当前位置:文档之家› 稳定剂对反应型聚氨酯热熔胶性能的影响

稳定剂对反应型聚氨酯热熔胶性能的影响

稳定剂对反应型聚氨酯热熔胶性能的影响
稳定剂对反应型聚氨酯热熔胶性能的影响

2018年第33卷第2期2018.V〇1.33No.2

聚氨酯工业

POLYURETHANE INDUSTRY

?37?

稳定剂对反应型聚氨酯热熔胶性能的影响

陈精华石俊杰张健臻陈建军黄恒超

(广州市白云化工实业有限公司广州510540)

摘要:以聚酯多元醇、多异氰酸酯、松香类增粘树脂、催化剂、黏度稳定剂和水解稳定剂等为原 料,制备了反应型聚氨酯热炫肢(PUR)。考察了黏度稳定剂、水解稳定剂对PUR性能的影响。结果表明,当选用多聚嶙酸为黏度稳定剂,用量为80 mg/kg时制备的热嫁胶黏度稳定性最好,在120 T;加热8 h后,熔融黏度较初始值仅增加6.4%;环氧化合物GE500的抗水解效果比碳化二亚胺低

聚物P200的好,水解稳定剂GE500质量分数为2.0%时,PUR粘接试件在100丈、相对湿度95%的老化箱中放置7 d后,粘接强度保持率仍可达52%。

关键词:反应型聚氨酯热炫胶;黏度稳定剂;水解稳定剂

中图分类号:T Q436+. 4、TQ 323. 8 文献标识码:A文章编号:1005-1902(2018)02-0037-03

反应型聚氨酯热熔胶(PUR)—般以聚酯多元 醇和多异氰酸醋反应的聚氨酯预聚体作为基料,配 以增粘树脂、稳定剂、抗氧剂、催化剂、填料等制备而 成[1]。PUR中的稳定剂主要有黏度稳定剂和水解 稳定剂。黏度稳定剂通常为无机酸、有机酸、酰氯 等[2],其作用是保证PUR在制备、储存及应用时黏 度保持稳定。在PUR体系中,黏度稳定剂对氨基甲 酸醋及脲基甲酸酯生成反应影响不大,但能抑制缩 二脲等交联产物的生成反应,从而保证PUR具有较 好的黏度稳定性。水解稳定剂通常为碳化二亚胺和 环氧类化合物[3_4],其作用是减缓或阻止PUR固化 物在潮湿环境下发生水解,延长产品的使用寿命,扩 大产品的使用范围。

本工作考察了不同种类及用量的黏度稳定剂、7JC解稳定剂对PUR性能的影响。

1主要部分

1.1实验原料

结晶性聚酷多元醇Dynacoll 7360、液体聚酯多 兀醇Dynacoll7250,德国赢创特种化学有限公司;液 化MDI,牌号D esm odur CD-C,德国拜耳化工有限公 司;松香树脂,牌号Sylvalite RE 100L,美国亚利桑那 化学公司;二吗啉基二乙基醚(DMDEE),上海雨田 化工有限公司;抗氧剂1010,上海井宏化工科技有 限公司;环氧化合物GE500,德国拉西格公司;碳化 *二亚胺低聚物Stabaxol P200,德国莱茵化学公司;消 泡剂BYK-A535,德国毕克化学有限公司。以上均 为工业级。苯甲酸、多聚磷酸、壬酸,分析纯,上海国 药集团公司。

1.2反应型聚氨酯热溶胶的制备

将 50 份 D ynacoll 7360、90 份 Dynacoll 7250、20 份Sylvalite RE 100L投人反应釜,加热至120 t使 其完全熔化,在搅拌条件下真空脱水至水分低于0.02%,利用干燥氮气消真空后,将20. 5份的液化 MDI投入反应釜内,在氮气保护下,搅拌反应2 h,然 后依次投入0.5份BYK-A 535、0.2份催化剂D M-DEE、0.3份抗氧剂1010、适量的黏度稳定剂和水解 稳定剂,搅拌反应0.5 h,最后在匀速搅拌条件下脱 泡,出料得到PUR,密封保存备用。

1.3粘接试件的制备

将两块标准粘接基材进行除尘、除油处理后,用 溶融的PUR进行水平粘接,粘接面积为12. 5 mmX 25 mm,施胶厚度为2 mm,粘接完成后,在25 T、50%RH固化,为保证完全固化,放置7 d后测试。1.4性能测试

熔融黏度参照标准HG/T 3660—1999,采用美 国Brookfield公司RVDV-S数显旋转黏度计(带 Thermosel加热器)测定120丈的黏度;粘接强度(拉 伸剪切强度)参照标准GB/T7124—2008,采用深圳 市新三思计量技术有限公司C M T4303型微机控制

*基金项目:广州市产学研协同创新重大专项(201604010060)。

?38 ■聚氨酯工业第33卷

电子万能试验机测定。

通过测120 T放置若干时间后的熔融黏度,评 价黏度稳定性。抗水解性采用加速老化的方法评 估,将固化完全的PUR粘接试件放入温度为100 T、相对湿度(RH)为95%的庆声电子公司KTHS-F 型恒温恒湿试验箱,数天后取出,在标准试验条件下 放置1h后测试拉伸剪切强度,以粘接强度(拉伸剪 切强度)保持率评价PUR的抗水解性能。

2结果与讨论

2.1黏度稳定剂种类对PUR性能的影响

表1列出了苯甲酸、多聚磷酸、壬酸3种黏度稳 定剂(用量为80 m g/kg)对PUR性能的影响。

表1黏度稳定剂种类对PU R熔融黏度等性能的影响

黏度稳定剂种类苯甲酸多聚磷酸壬酸

初始黏度/mPa*s613059505900

加热2 h黏度/mPa?s638059605920

加热4 h黏度/mPa*s650060805990

加热8 h黏度/mPa.s686063306250

粘接强度损失率#/% 3.6 1.2 4.7

注:粘接试件120 T 8 h后剪切强度与初始值9.2 M Pa比较,下同。

由表1可以看出,随着加热时间的延长,加人微 量黏度稳定剂制备的PUR熔融黏度均出现不同程 度的上升,其中苯甲酸体系初始熔融黏度较大,且加 热后熔融黏度增大比较明显,这可能跟苯甲酸在PUR制备加热过程中挥发损失、导致其含量降低有 关。虽然加热8 h后多聚憐酸体系比壬酸体系熔融 黏度增加率稍有增大(6. 4%对比5.9%),但其固化 后枯接强度损失率明显低于后者。综合考虑,选择 多聚磷酸作为PUR的黏度稳定剂比较合适。

2.2黏度稳定剂用量对PUR性能的影响

多聚磷酸用量对PUR性能的影响见表2。

表2多聚磷酸用量对反应型聚氨酿热培胶性能的影响

浓度/mg ?kg-104080100200

初始黏度/mPa*s66806240595059005800

加热2 h黏度/mPa*s89206490596059305820

加热4 h黏度/mPa*s138006800608059805870

加热8 h黏度/mPa.s197608210633062106030

粘接强度损失率/%17.8 6.2 1.2 2.59.6从表2可以看出,未加黏度稳定剂的PUR在120 T长时间加热,溶融黏度增加、粘接强度下降明 显。这是因为胶中NCO基发生副反应引起交联增 稠,造成PUR对被粘物的润湿能力变差所致。

多聚磷酸作为黏度稳定剂对抑制黏度增长和粘 接强度损失有效。随着其用量的增加,长时间加热 后PUR的黏度增长幅度变缓,而粘接强度损失率呈 先减小后增大的趋势。这主要因为黏度稳定剂能减 缓NCO基与湿气的反应和其它副反应,较大用量时 对稳定黏度效果更好,但它也会阻碍NCO基与被粘 物反应,量多时会降低粘接强度[5]。综合考虑,多 聚磷酸用量80 m g/kg比较合适。

2.3水解稳定剂种类对PUR粘接性能的影响

不同水解稳定剂(质量分数为2.0%)对100 ^C、95%RH湿热老化后PUR粘接性能的影响见图1。

从图1可见,在抗水解湿热试验中随着时间的 增加,无水解稳定剂的PUR粘接强度急剧下降,6 d 后降为零;而相比之下添加水解稳定剂P200和 GE500的PU R的粘接强度保持率明显提高,尤以 GE500的效果最好,在100 t:、95%R H的老化箱存 放7 d后,粘接强度保持率达52%。主要原因是 PUR中的聚醋链段易水解,在高温髙湿条件下易水 解成端羧基和端羟基化合物,且羧基对PUR的水解 具有催化作用,而水解稳定剂可以与羧基发生化学 反应,从而增加PUR胶层的耐水解性能。水解稳定 剂GE500的效果好于P200,其原因与碳化二亚胺与 羧基反应生成的酰脲在高温下可能会发生可逆反应 产生少量羧基有关[6]〇

2.4水解稳定剂用量对PUR粘接性能的影响

表3和图2分别列出了 PU R中水解稳定剂 GE500用量对粘接试件在湿热老化若干天后粘接强

度和粘接强度保持率的影响。

2期

陈精华,等?稳定剂对反应型聚氨酯热溶胶性能的影响? 39 ?

