套管防磨接头
- 格式:docx
- 大小:121.41 KB
- 文档页数:7
套管头的工作原理及失效分析摘要:在钻井作业和油气测试过程中,必须安装一套安全可靠的井口装置,以便能有效地控制井内作业和生产。
套管头属于井口装置的基础部分,是安装在套管管柱上端用来悬挂各层套管管柱、密封各层套管之间的环形空间并能为防喷器组、采气树等其他井控设备提供标准连接、为各种特殊作业提供套管环空出入接口的一种永久性石油、天然气井口装置。
主题词:井口装置套管头密封环空连接·前言过去,我国各油气田很少使用套管头,在五十年代只有玉门、四川等少数油气田用过国外进口的卡瓦式套管头。
从六十年代起,我国普遍采用焊环形铁板而不采用套管头。
对于浅井和低压井来说,焊环形铁板也可以起到密封套管环形空间和悬挂套管的作用。
但是,由于井深的增加,套管柱对环形铁板的载荷加重引起了环形铁板的严重变形,密封性能和悬挂能力都大大降低,严重影响了井身的质量。
特别是近年来,能开发的低压浅井越来越少,采气井口装置面临的工作环境极为严酷。
对于四川地区来说,主要以天然气为主,天然气中的水分,硫化物,二氧化碳等含量也不相同,有时井口装置还处于高压下工作,这就对我们井口装置提出了更高的要求,能在高温、高压、高含硫等恶劣环境下提供可靠的密封性能。
同样,为了保证井身的安全,在深井中越来越多地使用P110、13Cr110、TP125、140V等高钢级套管,焊接性能差,焊接后很容易因为焊接应力而开裂。
特别是高气压井及含硫化氢的气井,对焊口非常敏感,常因氢脆断裂导致焊口质量不高。
同时,焊环形铁板的井口,套管环形空间与地面是不相通的,没有用以引水引气挤水泥的旁通管线,在实施高压酸化压裂作业时没有平衡液体的通道。
就是在这种情况下,能适应各种恶劣环境且安全可靠的套管头井口装置逐步发展并取代原始的焊环形铁板。
·1、套管头简介根据套管头与表层套管的连接方式可将套管头分为焊接式、螺纹式、卡瓦式,配用套管悬挂器有卡瓦式和芯轴式两种,侧出口的连接方式有螺纹式、栽丝法兰式和法兰式,通常在套管四通的底部设有套管二次密封机构和密封测试口。
套管防磨推荐做法一、概述深井、超深井、定向井以及复杂区块井钻井施工中,由于钻井时间长,在下部井段钻进中,有时不可避免的出现对上部技术套管磨损现象,技术套管的损坏对这些井下部施工往往带来极大的困难,如套管断裂错位、变形,造成下钻遇阻,承压能力下降造成井漏以及压井施工中形成下喷上漏现象等,有的甚至造成报废,损失极大。
以前使用最多的是钻杆胶皮护箍,它的缺点是使用寿命短容易脱落,易引起井下复杂,给正常施工增加一定难度。
套管防磨接头就是针对套管磨损开发的一种新型专用井下工具,应用于钻井周期长的井,特别是井眼轨迹差、“狗腿度”大时,使用套管防磨接头尤为重要,在长期钻井施工中,能有效的防止钻具磨坏套管。
目前,套管防磨接头在新疆各油区施工井中得到广泛应用,效果很好,使深井、超深井施工时,上部套管得到很好保护,有效遏制了深井、超深井长时间施工造成套管磨穿现象,保证了钻井安全施工。
二、结构及工作原理套管防磨接头的工作原理:套管防磨接头:由上接头、下接头、滑动套、防磨套组成。
根据井眼及技套尺寸选择防磨接头,套管防磨接头接在钻杆上,由于套管防磨接头本体中间有一个直径大于钻杆接头外径的滑动套,可在钻杆和套管间形成以套管防磨接头为支撑的隔离点,有效的减少钻杆和套管的直接接触面,并且使钻杆与套管之间磨擦有滑动变成滚动,从而减少钻杆和套管的磨损,很好的保护套管和钻杆。
三、套管防磨接头的使用方法:⑴套管防磨接头使用范围超深井、钻井周期长、井眼轨迹差、地层压力高、套管封固段有复杂地层等。
⑵组装方式一般要求每间隔100m~150m钻杆接一个,根据井眼轨迹情况,使用数量以及间距可做适当调整。
⑶套管防磨接头使用与维护:①每次下钻要适当调整各防磨接头位置,使套管易磨损位置得到最好保护。
②每次下钻要调整最下部一个套管防磨接头位置,使该只钻头钻进中,最下部一只套管防磨接头不出套管。
③每次起钻时要对套管防磨接头进行检查和保养,对出现问题的要及时地更换或维修。
