第4章随机过程的非线性变换
- 格式:ppt
- 大小:406.00 KB
- 文档页数:20
高斯随机过程通过非线性系统非线性变换下的概率密度一般情形非线性函数关系,2ax y =输入呈高斯分布 输入呈瑞利分布 非线性函数关系,⎩⎨⎧<≥=0,00,x x bx y : 输入呈高斯分布非线性变换下,随机过程的均值、矩一般情形均值 矩相关函数非线性函数关系,2ax y =输入呈高斯分布 输入呈瑞利分布 经过非线性函数关系,⎩⎨⎧<≥=0,00,x x bx y 之后, 输入呈高斯分布随机噪声通过平方律检波器输入是窄带实平稳随机过程,数学表达式随机过程)(t ξ经过非线性器件2ax y =之后,输出的相关函数高斯随机过程)(t ξ经过非线性器件2ax y =之后,输出的相关函数和功率谱矩形窄带实平稳高斯随机过程)(t ξ经过非线性器件2ax y =,输入输出的功率谱低通滤波器输出的功率谱。
信号加噪声通过平方律检波器一般情形数学表达式矩相关函数和功率谱输入信号加噪声,其中噪声是窄带实平稳高斯随机过程输出的相关函数和功率谱输入噪声是矩形带通窄带实平稳随机过程的调幅信号加噪声通过平方律检波器一般情形数学表达式相关函数和功率谱输入信号加噪声,其中噪声是窄带实平稳高斯随机过程 输出的相关函数和功率谱输入噪声是矩形带通窄带实平稳随机过程 输出的相关函数和功率谱半波整流器的研究一般情形数学表达式 矩相关函数和功率谱输入信号加噪声,其中噪声是窄带实平稳高斯随机过程 输出的相关函数和功率谱输入噪声是矩形带通窄带实平稳随机过程非线性变换下的概率密度非线性器件的输入输出关系:[])()(t x g t y =输入输出的概率分布特性:输入信号)(t ξ的分布:)()(;x P x F t r t ≤=ξξ输出信号)(t η的分布:如果输入输出关系是单调递增的))(())(()()(1;y g P y x g P y P y F t r t r t r t -≤=≤==≤=ξηηη如果输入输出关系是单调递减的))(())(()()(1;y g P y x g P y P y F t r t r t r t -≥=≥==≤=ξηηη输入信号的概率密度函数是:)(;x f t ξ输出信号的分布(如果输入输出关系是单调递增的、单调递减的):[]yxy g x f y f t t ∂∂⋅==-)()(1;;ξη 非线性函数关系,2ax y =:输出的概率分布函数、概率密度函数[])()()(a y P a y P ay a y P y P t r t r t r t r -≤-≤=≤≤-=≤ξξξη[][]ay a y x f a y x f y f t t t 2)()()(;;;-=+==ξξη非线性函数关系,2ax y =:输入是高斯过程,均值为零,方差为2ξσ⎥⎥⎦⎤⎢⎢⎣⎡-=222;2exp 21)(ξξξσπσx x f t 输出的分布是,2exp 21)/()(22;;≥⎪⎪⎭⎫ ⎝⎛-==⋅∂∂=y a y ay a y x f yxy f t t ξξξησσπ00)(;<=y y f t η输入呈瑞利分布⎪⎩⎪⎨⎧<≥⎥⎥⎦⎤⎢⎢⎣⎡-=0,00,2exp )(222;x x x x x f t ξξξσσ输出的分布是,02exp 212exp /21)/()(2222;;≥⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-==⋅∂∂=y a y a a y ay ay a y x f y xy f t t ξξξξξησσσσ00)(;<=y y f t η非线性函数关系,⎩⎨⎧<≥=0,00,x x bx y : 概率分布函数、概率密度函数,)()0()()/()(0,0)(/0;/;≥+≤==≤=≤<=≤⎰⎰∞-y dx x f P dxx f b y P y P y y P by tt r by tt r t r t r ξξξξηηb y U b y x f y P y f t t r t /)()/()()0()(;;⋅=+<=ξηδξ如果输入是窄带实平稳高斯随机过程,均值为零,⎥⎥⎦⎤⎢⎢⎣⎡-=222;2exp 21)(ξξξσπσx x f t 相应输出的概率密度函数是,b y U b y y y f t /)(2exp 