(1) 添加黏度稳定剂苯甲酸、多聚磷酸、壬酸均 可提高PUR 的熔融黏度稳定性,且以多聚磷酸效果 最好,当多聚磷酸添加量为80 m g /kg 时,120丈加 热8 h 后,PUR 熔融黏度较初始值增加6.4%,粘接 强度损失率仅为1. 2%。

(2)

添加水解稳定剂P 200和GE 500能明显提

高P U R 的水解稳定性,在相同用量的情况下, GE 500的效果优于P 200,且添加GE 500质量分数 2. 0%时PUR 的抗水解效果最佳,粘接试件在100 T 、95%R H 的老化箱中存放7 d 后,粘接强度保持 率可达52%。

参考文献

1 2

3 4 5 6 7

存放时间/d

图2

添加水解稳定剂GE 500的PUR 的粘接强度保持率

从表3和图2可以看出,随着水解稳定剂 GE 500用量的增加,PUR 粘接试件的粘接强度保持 率得到提升,当添加质量分数为2. 0%的GE 500, PUR 的粘接强度保持率最好。添加质量分数3. 0% 的GE 500的PUR 的粘接强度和粘接强度保持率均 比添加2.0% GE 500的差,其原因可能是过多的水 解稳定剂GE 500在PU R 中充当了增塑剂的作用, 使得PUR 与基材的粘接力有所下降所致。

[1]

唐礼道,杨建军,

张建安,等.湿固化聚氨酯热熔胶的研究近况

及展望[J ].聚氨醋工业,2006,21(5) :9-12.

[2] SONG Z Z, U Y G, SMITH J D. Reactive polyurethane hot melt

adhesive : US, 20070155859A1 [ P ]. 2007-07-05.

[3] 刘益军.聚氨酯原料及助剂手册[M]. 2版.北京:化学工业出

版社,2012: 415-417.[4] 季宝,许毅,翟现明.聚氨酯材料的降解机理及其稳定剂[J].

聚氨酯工业,2008,23(6):39-42.[5] 叶青,陆振飞,李健,等.车灯用反应型聚氨酯热熔胶的研制

[J ].化工进展,2010,29( 1) : 108-111,129.[6] 朱玉璘,王淑荣.聚氨酯橡胶水解稳定剂—环氧化合物[J].

合成橡胶工业,1990,13(2) : 133-137.

收稿日期

2017-11-02

修回日期

2018-03-03

Effect of Stabilizers on Properties of Reactive Polyurethane Hot-Melt Adhesive

CHEN Jinghua, SHI Junjie, ZHANG Jianzhen, CHEN Jianjun, HUANG Hengchao

(Guangzhou Baiyun Chemical Industry Co. Ltd, Guangzhou 510540, China)

A bstract : Reactive polyurethane hot-melt adhesives(PUR) were prepared with polyester polyols, polyisocya-nate, rosin tackifying resin, catalyst, viscosity stabilizer and hydrolysis stabilizer, etc. The effects of viscosity stabi-lizer and hydrolysis stabilizer on properties of PUR were studied. The results showed that PUR had the best viscosity stability when the viscosity stabilizer was polyphosphoric acid and the amount was 80 mg/kg, the melt viscosity of PUR increased by only 6. 4% compared with the initial value after 8 hours heating at 120 T!. Compared with the carbodiimide oligomer P200, epoxy compounds GE500 had better anti-hydrolysis stability. The bonding strength re-tention rate of PUR was still reached 52% after 7 days storage at an ageing test chamber with 100 T and 95% RH when the amount of GE500 was 2. 0%.Keywords : reactive polyurethane hot-melt adhesive ; viscosity stabilizer ; hydrolysis stabilizer

3结论

表3

添加水解稳定剂GE 500的PUR 的剪切强度(MPa )

时间

/d

GE500质量分数/%

0 1.0

2.0

3.0

9.29.18.98.317.18.48.78.03 3.3 6.47.7 6.85 1.1 3.9 5.6 5.17

2.6 4.6

3.6

)00 0 0 0 0 8

6 4

2

作者简介陈精华男,1977年出生,博士,高级工程师,

主要从事聚氨酯肢黏剂方面的研究。

聚氨酯

聚氨酯 聚氨酯的工业生产主要是由多元有机异氰酸酯和各中氢给予体化合物(通常如含端羟基的多元醇化合物)反应制备。选择不同数目的官能基团和不同类型的官能基,采用不同的合成工艺,能制备出性能各异、表现形式各种各样的聚氨酯产品:泡沫塑料,弹性橡胶,油漆、涂料,合成纤维、合成皮革、胶黏剂等。应用范围从航空飞行器到工农业生产,从文体娱乐器械到人们日常的衣食住行。 聚氨酯化学中的最基本反应:含活泼氢的醇类化合物所含的羟基与异氰酸酯进行亲核加成反应,生成氨基甲酸酯基团。 异氰酸酯 氨基甲酸酯基团是内聚能较大的特性基团,空间体积较大,在聚合物中具有硬链段特征。而聚氨酯实际上就是由刚性基团(链段)和软链段构成的嵌段共聚物。 异氰酸酯中常见的R基的吸电子能力的基本顺序为:硝基苯基>苯基>甲苯基>苯亚甲基>烷基。 异氰酸酯与聚醇低聚物反应:1 异氰酸基>羟基,端基为异氰酸基,主要用于PU弹性体、黏合剂、涂料以及二步法合成PU泡沫塑料等; 2 异氰酸基=羟基,主要用于泡沫塑料和热塑性聚氨酯材料制备; 3 异氰酸基<羟基,端基为羟基,使用情况较少,主要用于便于贮存的生胶、黏合剂和某些中间体的制备。 小分子醇类主要用作扩链剂、反应润滑剂等参与反应并生成氨基甲酸酯基团。 异氰酸酯与苯酚反应的过程可逆,利用这种可逆反应制备封闭型异氰酸酯衍生物从而应用于单组份聚氨酯黏合剂、涂料、弹性体等产品的合成中。 异氰酸酯与水反应可生成二氧化碳,水因此被用作为最廉价的化学发泡剂,但该反应放热量大且会产生脲基。 异氰酸酯与羧酸反应的反应活性较低,远低于伯醇或水与异氰酸酯间的反应活性,在正常的生产条件下很少能参与反应。 异氰酸酯与胺的反应,胺类化合物大多都呈现一定的碱性,反应速度远快于异氰酸基与羟基的反应速度,即胺类化合物与异氰酸酯的反应速度要比其他含活泼氢化合物高得多。 异氰酸酯与脲基、胺酯基等的反应,能在生成的聚合物中提供一定支链结构,改善了聚氨酯制品的力学性能。 异氰酸酯的自聚反应,异氰酸酯二聚体的生成反应仅局限于芳香族异氰酸酯,而异氰酸酯三聚体在芳香族和脂肪族异氰酸酯中都可以由反应制备。三聚体的碳氮原子六节环结构热稳定性好,使得聚氨酯具备更好的耐热性能,可用于硬质泡沫塑料的制备。 异氰酸酯的自缩聚反应,二异氰酸酯在加热和有机磷催化剂的存在下发生自缩聚反应生成碳化二亚胺,可用于制备抗水解稳定剂;制备液化MDI;提高聚氨酯材料的耐水解能力。 在聚氨酯工业中主要使用的是含有两个或两个以上异氰酸基的有机二异氰酸酯和有机多异氰酸酯。按分子结构:芳香族异氰酸酯、脂肪族异氰酸酯和脂环族多异氰酸酯。按功能特点:通用型多异氰酸酯、非黄变型多异氰酸酯、“无机”元素型多异氰酸酯及异氰酸酯三聚体衍生物、屏蔽型异氰酸酯衍生物等。 通用型有机异氰酸酯主要有TDI、MDI和多苯基甲烷多异氰酸酯(PAPI)等,制备工艺成熟,但存在光照黄变的缺点。 聚氨酯黄变机理:芳香族异氰酸酯形成的芳香族胺酯键受紫外线照射后分解生成芳胺并与苯环产生共振重排,生成共轭醌式结构的生色团。