2024年第53卷第1期第25页石油矿场机械犗犐犔 犉犐犈犔犇 犈犙犝犐犘犕犈犖犜2024,53(1):25 31文章编号:1001 3482(2024)01 0025 07犛犓1井套管磨损剩余强度安全评价研究崔国杰1,许 杰1,曹衍国1,靳 楠1,赵洪山2(1.中海石油(中国)有限公司天津分公司,天津300459;2.中石化胜利石油工程有限公司钻井工艺研究院,山东东营257000)摘要:深井超深井钻井过程中,受井眼狗腿度、机械钻速、顶驱转速等因素影响,技术套管的磨损问题不容忽视,严重时将会导致其抗外挤、抗内压强度明显降低,对井筒完整性造成极大隐患。
为此,结合SK1井 244.5mm技术套管磨损原因深入分析,利用套管“磨损 效率”理论模型,建立了套管磨损量及剩余壁厚的预测方法,指出套管磨损严重位置通常发生在狗腿度较大的井深处,且随顶驱转速增加和机械钻速降低,套管的磨损量明显增大。
通过将磨损套管分别简化成具有内壁不圆、不均度的含缺陷套管及“矩形槽”套管,建立了磨损套管的剩余抗外挤、抗内压强度计算方法及全井段剩余强度安全系数计算方法。
分析表明,当顶驱转速高于100r/min、机械钻速低于0.87m/h时,SK1井 244.5mm套管的抗外挤最小安全系数将会低于1.0,需采取合理的钻井提速及防磨措施,以保证技术套管的强度安全。
研究成果对于今后深井超深井的套管柱安全设计具有重要的指导意义。
关键词:套管磨损;磨损预测;剩余强度;技术套管;安全评价中图分类号:TE931.2 文献标识码:A 犱狅犻:10.3969/j.issn.1001 3482.2024.01.004犛狋狌犱狔狅狀犛犪犳犲狋狔犈狏犪犾狌犪狋犻狅狀狅犳犆犪狊犻狀犵犠犲犪狉犚犲狊犻犱狌犪犾犛狋狉犲狀犵狋犺犻狀犠犲犾犾犛犓1CUIGuojie,XUJie,CAOYanguo,JINNan,ZHAOHongshan(1.犆犖犗犗犆,犔狋犱. 犜犻犪狀犼犻狀,犜犻犪狀犼犻狀300459,犆犺犻狀犪;2.犇狉犻犾犾犻狀犵犜犲犮犺狀狅犾狅犵狔犚犲狊犲犪狉犮犺犐狀狊狋犻狋狌狋犲狅犳犛犻狀狅狆犲犮犛犺犲狀犵犾犻犗犻犾犳犻犲犾犱犛犲狉狏犻犮犲犆狅狉狆狅狉犪狋犻狅狀,犇狅狀犵狔犻狀犵257000,犆犺犻狀犪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪)[18] BARALDIP,CADINIF,MANGILIF,etal.Mod el basedanddata drivenprognosticsunderdifferentavailableinformation[J].ProbabilisticEngineeringMechanics,2013,32:66 79.[19] 吴建国.裂纹扩展与损伤演化理论与应用研究[D].北京:北京航空航天大学,2009.[20] ZouX,LvR,LiX,etal.IntelligentElectricalFaultDetectionandRecognitionBasedonGrayWolfOptimizationandSupportVectorMachine[J].JournalofPhysics:ConferenceSeries,2022,2181(1):012058.[21] 田润林.基于多元状态估计的供热管道外施负载预警方法研究[J].区域供热,2021(1):1 7.[22] DUW,TIANY,QIANF.MonitoringfornonlinearmultiplemodesprocessbasedonLL SVDD MRDA[J].IEEETransactionsonAutomationScienceandEngineering,2013,11(4):1133 1148.[23] FANGR,SHANGR,WUM,etal.Applicationofgrayrelationalanalysistok meansclusteringfordynamicequivalentmodelingofwindfarm[J].InternationalJournalofHydrogenEnergy,2017,42(31):20154 20163. 收稿日期:2023 07 24 基金项目:中国海洋石油集团有限公司科技项目“渤海复杂潜山油气藏精细油藏描述及高效开发技术研究”(CNOOC KJ135ZDXM36TJ03TJ GD2020 01)。
