能耗管理平台
- 格式:doc
- 大小:42.00 KB
- 文档页数:5
能耗管理系统功能展示能耗管理系统是绿色建筑能效管理系统,又称能源控制与管理系统,系统应用智能化集成系统技术,对绿色建筑内各用能系统的能耗信息予以采集、显示、分析、诊断、维护、控制及优化管理,通过资源整合形成具有实时性、全局性和系统性的能效综合职能管理功能的系统。
能耗管理系统是一个涵盖面很广的综合性系统,涉及建筑智能化、工业自动化、数据采集分析等多个技术领域。
能效管理系统实施的最终目的就是通过智能化系统集成来实现对既有系统的能源消耗进行节约与改善。
它是以绿色建筑内各用能设施基本运行为基础条件,依据各类机电设备运行中所采集的反映其能源传输、变换与消耗的特征,采用能效控制策略实现能源最优化,是最经济的专家管理决策系统,可实现“管理节能”和“绿色用能”。
能耗管理系统包含三个子系统:即能耗分项计量、控制与管理系统(也有很多专家和生产厂家称为能耗综合管理系统)和节能控制系统以及各类传感器在线监测系统。
其中能耗分项计量、控制与管理系统包括:变配电监控系统、中央空调能耗计量、控制与管理系统、三表(水、电、气三表集抄)计量监控系统等,节能控制系统包括:智能照明节能控制系统、中央空调节能控制系统、电梯系统等。
能耗管理系统需要监控建筑分布、设备类型、点数及设备的分布情况,针对实际项目建立能效管理系统(能源控制与管理系统),该系统直接对地铁站、商业中心、住宅区、工厂、医院学校、政府大楼等的能耗情况进行监控及评估,通过把所监测的节点能耗信息集成到能效管理系统后台,同时可通过广域网上传至络,方便管理层对各功能区的用能情况进行监管和评估。
能耗综合管理平台核心理念在于:一个中心、两个基本点:一个中心,即“能耗受控”,在不影响建筑舒适性的前提下,降低能源消耗,提升能源使用效率;两个基本点是“能耗可视化”和“寻找最优能效控制方案”,“能耗可视化”通过采集各类能耗信息、通过多种发布手段(网络、大屏幕展示厅、展板等),使得能源消耗的任何异常实时显示于人们面前,促使全员参与用能管理。
碳中和能耗管理平台建设方案
随着全球气候变化的日益严峻,各国开始逐步采取措施来应对这一问题,其中之一便是推行碳中和政策。
而能耗管理平台是实现碳中和目
标的关键之一。
因此,建设碳中和能耗管理平台成为了当下重要的任
务之一。
步骤一:初步调研
在建设碳中和能耗管理平台之前,需要进行大量的调研。
首先,需要
考虑具体的建设范围,涉及哪些行业、企业、区域等。
其次,需要了
解当前的能源消耗情况以及存在的问题。
最后,需要对现有的能耗监
测技术、设备等进行评估,看是否能够满足建设需要。
步骤二:制定方案
在初步调研的基础上,需要制定碳中和能耗管理平台的建设方案。
方
案的制定需要充分考虑到各个方面的因素,包括技术、人员、资金等。
建设方案需要考虑到整个系统的结构和设计,以及如何提高能耗监测
系统的精度和有效性等。
步骤三:实施方案
在制定好建设方案之后,需要实施方案。
这一步通常包括安装各种能
源监测设备、建设数据中心、开发电子计量系统、人员培训等。
需要
充分考虑到各方面的成本和时间。
步骤四:完善管理
碳中和能耗管理平台的建设是一个长期的过程,它需要持续地进行各
项数据采集、分析和管理。
在实施过程中,需要建立一套完善的管理机制,保证数据的可靠性和安全性,并能够及时地对数据进行分析和报告,为后续决策提供有力支持。
总之,建设碳中和能耗管理平台不仅有助于减少能源消耗,缓解环境压力,更能提高企业的经济效益和社会形象。
希望本文的介绍能够帮助相关从业者更好地了解碳中和能耗管理平台的建设方案。
能耗管理系统(一)引言概述:能耗管理系统是一种用于监测和管理能耗的软件系统。
它通过收集和分析各种能源数据,帮助机构和企业了解能源使用情况,优化能源消耗,并减少能源浪费。
本文将对能耗管理系统的五个主要方面进行详细介绍。
正文内容:一、数据收集和监测1. 安装传感器设备:能耗管理系统需要安装传感器设备来收集能源数据,如电力、水、气体等。
