酰胺酶和肽聚糖合成酶等。
三、脂类脂类是细菌细胞壁的第三个重要成分。
细菌细胞壁中的脂类主要是脂多糖和磷脂。
脂多糖是由多糖和脂质组成的复合物,其中脂质的作用是增强脂多糖的稳定性和抗酶解性。
磷脂则是一种主要存在于细胞膜内层的脂质,它参与了细胞膜的合成和维护。
四、其他成分除了上述三类成分外,细菌细胞壁还含有其他一些成分。
例如,一些细菌细胞壁中含有酸性多糖,如乳酸和醋酸等。
这些酸性多糖能够增强细胞壁的酸耐受性和抗菌作用。
此外,细菌细胞壁中还含有一些离子和小分子物质,如钙离子和镁离子等。
这些离子能够与多糖和蛋白质形成稳定的结合,增强细菌细胞壁的稳定性和韧性。
细菌细胞壁是由多糖、蛋白质和脂类等多种成分组成的复合物。
这些成分相互作用,形成了一个坚韧而稳定的细胞壁结构,保护细菌细胞内部结构,同时起到了抗菌和酸耐受等功能。
对细菌细胞壁的研究有助于我们更好地理解细菌的生物学特性,为防治细菌感染提供理论基础。
细菌细胞壁结构细菌细胞壁结构引言:细菌是一种单细胞生物,其细胞壁是一个重要的结构,不仅可以保护细胞免受外界环境的侵害,还可以提供机械支撑和形态稳定性。
本文将详细介绍细菌细胞壁的结构、组成和功能。
一、细菌细胞壁的概述1.1 细菌细胞壁的定义1.2 细菌细胞壁的分类1.3 细菌细胞壁与其他生物体的区别二、细菌细胞壁的主要成分2.1 多糖类物质2.2 蛋白质2.3 脂类三、细菌不同类型的细胞壁结构3.1 典型革兰氏阳性菌的结构3.2 典型革兰氏阴性菌的结构3.3 不完全革兰氏阳性菌和不完全革兰氏阴性菌的结构四、细菌细胞壁对于生命活动的影响4.1 保护作用4.2 形态稳定性和机械支撑4.3 抗生素作用机制五、细菌细胞壁在医学和工业上的应用5.1 抗生素研究和开发5.2 工业上的应用六、细菌细胞壁的破坏与修复6.1 细菌细胞壁的破坏方式6.2 细菌细胞壁的修复方式七、结论引言:细菌是一种单细胞生物,其细胞壁是一个重要的结构,不仅可以保护细胞免受外界环境的侵害,还可以提供机械支撑和形态稳定性。
本文将详细介绍细菌细胞壁的结构、组成和功能。
一、细菌细胞壁的概述1.1 细菌细胞壁的定义在所有原核生物中,包括真核生物中有一些原核类群(如放线菌),都存在一个共同点:它们都拥有一个由多种化合物组成的外层结构,称之为“外膜”或“外被薄膜”。
而这个结构在大多数情况下就是指“细胞壁”(cell wall)。
1.2 细菌细胞壁的分类根据革兰染色法的结果,可以将细菌分为革兰氏阳性菌和革兰氏阴性菌。
这两类细菌的细胞壁结构有所不同。
1.3 细菌细胞壁与其他生物体的区别与真核生物不同,细菌的核糖体没有被膜包围,而是直接悬浮在质粒中。
此外,细菌还缺乏线粒体、叶绿体和内质网等器官。
二、细菌细胞壁的主要成分2.1 多糖类物质多糖类物质是构成大多数细菌细胞壁的主要成分。
其中最常见的是聚糖肽(peptidoglycan),也称为穿透素(murein),它是一种由N-乙酰葡萄氨酸和N-乙酰半乳糖胺交替排列而成的高分子化合物。
细菌细胞壁的结构组成细菌是一类微小的单细胞生物,广泛存在于自然界中。
细菌细胞壁是细菌细胞的外部保护层,它不仅能提供细胞形状和结构的支持,还能保护细胞免受外界环境的侵害。