套管损坏原因分析及防治技术的研究摘要:随着钻井技术的发展,深井、超深井、复杂地层井、含腐蚀介质油气井的开采不断增加,随之而来的是套管的损坏率不断提高,影响了油气井的开采寿命,经分析研究认为套管的损坏原因主要由地质因素、工程技术因素、油气井开发方式等构成,针对不同的套损原因和机理,当前各国钻井界已采用了多种防治措施,通过综合利用这些技术,对延长套管寿命、进行套损修复、增加油气井的开采,均有很大的帮助。
关键词:套管损坏损坏原因机理防治技术一、套管损坏原因1.1变形和挤毁套管的变形和挤毁这两种损坏方式主要是由地质因素造成,油气井随着油气的开采,地层压力迅速释放,特别是油井出砂,使得储集层砂岩疏松,形成空洞,当上部覆盖地层和下部支撑地层的应力向储集层释放时,储集层就可能发生弹性变形和塑性变形,整个地层的应力变化,导致套管受挤压破坏,这种破坏形式在各大油田均有存在。
巨厚盐膏层的蠕变同样会产生套管的变形和挤毁破坏,这种现象在新疆塔河油田、江汉油田等地区普遍存在[2]。
在钻井和开采过程中,随着水分子对盐膏层的侵蚀,盐膏层的压力体系会产生变化,盐膏层发生蠕动变形,这在钻井过程中非常明显,其蠕变速度之快可导致下套管和固井作业的时间不够,在套管下入后,进行固井作业准备期间,盐膏层的蠕动就可能使套管变形。
并且,经验显示盐膏层厚度越大,蠕变速度越快。
1.2 错断套管的错断大多数由地层的断层滑移变形等造成,也可由盐膏层的蠕变造成,其对油气井的危害程度大于套管的变形和挤毁破坏,一旦形成错断,油气井就会报废,无法进行修复。
错断的产生往往在地层倾角较大的地区,由于对油气储层的开采,破环了原始地层的应力平衡,打破了原始地层结构力的相对静止状态,造成地层的蠕动,使地层的上下层面发生相对位移,对穿过地层的套管形成剪切,造成套管错断。
1.3 磨损套管的磨损大多由工程技术因素造成的,磨损方式可以分为纵向磨损和横向磨损。
纵向磨损主要由起下钻具、起下采油管具等施工引起,套管内管柱与套管之间的纵向相对运动造成这种磨损现象;横向磨损主要是由钻柱旋转,与套管之间形成相对转动引起,这些磨损方式在定向井、水平井等斜度较大的井或者是狗腿度严重的井,存在较为严重。
1.1 分类
产品按防磨套防磨轴旋转的方向分为左旋和右旋两类;按结构分为挡圈式和扣合式两类。
1.2 型号编制
产品按下列规则进行编制:
TF□□□/□-□-□
·防磨轴旋转方向代号(LH表示左旋,右旋不标注);
连接螺纹代号(符合GB/T 22512.2的规定);
适用套管外径,mm;
工作外径,mm;
结构代号(D代表挡圈式,K表示扣合式);
防磨套材质代号(J表示金属,F表示非金属);
产品名称代号。
示例:TFFD206/245-NC50-LH表示防磨套材质为非金属,工作外径206毫米,适用套管直径245毫米,连接螺纹代号NC50左旋挡圈式的产品。
2 要求
2.1 正常工作条件
产品在下列条件下正常工作:
a) 最大工作压力:21MPa;
b) 温度:20℃~160 ℃;
c) 适用环境:非酸性环境;
d) 适用介质:钻井液。
2.2 性能指标
性能指标见表1。
性能指标
2.3 结构
产品示意图见图1、图2。
说明:
1—本体
2—扣合环
3—防磨套
4—扣合环
5—锁紧螺钉
图1 扣合式防磨接头示意图
说明:
1—本体
2—挡环
3—防磨套
图2 挡圈式防磨接头示意图
2.4 主要零部件
2.4.1 防磨套
2.4.1.1 金属型防磨套基材为牌号35#钢或45#钢,应符合 GB/T 699-1999 中6.4.2的规定。
硬度HBW160~200。
2.4.1.2 非金属型防磨套基材为模塑用聚四氟树脂或MC尼龙复合管,应符合HG/T 2902-1997、 SY/T 6701-2012的规定。
加工为成品后性能指标应符合表1的规定。
2.4.2 接头
接头材材料经过热处理后,力学性能应符合 SY/T 5200-2012 中表 10 的规定,硬度HBW285~329,化学成分中磷、硫的含量应符合 SY/T 5200-2012 中表 8 的规定。
2.4.3 挡圈
挡圈为45#钢时应符合GB/T699-1999 的规定;为35 CrMo 或 42 CrMo时应符合 GB/T 3077-2012 的规定。
2.5 规格尺寸
2.5.1 规格尺寸及见表2
规格尺寸
表2(续)
本体防磨作用段的长度260mm、棱长150mm、棱高6-20mm、棱宽30-50mm、布棱数量6个内径:25.4-72mm。