人工智能(AI)创新平台项目介绍ppt
- 格式:pptx
- 大小:4.45 MB
- 文档页数:22
目录•人工智能概述•机器学习原理及应用•自然语言处理技术•计算机视觉技术•语音识别与合成技术•智能推荐系统设计与实现人工智能概述ABDC定义人工智能(AI )是计算机科学的一个分支,旨在研究、开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学。
萌芽期20世纪50年代,人工智能的概念被提出,并开始进行基础性的研究。
发展期20世纪60-80年代,专家系统、自然语言处理、计算机视觉等领域取得重要进展。
成熟期20世纪90年代至今,机器学习、深度学习等技术的出现和不断发展,使得人工智能在多个领域实现广泛应用。
定义与发展历程技术原理及核心思想技术原理人工智能通过模拟人类的感知、认知、决策等智能行为,实现对复杂问题的求解和自主学习。
其技术原理主要包括算法设计、模型训练、数据驱动等。
核心思想人工智能的核心思想在于让机器具备类似于人类的智能,能够自主地进行学习、推理、决策等任务。
这需要通过大量的数据训练和优化算法来实现。
应用领域与前景展望应用领域人工智能已经渗透到社会的各个领域,如自然语言处理、计算机视觉、智能机器人、自动驾驶、智慧医疗、智慧金融等。
这些应用不仅提高了工作效率,也改善了人们的生活质量。
前景展望随着技术的不断发展和应用场景的不断拓展,人工智能将在未来发挥更加重要的作用。
例如,在智能制造、智慧城市等领域,人工智能将推动产业升级和转型;在医疗、教育等领域,人工智能将提供更加个性化、高效的服务。
同时,人工智能的发展也将带来新的就业机会和经济增长点。
机器学习原理及应用数据集划分特征提取模型训练模型评估监督学习算法原理01020304将数据集划分为训练集和测试集,训练集用于训练模型,测试集用于评估模型性能。
从原始数据中提取出对预测结果有影响的特征,作为模型的输入。
利用训练集数据,通过最小化损失函数来学习模型的参数。
使用测试集数据对训练好的模型进行评估,衡量模型的预测性能。
数据预处理特征学习聚类分析降维处理非监督学习算法原理对数据进行清洗、去噪和标准化等预处理操作。