熔炼与铸锭课程-有色金属熔铸技术9
- 格式:pdf
- 大小:1.61 MB
- 文档页数:40
有色金属熔炼与铸锭有色金属是指除了铁之外的金属,包括铜、铝、镁、锌、铅等。
这些金属在工业和日常生活中都有广泛的应用,因此其熔炼和铸造技术也非常重要。
本文将介绍有色金属熔炼和铸锭的基本原理和流程。
一、有色金属熔炼有色金属熔炼是将固态金属加热至液态并进行加工的过程。
有色金属熔炼通常采用电炉、燃气炉或高频感应炉等加热设备。
在熔炼过程中,有色金属会发生氧化、蒸发和挥发等反应,因此需要加入熔剂和保护气体来控制反应的发生。
1. 熔剂熔剂是一种能够与金属氧化物反应生成氧化还原剂的物质。
在熔炼过程中,熔剂可以吸收金属表面的氧化物,并将其还原为金属。
熔剂的选择要根据金属的特性和熔剂的成分来确定。
以铝为例,铝的氧化物(Al2O3)在高温下很难还原为金属铝。
因此,需要加入熔剂(如纯碳或氟化铝钠等)来将氧化物还原为铝。
另外,熔剂还可以调节熔炼温度、改善金属的流动性和减少金属表面的氧化。
2. 保护气体保护气体是一种用于保护金属表面不受氧化的气体。
在熔炼过程中,金属表面会受到空气中的氧化物的影响,导致氧化和污染。
因此,需要加入保护气体,如氮气、氩气、氢气等,来隔绝金属和空气的接触。
以铜为例,铜熔点较低,容易氧化,因此需要使用保护气体来防止氧化。
常用的保护气体是氢气,因为氢气可以还原铜表面的氧化物,并且不会对铜产生污染。
二、有色金属铸造有色金属铸造是将熔化的金属倒入模具中,使其冷却固化成型的过程。
有色金属铸造通常采用砂型铸造、永久模铸造、压铸和注射成型等方法。
1. 砂型铸造砂型铸造是将熔化的金属倒入沙子制成的模具中,使其冷却固化成型的方法。
砂型铸造可以制造大型和复杂的零件,但是生产周期较长,成本较高。
2. 永久模铸造永久模铸造是将熔化的金属倒入金属模具中,使其冷却固化成型的方法。
永久模铸造可以制造高精度、高表面质量和高产量的零件,但是模具成本较高。
3. 压铸压铸是将熔化的金属注入压铸机中,经过高压快速冷却成型的方法。
压铸可以制造高精度、高表面质量和高产量的零件,但是一般只适用于小型和中型零件。
熔炼与铸造原理与技术一、课程说明课程编号:060103Z10课程名称:熔炼与铸造原理与技术/ Melting and Casting of Nonferrous Metal课程类别:学科专业课程学时/学分:32/2.0先修课程:材料科学基础适用专业:材料科学与工程专业本科生建议教材及参考书:(1)《有色金属熔炼与铸锭》,陈存中编著,冶金工业出版社,1988年。
(2)《铜及铜合金熔炼与铸造》,娄花芬,黄亚飞,马可定编著,中南大学出版社,2010年。
(3)《变形铝合金熔炼与铸造》,王立娟,张万金,吴欣凤编著,中南大学出版社,2010年。
二、课程设置的目的、意义有色金属熔炼与铸造是材料科学与工程专业四年制本科生选修的一门专业课程,也是全校本科大材料类专业(如包括:粉末冶金等)本科生的选修课程。
通过本课程的学习,学生将掌握有色金属熔炼与铸造的基本原理,熟悉有色金属熔炼与铸造的相关技术、工艺与装备,可为从事铝合金、铜合金、镁合金等熔炼与铸造工作和后续专业课的学习奠定基础。