细菌细胞壁的结构组成与其功能密切相关,下面将详细介绍细菌细胞壁的组成和特点。
1. 基本结构细菌细胞壁主要由两个主要成分组成:胞壁多糖和胞壁蛋白。
胞壁多糖是细菌细胞壁的主要组分,包括肽聚糖和多聚糖。
肽聚糖是由N-乙酰葡萄糖胺和N-乙酰葡萄糖组成的聚糖链,通过肽链相互连接起来。
多聚糖是由N-乙酰葡萄糖和N-乙酰甘露糖组成的聚糖链,通过β-1,4-糖苷键连接起来。
胞壁蛋白则是通过共价键与胞壁多糖结合在一起,形成细菌细胞壁的网状结构。
2. 不同细菌的细胞壁结构细菌细胞壁的结构在不同的细菌中存在差异。
根据细菌细胞壁的特点,可以将细菌分为两类:革兰氏阳性细菌和革兰氏阴性细菌。
革兰氏阳性细菌的细胞壁结构相对简单。
其细胞壁主要由肽聚糖和多聚糖组成,肽聚糖链与多聚糖链交错排列形成网状结构。
此外,革兰氏阳性细菌的细胞壁中还含有大量的胞壁蛋白。
这种细胞壁结构使得革兰氏阳性细菌在革兰染色中会呈现紫色。
相比之下,革兰氏阴性细菌的细胞壁结构更加复杂。
革兰氏阴性细菌的细胞壁由内膜、外膜和中间的边缘层组成。
内膜是细菌细胞内部的脂质双层,外膜则是细菌细胞壁的外层保护层。
中间的边缘层主要由肽聚糖和多聚糖组成。
由于外膜的存在,革兰氏阴性细菌在革兰染色中会呈现红色。
3. 细菌细胞壁的功能细菌细胞壁具有多种重要功能。
细菌细胞壁能够提供细胞形状和结构的支持。
细菌细胞壁的网状结构能够保持细胞的形态稳定,使细菌能够适应不同的环境。
细菌细胞壁能够保护细胞内部免受外界环境的侵害。
细菌细胞壁的多聚糖和肽聚糖能够形成一个密实的屏障,阻止有害物质进入细胞。
细菌细胞壁还能够参与细菌的营养吸收和代谢过程。
细菌细胞壁上的一些蛋白质可以与外界环境中的营养物质结合,促进细菌的吸收和利用。
4. 细菌细胞壁与抗生素的关系细菌细胞壁的结构和功能对抗生素的作用具有重要影响。
大肠杆菌大肠杆菌(Escherichia coil)是我们了解得最清楚的原核生物,它为分子生物学的发展做出了巨大的贡献。
本文简要介绍大肠杆菌的细胞壁、细胞膜、细胞核、质粒、核糖体、鞭毛等结构与功能以及大肠杆菌的产能方式和生化反应。
大肠杆菌(Escherichia coli)在自然界分布很广,是人和动物肠道中的正常菌群。
正常情况下一般不致病,但它是条件致病菌。
大肠杆菌是单细胞原核生物,具有原核生物的主要特征:细胞核为拟核,无核膜,细胞质中缺乏象高等动植物细胞中的线粒体、叶绿体等具膜结构的细胞器,核糖体为70S,以二分分裂繁殖。
大肠杆菌为革兰氏阴性、两端钝圆的短杆菌。
其大小为:0.5~0.8μm×1.0~3.0μm。
周身鞭毛,能运动,具致育因子的菌株还具性菌毛。
1.形态结构1.1 细胞壁位于大肠杆菌的最外层,厚约11um,分为两层,即外膜和肽聚糖层。
外膜是大肠杆菌细胞壁的主要成分,占细胞壁于重的80%,厚约8nm,位于肽聚糖层的外侧,主要由磷脂、蛋白质和脂多糖组成。
脂多糖是革兰氏阴性细菌的内毒素,也是革兰氏阴性细菌细胞壁的特有成分,主要和其抗原性、致病性及对噬菌体的敏感性有关。
肽聚糖层由1~2层网状的肽聚糖组成,占细胞壁干重的10%,厚约2~3nm,是细菌等原核生物所特有的成分。
大肠杆菌的肽聚糖由聚糖链、短肽和肽桥三部分组成。