2. 数据读取与传输:系统通过读取传感器设备的数据,并将其传输到中央服务器进行存储和分析。
3. 实时监测能耗:系统提供实时能耗监测功能,能够及时显示各种能源的使用情况,并对异常情况进行报警。
二、能源分析和优化1. 能耗分析报告:根据收集到的数据,系统生成能耗分析报告,用于分析各种能源的使用情况和变化趋势。
2. 能源优化建议:系统基于能耗分析结果,提供能源优化建议,以帮助机构和企业降低能耗,并提高能源使用效率。
3. 功能优化和升级:系统不断优化和升级功能,使能源分析更准确,建议更科学,以适应不断变化的能源消耗需求。
三、能源节约措施与监控1. 能耗预测模型:系统根据历史数据和预测算法,建立能耗预测模型,用于预测未来能源使用情况。
2. 节能措施监控:系统监控并评估已实施的节能措施,提供相应的反馈和改进建议。
3. 能源监控报告:系统通过能源监控报告,展示节能效果和节能成本,帮助机构和企业评估节能措施的效果。
四、能源管理与调度1. 能源计划制定:系统支持制定能源计划,包括能源采购、能源使用时间和能源消耗预算等。
2. 能源调度管理:系统监控能源使用情况,根据能源计划进行能源调度管理,优化供需平衡。
3. 异常报警和故障排查:系统及时检测能源使用的异常情况,并提供相应的报警和故障排查功能。
五、能耗管理系统的效益与总结1. 能源成本降低:能耗管理系统帮助机构和企业通过对能源数据的分析和优化,降低能源使用成本。
2. 能源效率提高:系统提供能源优化建议和实时监测功能,帮助机构和企业提高能源使用效率。
能源行业能源管理平台搭建方案第一章能源管理平台概述 (3)1.1 能源管理平台定义 (3)1.2 能源管理平台发展背景 (3)1.3 能源管理平台建设目标 (3)第二章平台需求分析 (4)2.1 能源数据采集需求 (4)2.2 能源数据存储需求 (4)2.3 能源数据分析与展示需求 (4)2.4 能源管理业务需求 (5)第三章平台架构设计 (5)3.1 总体架构设计 (5)3.2 系统模块划分 (6)3.3 技术选型与标准 (6)3.4 平台安全性设计 (6)第四章数据采集与处理 (7)4.1 数据采集方式 (7)4.2 数据预处理 (7)4.3 数据存储策略 (7)4.4 数据清洗与整合 (8)第五章能源数据分析与展示 (8)5.1 数据挖掘与分析方法 (8)5.2 能源数据可视化展示 (8)5.3 能源数据报表 (9)5.4 能源数据预警与预测 (9)第六章能源管理业务模块 (9)6.1 能源监测与监控 (9)6.2 能源消耗统计与分析 (10)6.3 能源需求预测与计划 (10)6.4 能源优化与节能措施 (10)第七章平台开发与实施 (11)7.1 平台开发流程 (11)7.1.1 需求分析 (11)7.1.2 设计阶段 (11)7.1.3 开发阶段 (11)7.1.4 集成与测试 (12)7.2 平台实施策略 (12)7.2.1 项目管理 (12)7.2.2 资源配置 (12)7.2.3 风险管理 (12)7.2.4 沟通与协作 (12)7.3 平台测试与验收 (12)7.3.1 测试计划 (12)7.3.2 测试执行 (12)7.3.3 测试报告 (12)7.3.4 验收标准 (12)7.4 平台运维与维护 (13)7.4.1 运维管理 (13)7.4.2 故障处理 (13)7.4.3 数据备份与恢复 (13)7.4.4 平台升级与优化 (13)第八章平台项目管理 (13)8.1 项目组织与管理 (13)8.1.1 组织结构 (13)8.1.2 职责分配 (13)8.1.3 项目管理流程 (13)8.2 项目进度控制 (14)8.2.1 进度计划制定 (14)8.2.2 进度监控与调整 (14)8.3 项目成本管理 (14)8.3.1 成本预算制定 (14)8.3.2 成本控制与核算 (14)8.4 项目风险管理 (15)8.4.1 