反应型聚氨酯热熔胶

反应型聚氨酯热熔胶的研究现状和发展趋势 余声平 摘要:本文主要介绍了反应型聚氨酯热熔胶的类型、应用、研究现状以及发展趋势。关键词:聚氨酯;反应型热熔胶;类型;应用;发展趋势 前言 聚氨酯在胶粘剂方面的应用已有几十年的历史。发展了多异氰酸酯胶粘剂、双组分聚氨酯胶粘剂、热塑性聚氨酯热熔胶、聚氨酯压敏胶,汽车用双组分聚氨酯结构胶等。至1984年开始出现反应型聚氨酯热熔胶[Julie B Samms.TPUs for use in nonsolvent-based adhesive technologies[J].Adhesives Age,1998,41(7):18-21.],反应型聚氨酯热熔胶迅速发展,并得到越来越广泛的应用。 1反应型聚氨酯热熔胶的特点 反应型聚氨酯热熔胶的主要特点[Paul Waties.Moisture-curing reactive polyurethane hot-melt adhesives[J].Pigment&Resin Technology,1997,26(5):300.,Jack Chambers.Fully reactive PU hot melts offer performance advantages[J].Adhesives Age,1998,41(8):24-27.]有: 1)反应型聚氨酯热熔胶属单组分包装,不需组配,无计量失误之虞,可确保施工质量; 2)不含任何有机溶剂,不造成环境污染,为环境友好材料; 3)快速粘接,粘接时无须胶带或夹具固定,简化了操作,加热后冷凝硬化即可达到一般热塑性热熔胶的物理粘接强度,常温下后续反应交联固化,粘接强度大幅度提高; 4)优良的耐水、耐溶剂及耐低温性能。 2反应型聚氨酯热熔胶类型 2.1含端—NCO基湿固化型聚氨酯热熔胶 这类胶为端—NCO基预聚体,粘接时可与空气中所含水分及基材表面的吸附水发生化学反应形成脲键而交联固化。 该胶固化时要求空气湿度在40%以上,提高固化温度,有利于水分参加固化反应,缩短固化时间。当被粘接基材的含水量较高,空气湿度较大,胶料的NCO基团含量较高,固化温度较高时,固化速度较快,这种情况下易产生较多的CO2气体。CO2逸出时使胶接层形成无规则的孔穴,导致粘接强度下降。为克服此缺点,一般应加入适量炭黑、硅胶等气体吸附剂及氧化钙、氢氧化钙等化学吸收剂。此外,必要时还可在胶中配入偶联剂、增塑剂、增粘剂、紫外吸收剂、抗氧剂、抗流挂剂及填料等。 傅玉英等[傅玉英.鞋用单组分湿固化聚氨酯反应型热熔胶的研制[J].中国胶粘剂,1991,1(4):7-10.]以聚酯、二异氰酸酯、含4~14个硫原子的脂肪族分子量调节剂、催化剂、阻聚剂等,制得了剥离强度为100N/cm,软化点40~70℃,硬化时间2~20min的鞋用单组分湿固化聚氨酯热熔胶。 Shang Lee等报导了适用于压制装饰性硬木胶合板和硬木地板的湿固化单组分聚氨酯热熔胶[Shang Lee.Moisture curable 100% solids one component polywood adhesives[P].USP

聚氨酯新材料项目职业病危害检测评价分析

聚氨酯新材料项目职业病危害检测评价分析 根据5中华人民共和国职业病防治法6和5建设项目职业病危害评价规范6等法律法规、卫生标准要求, 我们对某聚氨酯( PU )新材料工程项目职业病危害控制效果进行评价。现将评价结果报告如下。 1 评价内容、方法 1. 1 评价内容1 分析评价该项目生产或操作过程中产生的有毒有害物质、生产性噪声等职业病危害因素的种类、分布、浓度或强度及其对工人健康的影响。o 分析评价职业病防护措施实施情况, 包括总平面布置、生产工艺及设备布局、车间建筑设计卫生要求、卫生工程防护设施的控制效果、应急救援措施、个人防护设施, 辅助卫生用室设置、职业卫生管理措施等。 1. 2 评价方法按5建设项目职业病危害评价规范6 [ 1] 要求,用检查表和定量分级法评价该扩建项目中职业病危害因素对健康的影响、职业病防护措施实施情况[2] 。 1. 2. 1 职业卫生检测方法按5全国疾病预防控制机构工作规范6 [ 3] ( 2001年版)选择采样点。粉尘浓度检测用称重法( DS-21B 粉尘采样器), 噪声强度检测用直读方法( AWA6218B 噪声统计分析仪), TDI和二氯甲烷的检测用色谱分析法; CO2 用直读式仪器法。 1. 3 控制效果评价主要依据1 5中华人民共和国职业病防治法6 ( 2002- 05- 01); o 5建设项目职业病危害评价规范6 [ 1] ;. 5工业企业设计卫生标准6 [4] GBZ 1- 2002; . 5工作场所有害因素职业接触限值6 [ 5] GBZ 2- 2002; . 委托方提供的有关技术文件和资料。 2 结果分析 2. 1 项目工程分析及主要职业病危害因素 2. 1. 1 项目工程分析该新建项目主要产品为聚氨酯软泡塑料,生产工艺流程如下: 将原料罐的物料聚醚( PPG)、甲苯-2, 4二异氰酸酯(TDI)、三乙烯二胺、硅油、辛酸亚锡、水、色料、填料、阻燃剂、抗氧化剂、CO2 按一定量的配比经计量泵送入混合头。通过自控仪表装置将混合头的物料送入发泡头, 发泡头的压力为2. 5MPa, 通过发泡段输送带经走纸装置、红外线加热装置和真空抽气装置, 成形后由输送带送入切割输送带, 得成品, 发泡温度控制在20~ 24 c,再将成品经平切机分别切出所需成品。 2. 1. 2 主要职业病危害因素根据现场职业卫生调查, 该新建工程项目主要职业病危害因素有粉尘、TDI、二氯甲烷、CO2 及噪声等等。 2. 2 现场检测结果分析 2. 2. 1 作业场所粉尘对生产车间颜料粉碎机、混配槽等作业岗位粉尘浓度进行检测, 并按5生产性粉尘作业危害程度分级6 [ 6] ( GB 5817- 86)对粉尘危害程度进行分级, 结果见表1。

聚氨酯发泡催化剂

聚氨酯发泡催化剂 DABCO 33-LV 多用途凝胶催化剂,33%Dabco固体+67%二丙二醇(DPG),聚氨酯软泡和硬泡等; DABCO BDMA 苄基二甲胺,减低于高水泡沫的脆性,调整表皮固化; DABCO BL-11 A-1,70%双(二甲胺基乙基)醚的DPG溶液,发泡型催化剂, A-1催化剂主要用于软质聚醚型聚氨酯泡沫塑料的生产,也可用于包装用硬泡; DABCO BL-22 强发泡复合胺催化剂,可取代BL-11,适用于硬泡,模塑软泡和半硬泡; DABCO CS-90 强发泡复合胺催化剂,改善泡沫密度梯度及开孔效果,可减少箱泡角落破裂,使用于软块泡; DABCO NE200 用于各种软膜塑泡沫的低雾化发泡催化剂,适用于模塑软泡; DABCO T 反应性发泡催化剂,低雾化适用于聚醚型聚氨酯软块泡,模塑泡沫,半硬泡和硬泡,特别适用于汽车泡沫; Dabco TL 是一种低气味强发泡叔胺催化剂,可平衡促进反应,适用于聚氨酯软质泡沫; Polycat 5 五甲基二乙烯三胺,强发泡催化剂,改善硬泡流动性; Polycat 8 二甲基环己胺(DMCHA),标准的硬泡催化剂; Polycat 9 三(二甲氨丙基)胺,硬泡及模塑泡沫的低气味催化剂,喷涂; Polycat 77 双(二甲氨丙基)甲胺,凝胶剂发泡平衡性催化剂,制开孔泡沫,增强模塑泡沫回弹性,用于软泡和硬泡; Jeffcat ZF-10 三甲基羟乙基双氨乙基醚,高效反应性发泡催化剂,低散发性,适用于聚醚型聚氨酯软块泡、模塑泡沫、包装用硬泡等; Jeffcat DMP 二甲基哌嗪,聚氨酯发泡/凝胶平衡性催化剂,适用于聚氨酯软泡、硬泡、涂料和胶黏剂等; 供应商 新典化学材料(上海)有限公司 本公司还供应下列聚氨酯催化剂:

浇注型聚氨酯..