聚糖链由N-乙酸葡糖胺和N-乙酚胞壁酸分子通过β-1,4糖苷键连接而成,短肽由L-丙氨酸→D-谷氨酸→内消旋二氨基庚二酸→D-丙氨酸组成,并由L-丙氨酸与胞壁酸相连。
一条聚糖链短肽的D-丙氨酸与另一条聚糖链短肽的内消旋二氨基庚二酸直接形成肽键(肽桥),从而使肽聚糖形成网状的整体结构。
由脂蛋白将外膜和肽聚糖层连接起来,从而使大肠杆菌的细胞壁形成一个整体结构。
1.2 细胞膜大肠杆菌细胞膜的结构和其它生物细胞膜的结构相似。
但其细胞膜中蛋白质的含量高且种类多。
其细胞膜具选择透性,从而可控制营养物质进出细胞。
对革兰氏阳性菌和革兰氏阴性菌的认识
①革兰氏阳性细菌的细胞壁 G+细菌细胞壁具有较厚(20-80nm)而致密的肽聚糖层,有15~50层,每层厚度1nm,,约占细胞干重的50~80%,占细胞壁成分的60%~90%,它同细胞膜的外层紧密相连。
此外,尚有大量特殊组份磷壁酸(teichoic acid),也称胞壁质(murein),是由核糖醇(ribitol)或甘油(glycerol)残基经由磷酸二键互相连接而成的多聚物。
磷壁酸分壁磷壁酸(wall teichoic acid)和膜磷壁酸(membrane teichoic acid)两种,前者和细
胞壁中肽聚糖的n-乙酰胞壁酸连结,膜磷壁酸又称脂磷壁酸(lipteichoic acid)和细胞膜
连结,另一端均游离于细胞壁外。
磷壁酸抗原性很强,是革兰氏阳性菌的重要表面抗原;
1.阳性的肽聚糖厚,阴性的肽聚糖薄,如下图:
采用革兰氏染色技术可以将细菌细胞壁区分为两种类型,革兰氏阳性(G+)和革兰氏阴性(G-)。
革兰氏染色(Gram stain)是丹麦医生革兰(Hans Christian Gram)于1884年采用表2-3所列
程序对细菌染色,结果因显色不同可将细菌区分为两类,分别称为革兰氏阳性和阴性。
细胞壁是位于细胞最外层的一层坚韧而略具弹性的结构。
它约占细胞干重的10%—25%。
通过特殊染色方法或质壁分离法可在光学显微镜下看到细胞壁的存在。
它具有固定菌体外形和保护菌体的作用。
对有鞭毛的细菌来说,它又是鞭毛运动的必需条件。
细菌细胞壁的主要化学成分是肽聚糖。
肽聚糖是由N—乙酰葡糖胺、N—乙酰胞壁酸以及短肽聚合而成的多层网状结构大分子化合物,其中的短肽一般由4个氨基酸组成,而且常有D一氨基酸和二氨基庚二酸存在。
不同种类细菌细胞壁中肽聚糖的结构与组成不完全相同,一般是由N—乙酰葡糖胺与N —乙酰胞壁酸重复交替连接构成骨架。
短肽接在胞壁酸上,相邻的短肽又交叉相连,形成网状结构。
相邻的短肽连接方式随细菌种类不同而有差别,如在大肠杆菌中是由相邻的短肽直接相连;在金黄色葡萄球菌中则是通过甘氨酸组成的五肽与相邻的短肽相连。
各种细菌的细胞壁厚度不等,化学成分不完全相同。
革兰氏阳性细菌的细胞壁较厚,约20—80nm,肽聚糖含量高,约占壁重的40%—90%;另外还含有磷壁酸质。
革兰氏阴性细菌的细胞壁较薄,约10nm。
壁虽薄,但结构与化学组成却比革兰氏阳性细菌复杂得多。
在电子显微镜下可见紧靠细胞质膜外有2—3nm厚的肽聚糖层,最外面还有一较厚(7—9nm)的外壁层。
肽聚糖含量低,占5%—10%,所以肽聚糖层薄。
外壁层主要由脂蛋白、脂多糖组成。