风险识别 (15)8.4.2 风险评估与应对 (15)第九章平台推广与应用 (15)9.1 平台宣传与推广 (15)9.2 平台培训与支持 (15)9.3 平台应用案例分享 (16)9.4 平台持续优化与升级 (16)第十章平台评估与改进 (16)10.1 平台功能评估 (16)10.1.1 评估指标体系构建 (16)10.1.2 评估方法选择 (16)10.1.3 评估结果分析 (16)10.2 用户满意度调查 (17)10.2.1 调查方法 (17)10.2.2 调查内容 (17)10.2.3 调查结果分析 (17)10.3 平台改进策略 (17)10.3.1 功能优化 (17)10.3.2 界面设计改进 (17)10.3.3 响应速度提升 (17)10.4 平台持续发展建议 (17)10.4.1 建立健全平台运行机制 (17)10.4.2 加强人才培养和技术创新 (17)10.4.3 拓展市场与应用场景 (17)第一章能源管理平台概述1.1 能源管理平台定义能源管理平台是指运用现代信息技术、物联网、大数据、云计算等手段,对能源生产、传输、消费等环节进行实时监测、分析、优化和控制,以实现能源的高效利用、节能减排和可持续发展的一种智能化管理工具。
大型公共建筑节能监测系统主要由三部分组成:现场采集子系统,数据中转站子系统及数据中心服务系统现场采集子系统现场采集子系统安装在被监测的大楼内部,结构如下图所示:主要由计量表具、数据采集器、以太网网络系统3部分组成。
计量表具主要包括:普通网络电量表、多功能网络电量表、网络水表等,未来可考虑接入冷热量表、蒸汽表等,所有表具需要具备符合国家标准的RS-485底层通讯接口,上层协议按照住建部《国家机关办公建筑和大型公共建筑能耗监测系统分项能耗数据传输技术导则》的规范,采用符合国家标准的通讯协议如:DL/T645-1997、CJ/T188-2004、GB/T19582-2008等协议。
所选表具需具备国家计量监督部门的认证,并满足各项电气安全规范。
数据采集器采用完全符合住建部《分项能耗数据传输技术导则》的要求,内置近百种常用计量表具的通讯协议,并提供协议解析脚本实现新增表具的扩展。
产品提供4、8、16等多个接口版本选择,按依照现场环境自由组成星型或总线型拓扑网络,方便施工与调试。
以太网网络系统采用普通的以太网架构,由路由器和交换机组成。
采集服务和web服务需要该网络的防火墙开放TCP端口80和UDP端口80,并且对其传输速率和数据包大小不受限制,以便数据传输和客户端访问能耗平台网站。
如果需要提供数据远程服务,须允许外部网络访问管理平台服务器的数据库。
现场采集子系统在设计阶段考虑到了如下问题1、标准性:计量表具按照住建部导则规范,选用具有RS-45通讯接口和满足DL/T645-1997等标准通讯协议的产品,能够兼容各种采集系统并利于维修替换。
数据采集器完全符合建设部导则要求,向数据中转站和数据中心发送的数据包使用了标准的XML数据协议格式,可以平滑接入任何市级、省级甚至国家级数据监测平台。
2、开放性:采集器向下可通过扩展协议解析脚本的方式任意接入各种品牌各种型号具备RS-485通讯接口的计量表具,向上使用符合国家标准的通讯协议,可以与任意品牌符合国家标准的数据中转站,实现互通互联。
3、准确性:采集间隔在国家标准中规定的15分钟以内,可以准确捕捉所有能耗拐点及峰值功率的突变,消除因延时而产生的计算误差。
表具和互感器的选型和参数选取使用由清华大学建筑节能研究中心开发的专用设计计算模拟软件,准确匹配计量精度的要求。
4、扩展性:数据采集器可扩展采集冷/热量,燃气量等其他能耗数据信息,还可扩展采集温湿度、CO2浓度等环境参数信息。
5、安全性:采集器与数据中转站或数据中心间通讯采用住建部导则中规定的AES加MD5算法进行数据包加密,该加密算法广泛应用与金融、国防等重要领域拥有良好的安全性。