浇注型聚氨酯 1概述 聚氨酯弹性体(PUE,PolyurethaneElastomer)是一类综合性能优良的高分子合成材料,包含有浇注型聚氨酯弹性体(CPU)、热塑型聚氨酯弹性体(TPU)和混炼型聚氨酯弹性体(MPU),微孔聚氨酯弹性体、聚氨酯防水材料、鞋底材料、铺装材料等。 CPU 在加工前成型前为粘性液体,故有“液体橡胶”之称,它是以液态低聚物多元醇、异氰酸酯和小分子扩链剂为原料,使用液体混合浇注的加工成型方法,经扩链交联反应得到固化交联的高弹性产物。CPU 成型工艺简单,形成的弹性体分子完整程度高,最大限度发挥了聚氨酯弹性体的特点,综合性能也优于 MPU 和 TPU,因而成为聚氨酯弹性体中产量最大、应用范围最广的品种。在许多工业领域中,CPU 正在逐步地取代传统金属和硫化橡胶,取得越来越广泛的应用。浇注法也是本课题制备聚氨酯弹性体采用的方法。MPU 加工的第一步是合成高粘度、储存稳定、可以混炼加工的聚氨酯生胶(线性分子,分子量为 20 000~30 000),然后在开炼机或密炼机中将其与硫化剂、促进剂、补强性填料等相混合,经成型最后硫化成具有弹性体物理化学性能的聚氨酯弹性体,可以看到,MPU 的加工方法和传统橡胶相似,因而是最早获得工业生产和应用的一种聚氨酯弹性体,但 MPU 的性能比 CPU 和 TPU 差,硬度一般在 ShoreA55~A80,工艺复杂,产量较小。TPU 常采用一步法生产,即将聚合物多元醇、二异氰酸酯和小分子扩链剂混合,在双螺杆反应器中反应,然后切粒和干燥,使用塑料挤出、注射成型的加工方法进行生产。TPU 的数均分子量较大,硬度较高。 聚氨酯弹性体是由相对分子质量大的聚醇软段和相对分子质量低的二异氰酸酯与二胺或二醇合成的硬段所构成的弹性体。软段提供弹性体的韧性、弹性和低温性能;硬段贡献弹性体的刚性、强度以及耐热性[1]。 聚氨酯弹性体具有优异的综合性能,因而广泛应用于各种领域。聚氨酯胶辊、胶轮、筛板、密封件等仍然是浇注型聚氨酯弹性体的重要产品,质量在提高、品种在增加、应用领域在扩大是其发展趋势。阻燃、耐热、阻尼、低摩擦型等聚氨酯弹性体具有广阔的市场空间和发展前景,已引起业界的高度重视。 聚氨酯弹性体分子中有大量的极性基团,同时氨基甲酸酯键可以使分子链之间形成较强的氢键交联。有效地防止了应力作用下分子链之间的滑移,使其不仅具有较高的力学性能、突出的耐磨性,还具有耐油、耐水、耐臭氧、耐辐射、耐低温、气密性 1

【CN109880059A】一种聚氨酯海绵的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910162563.3 (22)申请日 2019.03.05 (71)申请人 浙江德清昂沃泡沫塑料有限公司 地址 313200 浙江省湖州市德清县武康镇 长虹东街417号 (72)发明人 费蕾  (74)专利代理机构 北京中济纬天专利代理有限 公司 11429 代理人 杨乐 (51)Int.Cl. C08G 18/76(2006.01) C08G 18/48(2006.01) C08K 3/04(2006.01) C08J 9/14(2006.01) C08G 101/00(2006.01) (54)发明名称 一种聚氨酯海绵的制备方法 (57)摘要 本发明公开了一种聚氨酯海绵的制备方法, 聚氨酯海绵包括以下重量份数的原料组分:聚醚 多元醇90-110份、甲苯二异氰酸酯50-65份、硅油 1.5-3份、胺0.1-0.5份、辛酸亚锡0.22-0.6份、二 氯甲烷5.5-6.5份;本发明采用发泡工艺制备聚 氨酯海绵,在恒温条件下将原料混合输送通过发 泡通道过程中,使得反应生成的发泡体受发泡通 道的钢质外壳包裹的外轮廓束缚作用逐渐固化 成型至熟化,由于发泡通道密封效果较好,从而 保证了较高的发泡、固化成型及熟化质量;该聚 氨酯海绵的回弹率达到42%,既具有一定的硬 度,又具有清凉凉爽的舒适性, 并且成本较低。权利要求书1页 说明书4页 附图1页CN 109880059 A 2019.06.14 C N 109880059 A

权 利 要 求 书1/1页CN 109880059 A 1.一种聚氨酯海绵的制备方法,其特征在于:包括如下步骤: 步骤一:按以下重量份数准备原料组分:聚醚多元醇90-110份、甲苯二异氰酸酯50-65份、硅油1.5-3份、胺0.1-0.5份、辛酸亚锡0.22-0.6份、二氯甲烷5.5-6.5份、竹炭粉37.4-44.2份、清凉粉37.4-44.2份; 步骤二:将液态的聚醛多元醇、竹炭粉和/或清凉粉在小桶中混合并进行搅拌形成预混料,然后分别通过泵将预混料与甲苯二异氰酸酯输送至恒温间进行混合并形成混合物A; 步骤三:分别将恒温温度为25℃的混合物A和水、硅油、辛酸亚锡经PLC控制装置抽送至高效搅拌器机头并在高效搅拌器机头内混合形成混合物B,然后将混合物B均匀注入发泡通道,混合物B在发泡通道内反应、发泡、膨胀,随着后续混合物B物料的不断注入连续反应、发泡、膨胀形成发泡体,发泡体从发泡通道开始端的进口沿发泡通道向前伸展至发泡通道末端的出口,发泡体在经过发泡通道过程中受发泡通道的外轮廓束缚作用逐渐固化成型至熟化,熟化的发泡体从发泡通道末端的出口连续涌出; 步骤四:发泡通道末端的出口设有切割装置,通过切割装置将发泡通道末端的出口连续涌出的熟化的发泡体按预先设定的长度逐段切割,得到聚氨酯海绵粗产品; 步骤五:将步骤四得到的聚氨酯海绵粗产品放置于与室温温度相当的自然环境中约24小时,再对聚氨酯海绵粗产品进行熟化、冷却、收缩、定型处理并制得聚氨酯海绵产品,然后将定型处理之后的聚氨酯海绵产品切割成聚氨酯海绵成品。 2

