《随机信号分析》第3章 随机过程的线性变换
- 格式:pptx
- 大小:3.69 MB
- 文档页数:95
《随机信号分析与处理》教学⼤纲《随机信号分析与处理》教学⼤纲(执笔⼈:罗鹏飞教授学院:电⼦科学与⼯程学院)课程编号:070504209英⽂名称:Random Signal Analysis and Processing预修课程:概率论与数理统计、信号与系统、数字信号处理学时安排:60学时,其中讲授54学时,实践6学时学分:3⼀、课程概述(⼀)课程性质地位本课程是电⼦⼯程、通信⼯程专业的⼀门学科基础课程。
该课程系统地介绍随机信号的基本概念、随机信号的统计特性分析⽅法以及随机信号通过系统的分析⽅法;介绍信号检测、估计、滤波等信号处理理论的基本原理和信息提取⽅法。
其⽬的是使学⽣通过本课程的学习,掌握随机信号分析与处理的基本概念、基本原理和基本⽅法,培养学⽣运⽤随机信号分析与处理的理论解决⼯程实际问题的能⼒,提⾼综合素质,为后续课程的学习打下必要的理论基础。
本课程是电⼦信息技术核⼼理论基础。
电⼦信息系统中的关键技术是信息获取、信息传输、信息处理,这些技术的理论基础就是随机信号的分析、检测、估计、滤波等理论,这正是本课程的主要内容。
因此,本课程内容是电⼦信息类应⽤型⼈才知识结构中不可或缺的必备知识。
⼆、课程⽬标(⼀)知识与技能通过本课程的学习,掌握随机信号分析与处理基本概念和基本分析⽅法。
内容包括:1.理解和掌握随机过程基本概念和统计描述;2.掌握随机过程通过线性和⾮线性系统分析⽅法3.理解和掌握典型随机过程的特点及分析⽅法;4.掌握参数估计的概念、规则和性能分析⽅法;5.掌握信号检测的概念、规则和性能分析⽅法;6.掌握⾼斯⽩噪声中最佳检测器的结构和性能分析。
通过本课程的学习,要达到的能⼒⽬标是:1.具有正确地理解、阐述、解释⽣活中的随机现象的能⼒,即培养统计思维能⼒;2.运⽤概率、统计的数学⽅法和计算机⽅法分析和处理随机信号的能⼒;3.初步具备雷达、通信、导航等技术领域的信号处理系统的分析、设计、仿真的科学研究能⼒;4.培养⾃主学习能⼒;5.培养技术交流能⼒(包括论⽂写作和⼝头表达);6.培养协作学习的能⼒;(⼆)过程与⽅法依托“理论、实践、第⼆课堂”三个基本教学平台,通过课堂教学、概念测试、课堂研讨、案例研究、作业、实验、课程论⽂、⽹络教学等多种教学形式,采⽤研究型、案例式、互动研讨、基于团队学习、基于MATLAB的教学以及基于多媒体的教学等多种教学⽅法和⼿段,使学⽣加深对随机信号分析与处理的基本概念、基本原理以及应⽤的理解,并使学⽣通过⾃主学习、⼩组作业、案例研究、实验、课题论⽂等主动学习形式,培养⾃学能⼒和协同学习的能⼒,使学⽣不仅获得知识、综合素质得到提⾼。
变换的基本概念和基本定理变换的基本概念和基本定理变换的基本概念和基本定理变换的基本概念和基本定理变换的基本概念和基本定理证明一:变换的基本概念和基本定理证明二:变换的基本概念和基本定理随机过程通过线性系统分析随机过程通过线性系统分析变换的基本概念和基本定理d变换的基本概念和基本定理和()X t变换的基本概念和基本定理=如果为平稳随机过程,则:()X t ()0Y m t 22()()()(),()X XY X XY Y dR dR d R R R d d d ττττττττ=−==− 1212121212(,)()()()()()X X X X XR t t R t t dR t t t t dR t t dR τ∂∂−−∂−−==⋅=−=−证明:()()t t d t t t d t t d τ∂∂−∂−变换的基本概念和基本定理由,得由,得证明:()()XY XY R G τω⇔()()X X dR j G d τωωτ−⇔−()()Y Y R G τω⇔222()()X X d R G d τωωτ−⇔(0)0XY R =证明:1212121121(,)()()()()()()X X X XY YX R t t dR t t t t dR R R t d t t t d ττττ∂−∂−−===⋅=∂−∂因此()()XY XY R R ττ−=−(0)0XY R =得14变换的基本概念和基本定理随机过程通过线性系统分析随机过程通过线性系统分析随机过程通过线性系统分析随机过程通过线性系统分析随机过程通过线性系统分析如果输入随机过程通过线性系统分析如果输入随机过程通过线性系统分析随机过程通过线性系统分析。
第三章,平稳随机过程的n 维概率密度不随时间平移而变化的特性,反映在统计特征上就是其均值不随时间的变化而变化,mx 不是t 的函数。
同样均方值也应是常数。
(2)二维概率密度只与t1,t2的时间间隔有关,而与时间起点t1无关。
因此平稳过程的自相关函数仅是单变量tao 的函数。
则称他们是联合宽平稳的。
第三章Chapter 3 ==========================================3.2 随机过程()t X 为()()ΦωX +=t cos A t 0式中,A 具有瑞利分布,其概率密度为()02222>=-a eaa P a A ,σσ,()πΦ20,在上均匀分布,A Φ与是两个相互独立的随机变量,0ω为常数,试问X(t)是否为平稳过程。