类脂的含量大大高于革兰氏阳性细菌,但不含磷壁酸质。
革兰氏染色法可以将细菌分成两大类:革兰氏阳性细菌和革兰氏阴性细菌。
革兰氏染色方法是丹麦的医生革兰氏(C.Gram)在1884年首创。
现在它是细菌学中一种重要的常用的染色方法。
它的程序如下:先用草酸铵结晶紫液染色,再加碘液,使细菌着色,继而用乙醇脱色,最后用蕃红(沙黄)复染。
如果用乙醇脱色后,仍保持其初染的紫色,称为革兰氏染色反应阳性;如果用乙醇处理后迅速脱去原来的颜色,而染上蕃红的颜色,称为革兰氏染色反应阴性。
关于革兰氏染色的原理,目前一般认为与细菌细胞壁的化学组成、结构和渗透性等有关,主要是物理作用。
抗菌素治疗新进展2024年版1. 引言抗菌素治疗一直是全球公共卫生领域关注的焦点。
随着细菌耐药性的不断发展和新型抗生素的较少发现,如何更有效地利用现有抗菌素资源,以及研发新的抗菌素治疗方案,已成为当务之急。
本文将介绍2024年抗菌素治疗领域的最新进展,包括新型抗生素的研发、抗菌素耐药性的管理以及抗菌素治疗策略的优化。
2. 新型抗生素的研发2.1 拓扑异构酶抑制剂拓扑异构酶抑制剂通过抑制细菌的DNA复制和转录过程,从而发挥抗菌作用。
2024年,一种新型拓扑异构酶抑制剂(如ETA-013)成功进入临床实验,对多种耐药菌具有广谱抗菌活性,为治疗多重耐药感染提供了新的选择。
2.2 肽聚糖合成抑制剂肽聚糖合成抑制剂通过干扰细菌细胞壁的合成,导致细菌死亡。
2024年,一种新型肽聚糖合成抑制剂(如BBL-102)完成了临床试验,对革兰氏阳性菌和革兰氏阴性菌均有良好的抗菌效果,为治疗严重感染提供了新的策略。
2.3 核酸合成抑制剂核酸合成抑制剂通过抑制细菌的DNA和RNA合成,从而抑制细菌生长。
2024年,一种新型核酸合成抑制剂(如AC-75)成功进入临床实验,对多种耐药菌具有强大的抗菌活性,为治疗多重耐药感染提供了新的希望。
3. 抗菌素耐药性的管理3.1 细菌耐药性监测细菌耐药性监测是抗菌素管理的重要组成部分。
2024年,全球多个国家和地区建立了细菌耐药性监测网络,定期发布细菌耐药性监测报告,为抗菌素合理使用提供科学依据。
3.2 抗生素使用指南抗生素使用指南为医生提供了关于抗生素治疗的推荐方案。
2024年,多个专业组织发布了抗生素使用指南,强调针对感染病原体选用合适的抗生素,避免不必要的抗生素使用和滥用。
3.3 抗菌素耐药性干预策略抗菌素耐药性干预策略旨在延缓细菌耐药性的发展。
2024年,全球多个国家和地区实施了抗菌素耐药性干预项目,包括加强感染控制、优化抗生素治疗方案、推广快速诊断技术等。
4. 抗菌素治疗策略的优化4.1 个体化抗生素治疗个体化抗生素治疗根据患者的感染病原体、耐药性状态和病情严重程度制定治疗方案。
支原体l型细菌的主要异同点支原体和L型细菌,看起来是不是有点像两个生物界的“失联姐妹”?你可能会想,它们到底有什么关系?其实这两种细菌有不少相似之处,但也有各自的独特性,就像两个虽然长得像但性格截然不同的“亲戚”。
说到这,你大概有点困惑了吧,别急,慢慢来,我这就给你捋一捋它们之间的异同。
支原体和L型细菌都属于无细胞壁的细菌,这一点简直就是它们的“家庭特征”。
你知道,细菌一般都有细胞壁,像是一层保护外衣,能防止外界的侵害。