新型聚氨酯固化剂的研究与发展

新型聚氨酯固化剂的研究与发展 张修景(菏泽学院化学与化工系,山东菏泽274015) 摘要:阐述了颜色低于铁钴比色计1号,游离TDI含量小于0.5%,贮存稳定性达2年以上的新型聚氨酯固化剂的生产工艺;确定了含羟基丙烯酸树脂与该固化剂的质量比为:m(含羟基丙烯酸树脂)∶m(新型聚氨酯固化剂)=10∶4~6;分析了碱性物质是导致聚氨酯固化剂成胶的原因;提出了保证聚氨酯固化剂低色值、低游离TDI含量和高贮存稳定性的方法。 关键词:新型聚氨酯固化剂;色值;游离TDI含量;稳定性 0.引言 国内科研单位及相关企业、院校对于聚氨酯固化剂的研究做了大量工作,朱吕民[1]介绍了色泽为8号(铁钴比色计)TDI加成物的制法;彭红为,等[2-3]报道的产品的游离TDI含量高达3.0%~5.0%,配制的涂料在施工过程中对人体伤害很大,环境污染严重,不仅远远高出世界卫生组织游离TDI含量≤0.5%的要求,而且很难达到我国《室内装饰装修材料溶剂型木器涂料中有害物质限量》GB18581—2001强制标准中≤0.7%的规定。国外通常采用薄膜蒸发法,如Bayer公司采用该技术产品的游离TDI含量<0.5%。国内相关研究[4-10]对于降低游离TDI做了大量积极工作,并提出了在聚氨酯生产中推行清洁生产的建议和措施,但实现工业化生产的报道很少。赵文斌,等[10]的产品通过热重分析(TG)显示,改性TDI三聚体的热稳定性有一定下降。为此,本文研究了颜色低于铁钴比色计1号,游离TDI<0.5%,贮存稳定性达2年以上的TDI-TMP加成物,找到了该固化剂与含羟基丙烯酸树脂的最佳配比,可赋于漆膜多种优良的性能。 1.实验部分 1.1原料 甲苯二异氰酸酯(TDI):80/20,国产;三羟甲基丙烷(TMP):美国产;乙酸丁酯:工业一级品,无水;二月桂酸二丁基锡、缩二脲:工业一级品;磷酸(85%)、三正丁基膦、对硝基苯甲酰氯:分析纯;氮气(99199%)。 1.2反应原理 TDI-TMP加成物主要是指3分子的甲苯二异氰酸酯(TDI)与1分子的三羟甲基丙烷(TMP)的加成物,反应如式1。 1.3方法 新型聚氨酯固化剂的中试配方见表1。

聚氨酯

1.概念 羟值:1克聚合物多元醇所含的羟基(-OH)量相当于KOH的毫克数,单位mgKOH/g。 当量:当量=56100/羟值 异氰酸根含量:分子中异氰酸根的含量 异氰酸酯指数:表示聚氨酯配方中异氰酸酯过量的程度,通常用字母R表示。 扩链剂:是指能使分子链延伸、扩展或形成空间网状交联的低分子量醇类、胺类化合物。 硬段:聚氨酯分子主链上由异氰酸酯、扩链剂、交联剂反应所形成的链段,这些基团内聚能较大、空间体积较大、刚性较大。 软段:碳碳主链聚合物多元醇,柔顺性较好,在聚氨酯主链中为柔性链段。 发泡指数:把相当于在100份聚醚中使用的水的份数定义为发泡指数(I F)。 一步法:指将低聚物多元醇、二异氰酸酯、扩链剂和催化剂等同时混合后直接注入模具中,在一定温度下固化成型的方法。 预聚物法:首先将低聚物多元醇与二异氰酸酯进行预聚反应,生成端NCO基的聚氨酯预聚物,浇注时再将预聚物与扩链剂反应,制备聚氨酯弹性体的方法,称之为预聚物法。 半预聚物法:半预聚物法与预聚物法的区别是将部分聚酯多元醇或聚醚多元醇跟扩链剂、催化剂等以混合物的形式添加到预聚物中。 反应注射成型:又称反应注塑模制RIM(Reaction Injection Moulding),是由分子量不大的齐聚物以液态形式进行计量,瞬间混合的同时注入模具,而在模腔中迅速反应,材料分子量急骤增加,以极快的速度生成含有新的特性基团结构的全新聚合物的工艺。 发泡指数:即把相当于在100份聚醚中使用的水的份数定义为发泡指数(I F)。 发泡反应:一般是指有水与异氰酸酯反应生成取代脲,并放出CO2的反应。 凝胶反应:一般即指氨基甲酸酯的形成反应。 凝胶时间:在一定条件下,液态物质形成凝胶所需的时间。 乳白时间:在I区即将结束时,在液相聚氨酯混合物料中即出现乳白现象。该时间在聚氨酯泡沫体生成中称为乳白时间(cream time)。 扩链系数:是指扩链剂组分(包括混合扩链剂)中氨基、羟基的量(单位:mo1)与预聚体中NCO的量的比值,也就是活性氢基团与NCO的摩尔数(当量数)比值。 低不饱和度聚醚:主要针对PTMG开发,PPG的价格,不饱和度降低到0.05mol/kg,接近PTMG的性能,采用DMC催化剂,主要品种Bayer公司Acclaim系列产品。 氨酯级溶剂: 物理发泡剂:物理发泡剂就是泡沫细孔是通过某一种物质的物理形态的变化,即通过压缩气体的膨胀、液体的挥发或固体的溶解而形成的 化学发泡剂:化学发泡剂是那些经加热分解后能释放出二氧化碳和氮气等气体,并在聚合物组成中形成细孔的化合物 物理交联:在高聚物软链中有部分硬质链,硬质链在软化点或熔点以下的温度具有与化学交联后的硫化橡胶同样的物理性质的现象。 化学交联:指在光、热、高能辐射、机械力、超声波和交联剂等作用下,大分子链间通过化学键联结起来,形成网状或体形结构高分子的过程。 2.常用的异氰酸酯从结构上看有哪几类? 答:脂肪族:HDI,脂环族:IPDI,HTDI,HMDI,芳香族:TDI,MDI,PAPI,PPDI,NDI。 3.常用的异氰酸酯有哪几种?写出结构式 答:甲苯二异氰酸酯(TDI),二苯基甲烷-4,4’-二异氰酸酯(MDI),多苯基甲烷多异氰酸酯(PAPI),液化MDI,六亚甲基二异氰酸酯(HDI),氢化TDI, 4.TDI-100和TDI-80含义? 答:TDI-100是指全部由2,4结构的甲苯二异氰酸酯组成;TDI-80是指由80%的2,4结构的甲苯二异氰酸酯和20%的2,6结构组成的混合物。 5.TDI和MDI在聚氨酯材料的合成中各有何特点? 答:对于2,4-TDI和2,6-TDI的反应活性。2,4-TDI的反应活性比2,6-TDI高数倍,这是因为,2,4-TDI中4位

聚氨酯产品催化剂大全

聚氨酯产品催化剂大全 (2012-07-24 10:57:28) 标签: 杂谈 一、美国气体产品编号公司产品编号产品介绍美国气体产品编号胺类催化剂 DABCO 33LVR A-33 33%三乙烯二胺的二丙二醇溶液,工业标准产品。三乙烯二胺的化学结构很独特,是一种笼状化合物,两个氮原子上连接三个亚乙基。这个双分子的结构非常密集和对称。从结构式上可以看出来,N 原子上没有位阻很大的取代基,它的一对空电子容易接近。在发泡体系中,一旦氨基甲酸酯键生成后,它就会游离出来,有利于更进一步催化。由于这个原因,虽然三乙烯二胺不是强碱,却对异氰酸酯基团和活泼氢化合物的反应表现出极高的催化活性。是一种强凝胶催化剂。其他公司相同产品牌号,美国 GE: NIAX Catalyst A-33; 日本东曹: TEDA L33; 国内厂家一般用 A-33 作产品名。 DABCOR 1027 1027 改性三乙烯二胺,用于单乙醇聚酯及聚醚鞋底原液系统,能调 DABCO 1028 1028 改性三乙烯二胺,用于 1,4 丁二醇聚整纤维及脱模时间。 酯及聚醚鞋底原液系统,能调整纤维及脱模时间。 乙DABCO 8154 8154 延迟性三乙烯二胺型催化剂,可改善泡沫流动性。延迟性三烯二胺,可改善泡沫流动性. 配方需要一段延迟的起始时间,或配方需用大量传统催化剂才能获得完全得泡沫固化。该催化剂的催化中心是由一种氨酸盐加以化学抑制,此项催化剂内含多种不同组合的氨酸盐,因而能提供规则的发泡曲线。再者,此项产品的腐蚀性远较其它延迟作用催化剂为低。用途:该产品适用于所有方便注模、合模,以及改良流程模塑泡沫用。在此配方中的唯一氨基凝胶催

腰果酚应用研究进展..