数据采集器操作系统采用裁剪优化的Linux操作系统,关闭了全部无用网络端口,能有效避免网络攻击和病毒入侵。
6、稳定性:采集器硬件平台选取了被高端网络通讯设备厂商广泛采用的PowerPC架构的CPU处理器,具有极强的稳定性和可靠性,软件使用美国宇航局使用的Python语言编写全部核心代码内建微型数据库,可实现长达1个月的断点续传数据保障功能,即使传输网络出现问题,也可确保数据不会丢失。
编辑本段数据中转站子系统数据中转站子系统采用针对大型公共建筑节能监测系统研发的iSagy本地服务系统。
该可将接收到的各电表能耗数据按照处理流程,转换为符合住建部《能耗数据采集技术导则》的分项能耗数据并最终上传给市级数据中心。
主要进行的工作包括:数据采集包接收、数据采集网关命令下达、能耗数据分精度计算、支路能耗数据计算、分项能耗数据拆分计算、分项能耗数据合并计算,上传数据发送、数据展示分析、系统管理、数据同步等功能。
数据中转站上传数据中心数据包协议符合住建部《能耗数据采集技术导则》标准要求,采用XML协议规范进行编码,上传内容包括建筑基本情况和能耗数据两项,其中建筑基本情况含基本项和附加项两部分,采用人工采集的方式获取,并在建设阶段统一上传至市级数据中心。
能耗数据包括电量、水量、燃气量等分类能耗数据,其中耗电量按照分项能耗数据形式组织,包含照明插座用电、空调用电、动力用电、特殊用电四个一级分项和依照建筑配电情况组织的8到19个二级分项。
其中电量、水量等可以通过自动采集获取的数据应采取自动采集的方式,采集并上传至数据中心,建筑消耗的煤、液化石油、人工煤气、汽油、煤油、柴油等能耗量等不能自动采集的数据应通过人工采集的方式获取并上传到数据中心。
数据中转站子系统除了提供采集接收,处理计算、转发上传等标准功能之外,还为大楼的业主提供了一整套完整的物业服务与节能管理软件系统。
该系统能切实提升大楼物业的管理水平并能为业主带来可观的节能收益。
EMSIV能耗管理平台1、EMSIV能耗管理平台主要包括设备集能耗分析、分户能耗分析、用电参数实时监控、能耗财务分析、报表打印、节能足迹、节能诊断和新闻搜索等八大板块。
此平台可以帮助管理人员更加全面深入地了解建筑物每一时刻、每一角落的能耗情况。
2、设备集能耗分析:按照设备用途和特性,将建筑物内使用的所有设备进行逐层分项,以便管理人员更加清晰、全面地了解建筑物内各个分项的能耗情况。
同时,可以监控各个设备的耗电量和用电安全情况,随意统计各个时段内能耗数据,并可以在设备之间、分项之间进行能耗比较,也可以对不同时间的能耗进行比较。
3、分户能耗分析:根据业态模式和业主要求,可对建筑内部进行分商户、分部门、分地区等方式的分户式管理,对所有分户的能耗和用电安全进行实时监测,详细了解各分户的能源使用情况,如单位面积能耗、用电功率峰值、实时统计电价、各分项能耗统计等。
同时,也可以对其他能耗种类进行同样形式的统计和展示(如水、蒸汽、天然气等),还可以根据从不同角度对分户进行综合排名和对比。
4、用电参数实时监控:将用电支路信息图以web的形式清晰地展示于此平台中,可监控每一条用电支路的耗电量、实时功率、电表读数等实时参数,并配合声光效果对发生故障或者出现用电安全问题的支路进行实时报警。
5、能耗财务分析:此板块可以根据不同的计价方式计算出建筑物内各个设备及各个分户的能源消费详单;帮助建筑物管理人员深入了解能源费用的组成,从而确定各种能源的节能潜力;帮助管理人员选择合理的MD值,从而节省不必要的支出。
6、报表打印:此板块包含了日常使用的所有报表模式,可根据用户需求打印出百种报表。
主要类型包括:设备集报表、分户报表、财务报表、用电参数报表、环境参数报表、HV AC参数报表、诊断信息报表、节能足迹报表、天气报表等。
使用人员还可以自由地根据自己需求设计报表模版,批量生成和打印报表。
7、节能诊断:此板块实现了为每一栋建筑物配备贴身的能源管理专家这个看似不可能的愿望。