但这两种家伙却不一样,支原体因为没有细胞壁,显得特别“裸露”。
支原体本来就非常特别,它们是最小的自由生活细菌之一。
它们没有细胞壁的保护,所以常常像个“小透明”,不像其他细菌那么扎实。
L型细菌也是没有细胞壁的,但它们可不是天生如此哦!它们本来是有细胞壁的,只是因为某些条件下,比如药物的干扰,导致细胞壁突然消失,结果变成了“裸身细菌”。
这个变化就像是一个在某个关键时刻被“逼迫”变身的细菌。
但是,光有这些相同点不够,还得看看它们的不同之处。
支原体基本上都没有细胞壁,这也就让它们在生活中比较“自由自在”。
你想想看,没有了厚厚的细胞壁保护,支原体就可以通过一些细胞之间的缝隙悄无声息地进入宿主,进行繁殖。
所以它们在人体内大肆活动,往往造成一些不太好处理的感染问题。
而L型细菌呢,虽然它们在没有细胞壁后变得“脆弱”一些,但它们在进入宿主前,往往要经过一个长期的“适应过程”。
这让它们在细胞壁一度消失后,仍然能够勉强存活。
再来说说它们的生活方式。
支原体喜欢安安静静地呆在宿主的细胞内,像是一个个“隐士”。
它们通过跟宿主的细胞结合,获取养分,就像是偷偷进入餐厅后偷吃饭的“高手”。
而L型细菌的生活就有点不安分了,虽然它们一开始可能也会通过细胞壁的方式进入宿主,但它们的“生活节奏”却相对较快。
一旦细胞壁消失,它们就变得更加“活跃”,有时候甚至会表现出极强的耐药性。
你可能听说过,抗生素对它们往往没什么作用,这就是因为它们没有细胞壁,无法被常见的抗生素像青霉素等“杀死”。
细菌细胞壁对细胞功能的影响细菌细胞壁对细胞功能的影响【摘要】细菌的细胞壁位于细菌细胞的表面,是一层较厚的、坚韧的并略带弹性的结构,它除具有保护细胞、维持细胞外形和对大分子的运输具有选择性等作用外,还为细菌鞭毛提供可靠的支点,并和细菌的抗原性、致病性、对噬菌体的敏感性以及与几种重要抗生素的抑菌机制密切有关。
细胞壁缺陷细菌(Cell wall deficient bacteria, CWDB) 是细菌受物理、化学或生物因素作用下形成的细胞壁完全或部份丧失的变型,也称L 型。
细菌胞壁的缺失可以是自发的, 也可以是人工诱导的;细菌转变成细菌L型,这可能是细菌抵抗不利环境条件的一种方式,并且有一定的耐药性,仍可保留有一定的毒力, 具有致病性, 且免疫性也发生变化。
【关键词】细胞壁细菌L型抗原性致病性敏感性免疫性本文就CWDB的生物学特性的研究对细菌细胞壁与细胞功能的相关性综述如下。
【内容】1 CWDB 的致病性1 1 CWDB 的毒力有研究认为, CWDB 的致病性较原菌减弱, 但仍具有一定的致病性。
在对产B 型肠毒素金黄色葡萄球菌(金葡菌) 的研究中发现, L 型金葡菌仍产生致病毒素, 但数量较原菌减少, 致病力也有所下降。
当其经返祖现象重获细胞壁后, 产毒素能力及致病性与原菌无显著差异[3] 。
这种毒力回复实验提示,CWDB 致病性的减弱可能与其繁殖力下降及细胞壁中的某些致病物质的丢失有关。
CWDB 的致病性减弱往往使得其引起的疾病症状变得不典型, 如结核分枝杆菌的CWDB 型感染不产生结核结节, 金葡菌的CWDB型感染也常不引起化脓性炎症。
1 2 CWDB与慢性炎症 CWDB 往往引起慢性感染,尤以尿路感染最为常见。