12应用化学(职教本科1班彭思20120651 腰果酚应用研究进展 摘要:本文从官能团改性方面,综述了近几年国内外腰果酚衍生物的化学合成及在材料与精细化学品中的潜在应用,其中包括腰果酚酚羟基、腰果酚苯环及腰果酚侧链的改性。 关键词:腰果酚;腰果壳油;衍生物;应用;进展 前言:随着全球化石资源日趋减少,可再生资源的开发利用越来越引起人们的重视[1]。腰果壳液(CNSL)是腰果加工中的一种副产品,其含量约占腰果的25%-30%,世界年产量约50万吨,是一种价廉丰富的可再生资源[2-3]。CNSL 的最主要成分是腰果酚(cardanol)(1),含量可达90%。从结构来看,腰果酚属于苯酚的衍生物,在苯酚的间位被15个碳的直链(含0-3个碳碳双键)所取代(图1)(如无特殊说明,本文其它图中的R基团都代表腰果酚的侧链)。腰果酚可改性合成很多衍生物,包括功能小分子与聚合物,它们在涂料、摩擦材料、抗氧化剂、杀虫杀菌剂等方面都极具应用价值[4]。本文主要从腰果酚所含的三种官能团出发,总结通过酚羟基、苯环、不饱和侧链上的反应来制备各种有价值的腰果酚衍生物。 1利用腰果酚的羟基制备腰果酚衍生物 1.1腰果酚的酯类衍生物 腰果酚分子中含有活泼的酚羟基,可通过酯化、醚化反应制备相应的衍生物。例如张中云等[5]在-15℃左右使腰果酚与ClCN反应,生成腰果酚氰酸酯(2),2再与双酚A型氰酸酯(NCO-BPA-OCN)反应,制得了新型热固性树脂(图2)。由于树脂中引进了腰果酚所含的15个碳的柔性链,有效地提高了氰酸酯树脂的柔韧性,同时提高了其介电性能和耐吸水性能。

林金火课题组[6]用马来酸酐和腰果酚反应得到马来酸腰果酚单酯,然后与乙二醇进一步发生酯化反应 (图3),最后将酯化产物进行缩甲醛化反应,合成了同时具有软段结构(顺丁烯二酸乙二醇酯结构单元)和硬段结构(酚醛结构单元)的多羟基腰果酚醛树脂,该树脂具有优良的涂膜性能;所得的多羟基腰果酚醛树脂 也可与聚氨酯预聚体组成性能优良的双组分聚氨酯漆,可改善普通腰果漆的柔韧性和附着力。 为了制备新型抗氧化剂,Lomonaco等[7]用腰果酚和强心酚(cardol,腰果壳油的另一种成分)与二乙氧基硫代磷酰氯反应,制备了相应的硫代磷酸酯化合物(3)和(4)(图4)。将所制硫代磷酸酯在聚甲基丙烯酸甲酯中掺入1%的量,结果聚合物的热稳定性提高了很多。特别是化合物4中既含有硫代磷酸酯结构,又含有酚羟基结构,同时具有一类和二类抗氧化剂的功能,因此对材料的热稳定性提高最明显。

聚氨酯

聚氨酯基本理论知识 一. 聚氨酯(polyurethane)大分子主链上含有许多氨基甲酸酯基: 它由二(或多)异氰酸酯、二(或多)元醇与二(或多)元胺通过逐步聚合反应生成,除了氨基甲酸酯基(简称为氨酯基)外,大分子链上还往往含有 醚基 、酯基、脲基、 酰胺基 等基团,因此大分子间很容易生成氢键。 二.聚氨酯主要原料 N H C O O O C O O NH O NH NH O

1、异氰酸酯及其结构特征 一、结构特点 在分子结构中含有异氰酸酯基团(-N=C=O)的化合物,均称为异氰酸酯(isocyanate),其结构通式如下:R-(NCO)n式中R为烷基、芳基、脂环基等;n=1、2、3….整数。在聚氨酯材料合成中,主要使用n≥2的异氰酸酯化合物。 二、异氰酸酯的分类 (1)异氰酸酯基团数量 1.异氰酸酯 异氰酸酯(Isocyanate)是一大类含有异氰酸基(—N=C=O)的 有机化合物。异氰酸酯基由于其累积双键和碳原子两边的电负性很 大的氮氧原子作用,使之具有很高的反应活性,能与绝大多数含活 泼氢的物质发生反应。常用的异氰酸酯主要有芳香族类和脂肪类两种。⑴芳香族类的主要有:TDI(2, 4—甲苯二异氰酸酯或2, 6—甲 苯二异氰酸酯)、MDI(二苯基甲烷- 4, 4’二异氰酸酯)、NDI (1, 5—萘二异氰酸酯)、PAPI(多亚甲基多苯基多异氰酸酯)等;芳 香族多异氰酸酯合成的聚氨酯树脂户外耐候性差,易黄变和粉化, 属于“黄变性多异氰酸酯”,但价格低,来源方便,在我国应用广泛,如TDI常用于室内涂层用树脂;聚氨酯树脂中90%以上属于芳香族

多异氰酸酯。与芳基相连的异氰酸酯基对水和羟基的活性比脂肪基异氰酸酯基团更活泼。基于TDI 的聚氨酯由于高的苯环密度,其力学性能也较脂肪族多异氰酸酯的聚氨酯更为优异。以下是一些常用的产品。 (1)甲苯二异氰酸酯(tolulene diisocyanate ,TDI ) 甲苯二异氰酸酯是最早开发、应用最广、产量最大的二异氰酸酯单体;根据其两个异氰酸酯(—NCO )基团在苯环上的位置不同,可分为2,4-甲苯二异氰酸酯(2,4-TDI,简称2,4-体)和2,6-甲苯二异氰酸酯(2,6-TDI ,2,6-体)。 室温下,甲苯二异氰酸酯为无色或微黄色透明液体,具有强烈的刺激性气味。市场上有3种规格的甲苯二异氰酸酯出售,T-65为2,4-TDI 、2,6-TDI 两种异构体质量比为65%/35%的混合体;T-80为2,4-TDI 、2,6-TDI 两种异构体质量比为80%/20%的混合体,其产量最高、用量最大,性价比高,涂料工业常用该牌号产品;T-100为2,4-TDI 含量大于95%的产品,2,6-TDI 含量甚微,其价格较贵。2,4-TDI 其结构存在不对称性,由于-CH3的空间位阻效应,4位上的-NCO 的活性比2位上的-NCO 的活性大,50℃反应时相差约8倍,随着温度的提高,活性越来越靠近,到100 ℃时,二者即具有相同的活性。因此,设计聚合反应时,可以利用这一特点合成出结构规整的聚合物。TDI 的弱点是蒸汽压大,易挥发,毒性大,通常将其转变成齐聚物(oligomer )后使用;而且由其合成的聚氨酯制品存在比较严重的黄变性。黄变性的原因在于芳香族聚氨酯的光化学反应,生成芳胺,进而转化成了醌式或偶氮结构的生色团。2,4-TDI 凝固点6-20度,TDI 的含量越高凝固点。 NCO CH 3NC O O CH 3 OCN 2,6-TDI 2,4-TDI