我们的专家团队会对建筑物的每一个设备、每一个系统进行深入细致的能耗分析,进行归纳整理后,第一时间通过远程服务器发送给建筑管理人员,从物业管理到系统改造等多个方面,帮助管理人员对建筑物进行有效的节能管理和改造。
8、节能足迹:此板块记录了每一次节能改造的历程及成果,使原来无法说清楚的能源管理,变得可量化、可比较、可评价;使每一项经过节能改造的设备或者分户,均可以看到每一次改造所带来的直接效果,从而为能源管理找到了可靠依据。
数据中转站优点数据中转站子系统在设计阶段考虑到了如下问题:1、标准性:数据中转站软件使用了住建部导则中规范的标准能耗模型进行计算,所得数据无需转换即可接入市级、省级或者国家级数据中心。
中转站上传数据包使用协议遵循住建部《数据中心建设与维护技术导则》标准,可与其他同样遵守该协议标准的数据中心和数据中转站实现互通互联。
2、开放性:数据中转站软件采用了模块化分层的设计思想,从底层数据采集到能耗数据计算,从分项能耗整理到数据分析挖掘,从能耗数据展示再到数据上传上报都可以实现不同程度的开放。
3、准确性:使用了分项能耗特征数据库、动态静态特征信息、不准确度计算等具有专利技术的计算方法保证数据的准确。
使用了最优化能耗拆分方法,可将公共设备能耗数据、客户能耗数据、输配侧的支路能耗数据分别计算处理和表达。
得到的能耗数据表达清晰明确,为下一步的数据挖掘和节能分析提供了良好的基础。
4、可比性:依照住建部制定的标准能耗模型进行归一化计算,能将各种用能设备分别划分到底层分项能耗的范畴。
这样就使得不同建筑、功能相同、形式相近的用能系统或设备,实现在底层分项能耗的可比,可明确地反映具体用能状况或问题;位于这一能耗数据模型上层的分项能耗,往往是由底层的分项能耗合并构成,具有更好的包容性,使得不同建筑、功能相同、但形式差别较大的用能系统或设备,也能实现在上层分项能耗的可比,也可在一定程度上综合反映用能状况。
5、安全性:数据中转站系统采用了Linux+Apache+Java+python的设计,使用UFW防火墙,可以有效避免黑客和病毒的干扰。
服务器系统采取了黑盒无界面的设计,物业人员只能通过专用的管理软件进行操作和维护,可以避免因误操作造成的损失或者人为篡改能耗数据。
6、稳定性:服务器系统使用了工业级电源供电,创造了平稳的电力输出,硬件选型使用了工业级硬件平台,工业级硬盘,可以保证长时间稳定运行。
应用软件的大量采用通用成熟的计算机技术。
市级数据中心市级数据中心包括:数据接收与发送服务器,数据计算与处理服务器,信息展示网站服务器,节能服务专家系统服务器,数据库系统,硬件防火墙,数据备份系统管理员接口等等。
系统结构如下图所示:数据中心系统,采取按照处理流程划分多服务器并行处理的设计架构,将数据采集转发,数据整理计算和信息发布开发成独立的计算单元,使用不同的服务器(物理上的或者虚拟上的)实现分布式并行计算,并最终依靠共用的数据库系统实现通讯耦合,将极好地满足负载均衡、维护简单、运行稳定等多方面的需求。
其中:1、数据采集及转发服务器数据采集及转发服务器,负责实现与各建筑数据中转站之间的通讯,以及将整理好的分项能耗数据发送到省级或者国家级数据中心。
该服务器以通讯处理为主,应接入具有较大带宽的网络中。
另外该服务器应配备较高级别的硬件防火墙,配置选型时应着重考虑内存容量及网络通讯能力。
建议操作系统使用Linux或者Windows Server 2003以上版本。
数据采集和转发软件应尽可能流程简单、模块通用、接口标准。
2、数据处理及计算服务器数据处理及计算服务器,负责将各个数据中转站发送的建筑基础信息和实时能耗数据加工成具有参考和比较价值的标准单位能耗数据如分项单位面积能耗等和统计能耗数据如分项能耗最大值等,同时还要将该数据中心监测范围内各大楼能耗数据加工处理成代表全市建筑特征的统计能耗数据,供上传至更高级别的数据中心使用。
该服务器以计算为主,配置选型时应着重考虑内存容量及处理器能力。
在接入大楼数量较少时,也可以考虑与数据采集及转发服务器公用同一台物理硬件。