解:由题意可得:()[]()()002121020222220002222=⇒+=*+=⎰⎰⎰⎰∞--∞φφωπσφπσφωX E πσσπd t cos da e a a dad eat cos a t a a ()()()[]()()()()()()[]()()()()()120212021202021202022212020220210120220222020100222222002010212121221122102122121212212122222222222222t t cos t t cos t t cos det t cos da e e a t t cos dea d t t cos t t cos a d ea d t cos t cos da eaadad e at cos a t cos a t t t t R a a a a a a a -=-⨯=-⨯-=-⨯⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-∞+-=-⨯-=⎩⎨⎧⎭⎬⎫+++---=++=++==-∞∞---∞∞-∞--∞⎰⎰⎰⎰⎰⎰⎰⎰⎰ωσωσωσωωφφωωπσφπφωφωσφσπφωφωX X E σσσσπσπσσπXX )(,可见()[]t X E 与t 无关,()21t t R ,XX 与t 无关,只与()12t t -有关。
第三章随机信号分析随机过程平稳随机过程噪声随机过程通过系统3.1 随机过程通信过程就是信号和噪声通过系统的过程。
通信中信号特点:具有不可预知性——随机信号。
通信中噪声特点:具有不确定性——随机噪声。
统计学上:随机过程。
一、基本概念二、统计特性一、基本概念随机变量定义分布函数概率密度函数二维随机变量随机变量的数字特征数学期望方差协方差矩基本概念(续)随机过程设E是随机试验,S={e}是其样本空间,如果对于每一个e∈S,有一个时间t的实函数ξ(e,t) t ∈T与之对应,于是对于所有的e∈S,得到时间t的函数族。
该族时间t的函数称为随机过程,族中每个函数称为这个随机过程的样本函数。
ξ(t)={x(t),x2(t),……,x n(t),……}1x1(t),x2(t),……为样本函数基本概念(续)随机过程的一个实现每一个实现都是一个确定的时间函数,即样本。
随机过程其随机性体现在出现哪一个样本是不确定的。
随机过程没有确定的时间函数,只能从统计角度,用概率分布和数字特征来描述。
基本概念(续)二、统计特性概率分布数学期望方差协方差函数相关函数1.概率分布2.数学期望1[()](,)()E t xf x t dx a t ξ∞−∞==∫物理意义:表示随机过程的n 个样本函数曲线的摆动中心(平均值)3. 方差D(ξ (t )] = E{ξ (t ) − E[ξ (t )]} = σ (t )2 2物理意义:表示随机过程在某时刻t的取 值(随机变量)相对于该时刻的期望a(t) 的偏离程度4. 自相关函数R(t1 , t2 ) = E[ξ (t1 )ξ (t2 )] = ∫∞ −∞ −∞ 1 2 2∫∞x x f ( x1 , x2 ; t1 , t2 )dx1dx2物理意义:表示随机过程在两个时刻的 取值的关联程度, ξ(t)变化越平缓, 两个时刻取值的相关性越大,R值越大5.自协方差函数B(t1 , t2 ) = E{[ξ (t1 ) − a(t1 )][ξ (t2 ) − a(t2 )]} =∫ ∫−∞∞f 2 ( x1 , x2 ; t1 , t2 ) dx1dx2 x1 − a ( t1 ) ⎤ x2 − a ( t2 ) ⎤ ⎡ ⎡ ⎣ ⎦ ⎣ ⎦ −∞∞物理意义:表示随机过程在两个时刻间 的线性依从关系6.互协方差及互相关函数Bξη (t1 , t2 ) = E{[ξ (t1 ) − a (t1 )][η (t2 ) − a (t2 )]}Rξη (t1 , t2 ) = E[ξ (t1 )η (t2 )] = ∫∞−∞ −∞∫∞x1 y 2 f 2 ( x1 , y 2 ; t1 , t2 )dx1dy 23.2 平稳随机过程 定义 各态历经性 自相关函数 功率谱密度一、定义若随机过程的n维概率分布函数Fn ()和n维概 率密度函数fn ()与时间起点无关,则为平稳随 机过程 严平稳过程,狭义平稳过程f n ( x1 , x2 ,..., xn ; t1 , t2 ,..., tn ) = f n ( x1 , x2 ,..., xn ; t1 + τ , t2 + τ ,..., tn + τ )定义(续)a (t)Æa; σ2(t)Æ σ2; R(t1,t2)ÆR(τ) 一维分布与t无关: 二维分布只与τ有关 统计特性与时间起点无关 依据数字特征定义宽平稳过程,广义平稳过程二、各态历经性设x (t)是ξ(t)的任一实现,ξ(t)的统计平均= x (t)的 1 T2 时间平均 a=a = x (t ) dtlim T ∫T →∞−T2σ =σ22=lim ∫T →∞T →∞1 TT2 2−T[ x (t ) − a ] 2 dtR (τ ) = R (τ ) = lim1 T∫2 −T 2Tx (t ) x (t + τ ) dt意义 : 随机过程中的任一实现都经历了随机过程的所有可能 状态。