212/)()(2222;⋅⎥⎥⎦⎤⎢⎢⎣⎡-+=ξξησπσδ非线性变换下,随机过程的均值、矩:输入输出的矩:输出的均值:[][][]{}[]{}⎰⎰∞∞-∞∞-⋅=⋅=dxx f t x gt E dxx f t x g t E t n nt)()()()()()(;;ξξηη输出的相关函数:[][][]⎰∞∞-⋅=dx t x t x f t x g t x g t t R t t )(),()()(),(21,21212121ξξηη非线性函数关系,2ax y =:输出的相关函数:[][][][])()()(),()()(),(1212221,21212121t t E a dxt x t x f t x g t x g t t R t t ξξξξηη=⋅=⎰∞∞-输出的n 阶矩:[][]n n n E a E 2ξη=高斯随机变量ξ经过非线性器件2ax y =之后,求输出η的n 阶矩:[][]13)12(22⋅-== n a E a E nn n n n ξσξη[][][]42422223ξξξσησησηa D a E a E === 瑞利随机变量ξ经过非线性器件2ax y =之后,求输出η的n 阶矩:[]nn nnna n dy a y a y dyy f yE 20220!2exp 21)(ξξξησσση⋅=⎥⎥⎦⎤⎢⎢⎣⎡-⋅=⋅=⎰⎰∞∞[][][]4242222ξξξσησησηa D a E a E === 经过非线性函数关系,⎩⎨⎧<≥=0,00,x x bx y 之后, 求输出η的n 阶矩[]⎰⎰∞∞∞-⋅=⋅=;;)()()(dxx f x b dyy f yt E t n n t nn ξηη求输出η的偶数(2m )阶矩,且概率密度函数是偶函数[][])(2)(2)()(22;220;222t E b dxx f xb dx x f x bt E m m t mmt m mmξηξξ=⋅=⋅=⎰⎰∞∞-∞输出的相关函数:[]⎰⎰∞∞=002121,21221)(),()()(),(2121dx dx t x t x f tx t x bt t R t t ξξηη如果输入是窄带实平稳高斯随机过程,均值为零,[]135)12(2)(222⋅⋅-= m b t E mm mξση[]135)12(22!)(1212212⋅⋅-=+++ m b m t E m m m m ξσπη[]ξσπηb t E 21)(=[][][]{}()πσσπσηηηξξξ/11212121)()()(2222222-=⎪⎪⎭⎫ ⎝⎛-=-=b b b t E t E t D 随机噪声通过平方律检波器:分析方法信号数学表达式、均值、矩;经过非线性器件2ax y =之后,输出的相关函数、功率谱; 低通滤波器输出信号的功率谱密度。
《随机信号分析与处理》教学⼤纲《随机信号分析与处理》教学⼤纲(执笔⼈:罗鹏飞教授学院:电⼦科学与⼯程学院)课程编号:070504209英⽂名称:Random Signal Analysis and Processing预修课程:概率论与数理统计、信号与系统、数字信号处理学时安排:60学时,其中讲授54学时,实践6学时学分:3⼀、课程概述(⼀)课程性质地位本课程是电⼦⼯程、通信⼯程专业的⼀门学科基础课程。
该课程系统地介绍随机信号的基本概念、随机信号的统计特性分析⽅法以及随机信号通过系统的分析⽅法;介绍信号检测、估计、滤波等信号处理理论的基本原理和信息提取⽅法。
其⽬的是使学⽣通过本课程的学习,掌握随机信号分析与处理的基本概念、基本原理和基本⽅法,培养学⽣运⽤随机信号分析与处理的理论解决⼯程实际问题的能⼒,提⾼综合素质,为后续课程的学习打下必要的理论基础。
本课程是电⼦信息技术核⼼理论基础。
电⼦信息系统中的关键技术是信息获取、信息传输、信息处理,这些技术的理论基础就是随机信号的分析、检测、估计、滤波等理论,这正是本课程的主要内容。
因此,本课程内容是电⼦信息类应⽤型⼈才知识结构中不可或缺的必备知识。
⼆、课程⽬标(⼀)知识与技能通过本课程的学习,掌握随机信号分析与处理基本概念和基本分析⽅法。
内容包括:1.理解和掌握随机过程基本概念和统计描述;2.掌握随机过程通过线性和⾮线性系统分析⽅法3.理解和掌握典型随机过程的特点及分析⽅法;4.掌握参数估计的概念、规则和性能分析⽅法;5.掌握信号检测的概念、规则和性能分析⽅法;6.掌握⾼斯⽩噪声中最佳检测器的结构和性能分析。