聚氨酯泡绵环保催化剂CUCAT-HX(取代有机锡)使用说明

聚氨酯泡绵环保催化剂CUCAT-HX(取代有机锡铋) 1、性状描述 本产品外观为茶黄透明液体,密度1.18g/cm3(25℃),粘度1000mPa.s(25℃);具特殊化合物气味,易溶于一般聚氨酯原料如聚醚、聚酯多元醇等,微溶于水。 本产品不含溶剂,不含八大重金属、有机锡、偶氮、邻苯酸盐等有毒成分,使用本产品合成的聚氨酯材料,能通过美国和欧盟等严苛环保法规。 2、独特性能 有机锡催化剂在聚氨酯泡沫中一直占据主导地位,但有机锡毒性和对环境的危害近年来引起聚氨酯业界的热议和重视,其淘汰和替代工作也列入很多泡沫生产厂家的日程,同时市面上 也出现了环保有机锡催化剂和有机铋催化剂等作为传统有毒有机锡的替代品。但因为锡金属在 化学价态上的活泼性和易变价性,致使所谓的环保有机锡的环保具有很大的不稳定性,无法确 保其100%的环保性,更兼昂贵的价格,导致泡沫企业拒绝使用;而有机铋催化剂固然环保,也 有一定凝胶作用,但后段凝胶催化作用太弱,往往加入量巨大仍出现塌泡、开裂、表面发粘不 光亮等问题,同时也存在水解失效弊端,不能在系统料中稳定存在,必须生产现场添加。 CUCAT-HX系针对聚氨酯各种发泡产品中起凝胶作用的有毒有机锡的淘汰和取代而开发。 其对异氰酸酯和羟基(-OH)的催化反应具有前期平缓后期加强特点,物料流动期较长,允许 有更长的起发时间,但后期更促进凝胶强度的加强,比常用有机铋催化剂活性高3-6倍,避免后 期因催化活力不足造成的塌泡、开裂、表皮发粘不光亮等情况出现。 CUCAT-HX性能稳定,即使高水含量系统料中也能长时间稳定存在而不产生分解和失效现象,使生产工艺更稳定,这是有机锡、铋催化剂无法达到的优势。 3、应用领域 本产品可用于各种聚氨酯泡沫生产,尤其推荐使用于模塑泡沫、自结皮、微孔弹性体等领域,用于生产鞋底、方向盘、汽车座椅等等产品。 4、使用说明 本产品使用时加入多元醇(Polyol,P料)组份。因配方不同,建议系统料生产厂家针对不同配方自测适用期。 使用量与产品体系和密度等有关,一般用量为P料重量的0.1~0.5% 。平常使用时必须保证盛装本产品的杯子或其它容器是干净和干燥的,并保证使用后注意马上封闭罐口,避免敞开 放置。 5、规格储存 包装规格:25/200kg/桶。储存于干燥阴凉仓库内,避免日光照射和雨淋。不开封保质期一 年。 特别声明:我们所提供之说明及技术建议(无论是口头、书面或通过实验途径)均不构成任何保证,并在有关第三方权益出现时仍然适用。我们的建议并不表示客户可以免去验证我方 建议的有效性及试验我方产品在相关使用过程中的适用性的责任。客户在我方的技术建议的基础上使用我们产品的方法、过程以及由此生产出的产品已超过我方可以控制的范围,因此 客户应自己负责。并且,如果发生任何赔偿争议,我们只负责承担我们的产品本身的价值,不承担任与我们的产品牵连的其他任何附加的价值或赔偿.

聚氨酯三聚型催化剂

聚氨酯三聚催化剂 DABCO TMR 胺系三聚催化剂,加速PIR硬泡后期固化而不影响乳白时间,适用于硬泡和半硬泡; DABCO TMR-2 胺系延迟性三聚催化剂,较温和,缩短脱模时间,适用于硬泡和半硬泡; DABCO TMR-3 酸封闭的胺系延迟三聚催化剂,反应较慢,适用于硬泡和半硬泡; DABCO TMR-4 三聚反应催化剂,提供泡沫优良的流动性,适用于硬泡和半硬泡; DABCO TMR-30 2,4,6-三(二甲氨基甲基)苯酚,基本三聚催化剂; Polycat 41 三(二甲氨丙基)六氢三嗪,具有优异发牌能力的三聚共催化剂,适用于高水量发泡硬泡、半硬泡、鞋底; Polycat 46 用于促进异氰酸酯反应(三聚反应),适用于各种硬质泡沫中。 供应商 新典化学材料(上海)有限公司 本公司还供应下列聚氨酯催化剂: 二甲基环己胺(DMCHA):聚氨酯硬泡催化剂 N,N-二甲基苄胺(BDMA):在聚氨酯行业是聚酯型聚氨酯块状软泡、聚氨酯硬泡及胶黏剂涂料的催化剂,主要用于硬泡 三乙烯二胺:聚氨酯高效催化剂,用于软泡 双(二甲氨基乙基)醚:高催化活性的聚氨酯催化剂,多用于聚氨酯软泡 N,N-二甲基乙醇胺:聚氨酯反应型催化剂 五甲基二乙烯三胺(PMDETA):聚氨酯凝胶发泡催化剂,广泛用于聚氨酯硬泡 2,4,6-三(二甲氨基甲基)苯酚(DMP-30):聚氨酯三聚催化剂,也可作环氧促进剂 双吗啉二乙基醚(DMDEE):聚氨酯强发泡催化剂 二甲氨基乙氧基乙醇(DMAEE):用于硬质包装泡沫的低气味反应性催化剂

二月桂酸二丁基锡(T-12):聚氨酯强凝胶性催化剂 三(二甲氨基丙基)六氢三嗪(PC-41):具有优异发泡能力的高活性三聚共催化剂 四甲基乙二胺(TEMED):中等活性发泡催化剂,发泡/凝胶平衡性催化剂 四甲基丙二胺(TMPDA):可用于泡沫塑料微孔弹性体的催化剂,也可作环氧促进剂 四甲基己二胺(TMHDA):特别用于聚氨酯硬泡,是发泡/凝胶平衡性催化剂 三甲基羟乙基丙二胺(Polycat 17):反应性低烟雾平衡性叔胺催化剂 三甲基羟乙基乙二胺(Dabco T):反应性发泡催化剂,具有低雾化性 新典化学

聚氨酯基础知识

聚氨酯树脂 第一节 概 述 1937年,德国化学家Otto Bayer 及其同事用二或多异氰酸酯和多羟基化合物通过聚加成反应合成了线形、支化或交联型-聚合物,即聚氨酯,标志着聚氨酯的开发成功。其后的技术进步和产业化促进了聚氨酯科学和技术的快速发展。最初使用的是芳香族多异氰酸酯(甲苯二异氰酸酯),60年代以来,又陆续开发出了脂肪族多异氰酸酯。聚氨酯树脂在涂料、黏合剂及弹性体行业取得了广泛、重要的应用。据有关文献报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右,美国人均年消耗聚氨酯材料约5.5kg ,西欧约4.5kg 。而我国的消费水平还很低,年人均不足0.5kg ,具有极大发展空间。 聚氨酯(polyurethane)大分子主链上含有许多氨基甲酸酯基( NH C O O )。它由二(或多)异氰酸酯、二(或多)元醇与二(或多)元胺通过逐步聚合反应生成,除了氨基甲酸酯 基(简称为氨酯基, NH C O O )外,大分子链上还往往含有醚基(O )、酯基(O O )、脲基(NH C O NH -)、酰胺基(NH C O )等基团,因此大分子间很容易生成氢键。 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控、配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行以及高新技术领域必不可少的材料之一,其本身已经构成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。 第二节 聚氨酯的合成单体 一、多异氰酸酯 多异氰酸酯可以根据异氰酸酯基与碳原子连接的结构特点,分为四大类:芳香族多异氰酸酯(如甲苯二异氰酸酯,即TDI )、脂肪族多异氰酸酯(六亚甲基二异氰酸酯,即HDI )、芳脂族多异氰酸酯(即在芳基和多个异氰酸酯基之间嵌有脂肪烃基-常为多亚甲基,如苯二亚甲基二异氰酸酯,即XDI)和脂环族多异氰酸酯(即在环烷烃上带有多个异氰酸酯基,如异佛尔酮二异氰酸酯,即IPDI )四大类。芳香族多异氰酸酯合成的聚氨酯树脂户外耐候性差,易黄变和粉化,属于“黄变性多异氰酸酯”,但价格低,来源方便,在我国应用广泛,如TDI 常用于室内涂层用树脂;脂肪族多异氰酸酯耐候性好,不黄变,其应用不断扩大,欧、美等发达国家已经成为主流的多异氰酸酯单体;芳脂族和脂环族多异氰酸酯接近脂肪族多异氰酸酯,也属于“不黄变性多异氰酸酯”。 1.芳香族多异氰酸酯 聚氨酯树脂中90%以上属于芳香族多异氰酸酯。同芳基相连的异氰酸酯基团对水和羟基的活性比脂肪基异氰酸酯基团更活泼。基于TDI 的聚氨酯由于高的苯环密度,其力学性能也较脂肪族多异氰酸酯的聚氨酯更为优异。以下是一些常用的产品。 (1)甲苯二异氰酸酯(tolulene diisocyanate ,TDI ) 甲苯二异氰酸酯是最早开发、应用最广、产量最大的二异氰酸酯单体;根据其两个异氰酸酯(—NCO )基团在苯环上的位置不同,可分为2,4-甲苯二异氰酸酯(2,4-TDI,简称2,4-体)和2,6-甲苯二异氰酸酯(2,6-TDI ,2,6-体)。