究其原因, 一方面, 在感染性疾病的治疗中, 部分病原菌被诱导转变为CWDB, 使得临床症状不明显, 进而导致患者过早停药, 待药物作用消除后, 残存于病灶的CWDB 可返祖恢复原菌的致病能力, 造成病程的反复发作, 感染迁延不愈; 另一方面,机体某些器官的特殊结构(如肾髓质) 可屏蔽白细胞并为CWDB 提供高渗环境, 使之难以被彻底杀灭。
细菌细胞壁的组成结构细胞壁的观察方法:①质壁分离+染色②电镜观察G+与Gˉ细菌cw的模式结构★共有组分—肽聚糖★特有组分—G+磷壁酸Gˉ脂多糖细胞壁是位于菌体的外层,内侧紧贴细胞膜的一层无色透明,坚韧而有弹性的结构。
细胞壁约占细胞干重的10%—25%。
细胞壁是位于菌体的外层,内侧紧贴细胞膜的一层无色透明,坚韧而有弹性的结构。
细胞壁约占细胞干重的10%—25%。
概念:肽聚糖是由N—乙酰胞壁酸(NAM)和N—乙酰葡糖胺(NAG)以及短肽链(主要是四肽)组成的亚单位聚合而成的大分子聚合物。
肽聚糖网格状结构﹙2﹚G+菌的细胞壁肽聚糖(peptidoglycan):磷壁酸(teichoic acid)细胞壁厚度较厚,20~30nm 细胞壁分层不分层肽聚糖含量含量高(30-70)肽聚糖层数层数多交联度交联度高磷壁酸有脂多糖无DAP 无肽聚糖:含量高,占壁重的30~70% ;不同菌种中肽聚糖(肽链)组分不同,具重要分类意义◆革兰氏阳性细菌肽聚糖(peptidoglycan)的结构(幻灯片015.016.017.018)以Staphylococcus aureus为代表。
肽聚糖层厚度为20~80nm,由约40层网状分子组成。
网状的肽聚糖大分子是由大量小分子单体聚合而成的。
每一肽聚糖单体含有三个组成部分:a) 双糖单位,N-乙酰葡萄糖胺与N-乙酰胞壁酸分子通过B-1,4-糖苷键连接而成;b) 短肽尾,由四个氨基酸连起来的短肽连接在N-乙酰胞壁酸分子上。
这四个氨基酸是L-丙氨酸-D-谷氨酸-L-赖氨酸-D-丙氨酸;c) 肽桥,S. Aureus的肽桥为甘氨酸五肽。
肽桥的氨基端与前一肽聚糖链中一个肽尾的第四氨基酸——D-丙氨酸的羧基相连接,而它的羧基端则与相邻的肽聚糖链中一个肽尾的第三氨基酸——碱性氨基酸L-赖氨酸的氨基相连接,从而使前后两个肽聚糖链交联起来。
溶菌酶:A. Fleming,1922年发现,存在于卵清、人的泪液和鼻涕、部分细菌和噬菌体内,能有效地水解细菌肽聚糖,作用于肽聚糖骨架上的N-乙酰胞壁酸的C1与N-乙酰葡糖胺C4之间的B-1,4-糖苷键。
有的教材中的定义为细胞壁是细菌最外的一层厚实、坚韧的外被,这个最外层是不够准确的,从图上我们可以看见,有的细菌最外层有荚膜包裹。
细菌呈现各种外形一种很重要的原因就是有细胞壁,比如一个杆状细菌,除去细胞壁后的原生质体会变成球型。
细胞壁的功能:细菌细胞壁坚韧而富有弹性,保护细菌抵抗低渗环境,承受世界杯内的5~25个大气的渗透压,并使细菌在低渗的环境下细胞不易破裂,细菌细胞壁能防止细菌在低渗溶液中涨破是因为它有支持保护的作用,不会导致吸水过多而涨破而它不能保护其在高渗中不死,是因为细胞在外界溶液浓度大于细胞内浓度时,质壁分离,溶液浓度过高的时候,质壁分离不能复原,自己死亡了。
大肠杆菌的膨压可达2个大气压,相当于汽车内胎的压力。