三、课程目标3.1课程对毕业生能力支撑本课程对应毕业要求1-5、2-4、3-2、4-1、5-1、6-2、7-2,具体内容如下:毕业要求1-5:掌握解决本专业复杂工程问题所必须的专业知识,能够运用所学的专业知识与相关自然科学知识对材料生产方案进行初步评估;能够运用所学的专业知识和数学基础知识材料生产过程多因素影响工艺模型选用合适的方法求解和评估;毕业要求2-4:掌握分析研究材料生产复杂工程问题所需的专业理论知识。
能够运用所学专业理论知识分析材料组成-工艺-结构-性能的相互关系与制约规律,识别材料生产过程不同阶段的关键;毕业要求3-2:掌握材料设计与生产所需的专业理论知识。
通过系统掌握本专业领域技术基础理论,能够清晰地描述出一个设计任务需求,并能够识别该任务所面临的各种制约条件,能从多种备选材料生产制备方案和系统里面进行优选;毕业要求4-1:根据工程应用的需要,能够根据材料工程技术研究的需要选择合适的实验手段对材料组成、组织结构、性能及其相互关系,对试验数据做出正确的分析,为材料的应用提出合理建议;毕业要求5-1:系统地掌握材料科学与工程基础理论,掌握相关技术基础理论和现代分析方法在材料制备技术中的应用知识与应用技巧;系统地掌握材料工程领域主要制备技术,深入了解新材料与材料加工新技术的发展方向;毕业要求6-2:能正确认知材料科学与工程中新材料与先进加工方法对社会进步的重大促进作用,了解材料科学与工程对社会对国防的重要意义;毕业要求7-2:了解材料科学与工程中各种工程实践活动对社会对自然环境的作用,掌握一定职业保健知识与技能,了解一定环保知识与环保技术。
这份是老师上课讲过的内容,整理出来的,可能存在遗漏,仅供大家参考Ⅰ有色金属熔炼的基本原理(1)1.2.1 α定义为氧化物的分子体积MV与形成该氧化物的金属原子体积AV之比,即:α=MV/AV(如αAl2O3=MV Al2O3/2AV AL)(2)1.2.1各种金属由于其氧化膜结构不同,对氧扩散的阻力不一样,因而氧化反应的限制性环节及氧化速度随时间的变化规律也不同。
当α>1时,生成的氧化膜一般是致密的、连续的、有保护性的,氧在这种氧化膜内扩散无疑会遇到较大的阻力。
(在这种情况下,结晶化学反应速度快,而内扩散速度慢,因而内扩散成为限制性环节。
氧化膜逐渐增厚,扩散阻力愈来愈大,氧化速度将随时间的延续而降低。
)Al、Be、Si等大多数金属生成的氧化膜具有这种特性。
当α<1时,氧化膜是疏松多孔的,无保护性的。
(氧在这种氧化膜内扩散阻力将比前者小得多。
在这种情况下,限制性环节将由扩散变为结晶化学反应。
氧化反应速度为一常数。
)碱金属及碱土金属(如Li、Mg、Ca)的氧化膜具有这种特性。
当α>>1时,这是一种极端情况,大量过渡金属如铁的氧化膜就是如此。
这种十分致密但内应力很大的氧化膜增长到一定厚度后即行破裂,这种现象周期性出现,故氧化膜也是非保护性的。
(严格地讲,金属不仅依靠氧在氧化膜中的扩散,还存在着金属在离子向气相-氧化膜界面扩散和氧负离子向金属-氧化膜界面扩散。
当氧化膜很致密且氧的扩散阻力很大时,氧化膜内离子的扩散将占很大的比重。
研究表明,氧化物的晶体与金属一样,在绝对零度以上的温度时包含有点阵缺陷,例如阴离子空位或阳离子空位及填隙原子等。
离子的迁移速率取决于氧化膜的点阵缺陷的性质。
)(3)1.3.1影响金属氧化烧损的因素①金属及氧化物的性质。
纯金属氧化烧损的大小主要取决于金属的亲和力和表面氧化膜的性质。
合金的氧化烧损程度因加入合金元素而异。
②熔炼温度。
熔炼温度越高,氧化烧损就越大。
③炉气性质。