稳定剂对反应型聚氨酯热熔胶性能的影响

2018年第33卷第2期2018.V〇1.33No.2 聚氨酯工业 POLYURETHANE INDUSTRY ?37? 稳定剂对反应型聚氨酯热熔胶性能的影响 陈精华石俊杰张健臻陈建军黄恒超 (广州市白云化工实业有限公司广州510540) 摘要:以聚酯多元醇、多异氰酸酯、松香类增粘树脂、催化剂、黏度稳定剂和水解稳定剂等为原 料,制备了反应型聚氨酯热炫肢(PUR)。考察了黏度稳定剂、水解稳定剂对PUR性能的影响。结果表明,当选用多聚嶙酸为黏度稳定剂,用量为80 mg/kg时制备的热嫁胶黏度稳定性最好,在120 T;加热8 h后,熔融黏度较初始值仅增加6.4%;环氧化合物GE500的抗水解效果比碳化二亚胺低 聚物P200的好,水解稳定剂GE500质量分数为2.0%时,PUR粘接试件在100丈、相对湿度95%的老化箱中放置7 d后,粘接强度保持率仍可达52%。 关键词:反应型聚氨酯热炫胶;黏度稳定剂;水解稳定剂 中图分类号:T Q436+. 4、TQ 323. 8 文献标识码:A文章编号:1005-1902(2018)02-0037-03 反应型聚氨酯热熔胶(PUR)—般以聚酯多元 醇和多异氰酸醋反应的聚氨酯预聚体作为基料,配 以增粘树脂、稳定剂、抗氧剂、催化剂、填料等制备而 成[1]。PUR中的稳定剂主要有黏度稳定剂和水解 稳定剂。黏度稳定剂通常为无机酸、有机酸、酰氯 等[2],其作用是保证PUR在制备、储存及应用时黏 度保持稳定。在PUR体系中,黏度稳定剂对氨基甲 酸醋及脲基甲酸酯生成反应影响不大,但能抑制缩 二脲等交联产物的生成反应,从而保证PUR具有较 好的黏度稳定性。水解稳定剂通常为碳化二亚胺和 环氧类化合物[3_4],其作用是减缓或阻止PUR固化 物在潮湿环境下发生水解,延长产品的使用寿命,扩 大产品的使用范围。 本工作考察了不同种类及用量的黏度稳定剂、7JC解稳定剂对PUR性能的影响。 1主要部分 1.1实验原料 结晶性聚酷多元醇Dynacoll 7360、液体聚酯多 兀醇Dynacoll7250,德国赢创特种化学有限公司;液 化MDI,牌号D esm odur CD-C,德国拜耳化工有限公 司;松香树脂,牌号Sylvalite RE 100L,美国亚利桑那 化学公司;二吗啉基二乙基醚(DMDEE),上海雨田 化工有限公司;抗氧剂1010,上海井宏化工科技有 限公司;环氧化合物GE500,德国拉西格公司;碳化 *二亚胺低聚物Stabaxol P200,德国莱茵化学公司;消 泡剂BYK-A535,德国毕克化学有限公司。以上均 为工业级。苯甲酸、多聚磷酸、壬酸,分析纯,上海国 药集团公司。 1.2反应型聚氨酯热溶胶的制备 将 50 份 D ynacoll 7360、90 份 Dynacoll 7250、20 份Sylvalite RE 100L投人反应釜,加热至120 t使 其完全熔化,在搅拌条件下真空脱水至水分低于0.02%,利用干燥氮气消真空后,将20. 5份的液化 MDI投入反应釜内,在氮气保护下,搅拌反应2 h,然 后依次投入0.5份BYK-A 535、0.2份催化剂D M-DEE、0.3份抗氧剂1010、适量的黏度稳定剂和水解 稳定剂,搅拌反应0.5 h,最后在匀速搅拌条件下脱 泡,出料得到PUR,密封保存备用。 1.3粘接试件的制备 将两块标准粘接基材进行除尘、除油处理后,用 溶融的PUR进行水平粘接,粘接面积为12. 5 mmX 25 mm,施胶厚度为2 mm,粘接完成后,在25 T、50%RH固化,为保证完全固化,放置7 d后测试。1.4性能测试 熔融黏度参照标准HG/T 3660—1999,采用美 国Brookfield公司RVDV-S数显旋转黏度计(带 Thermosel加热器)测定120丈的黏度;粘接强度(拉 伸剪切强度)参照标准GB/T7124—2008,采用深圳 市新三思计量技术有限公司C M T4303型微机控制 *基金项目:广州市产学研协同创新重大专项(201604010060)。

PUR热熔胶解读

PUR热熔胶 一、 PUR热熔胶概念 二、与同类产品的区别与联系 三、聚氨酯热熔胶的固化机理 四、反应型聚氨酯热熔胶的应用 五、反应型聚氨酯热熔胶的国内外发展动态及存在的问题 一、 PUR热熔胶概念--湿气固化反应型聚氨酯热熔胶 1.1概念 PUR(Polyurethane Reactive,中文全称为湿气固化反应型聚氨酯热熔胶.主要成分是端异氰酸酯聚氨酯预聚体.PUR的粘接性和韧性(弹性可调节,并有着优异的粘接强度,耐温性,耐化学腐蚀性和耐老化性.近年来已成为胶粘剂产业的重要品种之一.现广泛应用于包装,木材加工,汽车,纺织,机电,航空航天等国民经济领域. 1.2 PUR--反应型PU胶性质 反应型热熔胶是在抑制化学反应的条件下,如热熔融成流体,以便于涂敷;两种被粘体贴合冷却后胶层凝聚起到粘接作用;之后借助于空气中存在的湿气和被粘体表面附着的湿气与之反应、扩链,生成具有高聚力的高分子聚合物,使粘合力、耐热性、耐低温性等显著提高。由于其具有极高的反应活性, 因而对多种材质显示出极好的粘接性,广泛应用于洗衣机顶盖板、消毒柜顶盖板、书籍装订、汽车车灯、家具封边、制鞋等的粘接。 PUR胶粘剂是分子结构中含有极性和化学活泼性的氨酯基(-NHCOO-或异氰酸酯 基(-NCO,与含有活泼氢的材料,如木材,皮革,织物,纸张,陶瓷等多孔材料和塑料,金属,玻璃,橡胶等表面光洁材料都有着优良的粘合力. 1.3 聚氨酯热熔胶的类型 按化学性质,聚氨酯热熔胶可分为2类,一类是热塑性聚氨酯热熔胶,另一类是 反应型聚氯酯热熔胶。前者加热液化后靠冷却固化,后者加热液化后通过冷却与湿气反应交联固化。热塑性聚氨酯热熔胶又称为热熔型聚氨酯热熔胶。而反应型聚氨酯热熔胶又可分为湿固化型聚氨酯热熔胶和封闭型聚氯酯热熔胶。 聚氨酯热熔胶还有其他的分类标准,如按形状,可分为胶膜、胶带以及粉末3 种类型。溶液在所需粘接的材质表面挥发后而成为热熔胶膜。胶带是有增强材料或载体作背衬,而胶膜则由胶粘剂自身支撑。 二、与同类产品的区别与联系 过去大多数热熔胶是采用乙烯一醋酸乙烯(EVA、聚酯、聚酰胺等热熔性树脂制备的,由于EVA与聚酯热熔胶的强度及弹性较差,不能承受太大的外力,又由 于聚酰胺热熔胶的熔点与硬度较高,因此在使用方面受到一定限制。而聚氯酯作为热熔胶也一直被认为不太成功,因其氨基甲酸酯键在应用温度下不稳定,因此聚氯酯热熔胶品种少,应用领域也比较窄。近年来,各国对聚氨酯热熔胶的研究又活跃起来,使得热熔胶在品种与性能方面又有新的发展。 : 具有如下优点,PUR溶剂型粘合剂相比\水性,热熔胶EVA与

相关主题
文本预览
相关文档 最新文档