通过本课程的学习,要达到的能⼒⽬标是:1.具有正确地理解、阐述、解释⽣活中的随机现象的能⼒,即培养统计思维能⼒;2.运⽤概率、统计的数学⽅法和计算机⽅法分析和处理随机信号的能⼒;3.初步具备雷达、通信、导航等技术领域的信号处理系统的分析、设计、仿真的科学研究能⼒;4.培养⾃主学习能⼒;5.培养技术交流能⼒(包括论⽂写作和⼝头表达);6.培养协作学习的能⼒;(⼆)过程与⽅法依托“理论、实践、第⼆课堂”三个基本教学平台,通过课堂教学、概念测试、课堂研讨、案例研究、作业、实验、课程论⽂、⽹络教学等多种教学形式,采⽤研究型、案例式、互动研讨、基于团队学习、基于MATLAB的教学以及基于多媒体的教学等多种教学⽅法和⼿段,使学⽣加深对随机信号分析与处理的基本概念、基本原理以及应⽤的理解,并使学⽣通过⾃主学习、⼩组作业、案例研究、实验、课题论⽂等主动学习形式,培养⾃学能⼒和协同学习的能⼒,使学⽣不仅获得知识、综合素质得到提⾼。
随机过程的线性变换姓名:徐延林学号:200904013026专业:电子工程指导教师:谢晓霞2012年4月17日一、实验目的了解随机过程线性变换的基本概念和方法,学会运用MATLAB 软件模拟各种随机过程的线性变换,对其结果进行仿真分析,并通过实验了解不同随机过程经过窄带系统的输出。
二、实验原理(1)均匀分布白噪声序列利用MATLAB 函数rand 产生;laplace 分布的白噪声表达式()()(0)2c x m c f x e m --==白噪声 据此我们可以产生拉普拉斯白噪声序列。
(2)自相关函数的估计||11ˆ()()()||N m xn R m x n m x n N m --==+-∑MATLAB 自带的函数为xcorr 。
(3)功率谱的估计先估计自相关函数ˆ()xR m ,再利用维纳-辛钦定理,功率谱为自相关函数的傅立叶变换:1(1)()()N jm x x m N G R m e ωω+-=--=∑MATLAB 自带的函数为periodogram 、pyulear 或pburg 。
(4)均值的估计111ˆ()N x n mx n N -==∑MATLAB 自带的函数为mean 。
(5)方差的估计12211ˆˆ[()]N xx n x n m N σ-==-∑MATLAB 自带的函数为var 。
(6) ARMA 模型的理论自相关函数和理论功率谱对于AR(1)模型()(1)()X n aX n W n =-+,其理论自相关函数和功率谱分别为2222()(0)1()(1)mX X j a R m m a G ae ωσσω-⎧=≥⎪-⎪⎨⎪=⎪-⎩对于ARMA 模型01201()(1)(2)()()(1)()N M a X n a X n a X n a X n N b W n bW n b W n M +-+-+⋯+-=+-+⋯+- 其理论的功率谱密度为220()Mjkwk k x N jkwkk b eG w a eσ-=-==∑∑(7)白噪声过有限系统或宽带信号过窄带系统输出信号成正态分布。
《非线性变换的定义和应用》
非线性变换是指所有不能用线性方程来描述的变换。
它与传统的线性变换不同,因为线性变换可以使用线性操作来表示,但非线性变换不能。
非线性变换对其输入的响应可以是非线性的,这意味着它的输出结果可能会受到输入的大小或形状的影响,而且可能会产生不同的结果。
非线性变换有很多应用,它们可以用来实现数字图像处理,语音处理和文本处理等功能。
它们还可以被用来进行信号处理,例如动态范围压缩、非线性滤波、滤波器设计、空域变换、时域变换等。
此外,非线性变换还在医学影像处理中有广泛的应用,例如磁共振成像、声像图像等。
非线性变换也可以用在数据分析领域,其中一些应用包括多维尺度变换、概率密度函数变换和视觉系统仿真等。
此外,它也可以用于机器学习中,例如神经网络可以使用非线性变换进行输入和输出映射,从而使得网络可以更好地模拟人类行为。
另外,非线性变换也可以用于互联网安全性的检测,以确保安全客户的用户体验。
总之,非线性变换可以在多种情况下发挥重要作用,它们可以有效地帮助提高计算机系统的性能和准确性。
它们提供了一种新的视角来看待任务,使任务更容易实现,并且可以帮助我们发现新的算法和解决方案。