举例:细胞壁就相当于自行车的外车胎,如果外胎破损了,内胎很容易炸。
细菌的生长和细胞壁的生长相配合,有密切关系。
细菌的鞭毛是生长在细胞膜上,但鞭毛的运动支点是由细胞壁提供的。
细菌如果失去细胞壁,它的鞭毛将不能运动。
鞭毛是长在细胞膜上,但细胞壁给它一个运动支点,没有细胞壁不会动。
举例:头发长在头皮上,头发自己是不会动的,但中间加一把梳子就能摆动头发,梳子就相当于细胞壁,头皮就相当于细胞膜。
细胞壁是一层网格状结构,就像一层防护网罩在细胞表面,阻拦抗生素等大分子物质对细菌的伤害。
细胞壁相当于细菌的防盗网。
细胞细胞壁壁通透、有弹性、无生命活性,就像细菌外面罩一个网子。
细菌的抗原性与细胞壁有关,例如一些致病菌侵入人体后会使人产生抗体,促使人产生抗体的物质就是抗原,细菌的抗原就是由细胞壁提供给的。
细菌侵入人体生长繁殖会产生一些对人有刺激性的毒素,这些毒素也是由细胞壁提供的。
一些抗生素如青霉素杀菌原理就是通过破坏细胞壁来杀死细菌。
噬菌体进入细菌内时需要一把钥匙,这把钥匙就存在于细胞壁上,噬菌体需要先识别细胞壁上的这些钥匙才能进入细菌内。
革兰氏染色:正染色和负染色:而背景因未被染色而呈光亮,这种染色称为正染色。
《微生物学》细菌细胞的结构基本结构:细胞壁:细菌超薄切片的电镜直接观察细胞膜概念:细胞质膜(cytoplasmic membrane)又称质膜(plasmamembrane)、细胞膜(cellmembrane)或内膜(innermembrane),是紧贴在细胞壁内侧、包围着细胞质的一层柔软、脆弱、富有弹性的半透性薄膜,厚约7~8 nm。
细胞膜的观察方法:•质壁分离后结合鉴别性染色在光学显微镜下观察;•原生质体破裂;•超薄切片电镜观察;电镜观察到的细胞质膜,是在上下两暗色层之间夹着一浅色中间层的双层膜结构,这与细胞膜的化学组成有关。
细胞膜的化学组成与结构模型:A.磷脂细胞膜的化学组成与结构模型:A.磷脂细胞膜的化学组成与结构模型:B.蛋白质细胞膜的化学组成与结构模型:C.甾醇类物质由磷脂分子形成的双分子膜中加入甾醇类物质可以提高膜的稳定性。
hopanoid类甾醇,其作用被认为也是稳定细胞膜的结构。
细胞膜的化学组成与结构模型:D.液态镶嵌模型①膜的主体是脂质双分子层;②脂质双分子层具有流动性;③整合蛋白因其表面呈疏水性,“溶”于脂质层疏水性内层中;④周边蛋白表面含有亲水基团,通过静电引力与脂质双分子层表面的极性头相连;细胞膜的生理功能:A、选择性地控制细胞内、外的营养物质和代谢产物的运送;B、是维持细胞内正常渗透压的结构屏障;C、合成细胞壁和糖被的各种组分(肽聚糖、磷壁酸、LPS、荚膜多糖等)的重要基地;D、膜上含有氧化磷酸化或光合磷酸化等能量代谢的酶系,是细胞的产能场所;E、是鞭毛基体的着生部位和鞭毛旋转的供能部位;间体:细胞质膜内褶而形成的囊状构造,其内充满着层状或管状的泡囊。
多见于G+细菌。
细胞质:A.细胞质(cytoplasm)是细胞质膜包围的除核区外的一切半透明、胶状、颗粒状物质的总称。
含水量约80%。
B.细胞质的主要成分为:核糖体、贮藏物、多种酶类和中间代谢物、质粒、各种营养物和大分子的单体等,少数细菌还有类囊体、羧酶体、气泡或伴孢晶体等。