换流变压器的高压直流试验
- 格式:pdf
- 大小:125.26 KB
- 文档页数:3
第22卷第4期2021年4月电气技术Electrical EngineeringV ol.22 No.4Apr. 2021±800kV特高压直流输电换流阀核相试验郭绯阳1,2张涛1,2吴鑫1,2李国楷1,2杨云龙1,2(1. 河南九域恩湃电力技术有限公司,郑州 450052;2. 河南合众电力技术有限公司,郑州 450001)摘要近年来,随着特高压直流工程在远距离大功率输电方面的发展,提高直流输电工程的可靠性成为保证电网安全稳定运行的前提和基础,换流阀低压加压核相试验作为分系统调试项目对检验特高压直流输电工程质量至关重要。
本文针对特高压直流工程±800kV换流站第一阶段分系统调试期间的相关内容,详细阐述换流站极I、极II低端换流阀核相试验过程并进行理论分析,通过试验参数计算、试验方案优化及试验波形的分析对比进行说明。
另外,优化试验abc三相同步电压获取方式,进一步降低试验误差。
最后,提出一种验证触发延迟角的核相方法,为特高压直流输电工程的建设和相关研究提供参考。
关键词:±800kV;特高压直流输电;换流阀;核相试验Converter valve phase-check test of ±800kVUHVDC transmission projectGUO Feiyang1,2ZHANG Tao1,2WU Xin1,2 LI Guokai1,2 YANG Yunlong1,2(1. He’nan Jiuyu EPRI Electric Power Technology Co., Ltd, Zhengzhou 450052;2. He’nan Hezhong Electric Power Technology Co., Ltd, Zhengzhou 450001)Abstract In recent years, with the gradual development of ultra-high voltage direct current (UHVDC) projects in long-distance and high-power transmission, improving the reliability of DC transmission projects has become a prerequisite and basis for ensuring the safe and stable operation of the power grid. The converter valve low-voltage pressurized checking phase test is used as a sub-system. The commissioning project is very important for testing the quality of UHVDC transmission projects. This article focuses on the relevant content during the first stage of commissioning of the ±800kV converter station sub-system of the UHVDC project. This article elaborates the low-pressure pressure test process of the pole I and pole II low-end converter valves of the converter station and conducts theoretical analysis. Parameter calculation, test plan optimization and test waveform analysis and comparison are explained. In addition, the method of obtaining the three-phase synchronous voltage of the test abc is optimized to further reduce the test error. Finally, a checking phase method for verifying the trigger angle is proposed, which has a certain degree of engineering reference value for the construction of UHVDC transmission projects and related research.Keywords:±800kV; ultra high voltage direct current (UHVDC); converter valve; phase-check test0引言随着特高压直流输电(ultra-high voltage direct current, UHVDC)工程项目规模逐渐增大,直流输电的安全性及可靠性变得至关重要。
第38卷第2期2010年2月Vo.l38No.2F eb.2010奉贤?800kV换流站换流变压器现场局部放电试验李福兴,郭森,黄华(华东电力试验研究院有限公司,上海200437)摘要:局部放电试验是目前换流变现场最后,也是最有效的验收试验。
介绍对特高压换流变压器进行现场局部放电试验所依据的标准、设备容量的选择和对试验的要求,给出了奉贤换流站换流变局放的试验结果。
关键词:换流变压器;局部放电;试验作者简介:李福兴(19632),男,高级工程师,长期从事高压试验和发电机、变压器故障诊断工作。
中图分类号:T M406文献标志码:B文章编号:100129529(2010)022*******In Situ Loca lized D ischa rge T est of Conver ter T ran sform er i n FengX ian?800kVU ltra2h igh Volta ge Conver ter Sta tionLI F u2xing,G UO Sen,H U A NGH ua(E ast Ch i na E lectr i c Po we r Test&R esearch Institute Co.,Ltd.,Shang ha i200437,Ch i na)Abstr ac t:Loca lized discharge test is currentl y the fi nal and most effective acceptance test i n the converter s ite.The criter i on co m pli ed by t he i n s it u l oca lized discharge test of the transfor m er,t he choi ce of the device capacity,and the requ irem ents for t he test were descr i bed.Experi m ental results of the F engxi an conve rter statio n l oca lized d i scharge testwere provi ded.K ey word s:converter transfor m er;localized discharge;test[4]间结构,2003,9(4):28229.[10]丁阳,郭天焓.大跨度空间网格结构风荷载数值模拟方法[J].天津大学学报,2007,40(7):7672770.[11]Sh i noz uka M,J an CM.D i gital s i m u l ati on of rando m processand i ts appli cati on[J].Journa l of Sound and V ibrati on,1972,25(1):1112128.[12]王济,胡晓.MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.[13]石辛民,郝整清.基于MATLAB的实用数值计算[M].北京:清华大学出版社,2006.收稿日期:2009209214本文编辑:王志胜1概述换流变压器是特高压换流站内最重要的设备之一,HVDC换流变压器的功能是将500kV 网侧交流电压通过变压器变为阀侧交流电压,经换流阀整流为直流传输。
换流站与变电站,为何采用高压直流输电1.总论电厂的任务是发电,电厂要能正常发电就需要使用和维护设备,使用和维护设备就是电厂的主要工作内容。
变电站是将电厂发出的电能通过电力设备进行各种变换,然后输送出去。
其主要工作任务是:1、使用和维护电力设备,使之保证长期连续对外供电。
2、监控电力设备运行情况,作好各项监控记录,以便将来作为技术或故障分析的原始资料。
3、有些变电站还具有监控线路运行状况的功能。
2.换流站高压直流输电的一种特殊方式,将高压直流输电的整流站和逆变站合并在一个换流站内,在同一处完成将交流变直流,再由直流变交流的换流过程,其整流和逆变的结构、交流侧的设施与高压直流输电完全一样,具有常规高压直流输电的最基本的优点,可实现异步联网,较好地实现不同交流电压的电网互联,将2个交流同步电网隔离,能有效地隔断各互联的交流同步网间的相互影响,限制短路电流,且联络线功率控制简单,调度管理方便。
与常规直流输电比较,其优点更突出:1、没有直流线路,直流侧损耗小;2、直流侧可选择低压大电流运行方式,以降低换流变压器、换流阀等有关设备的绝缘水平,降低造价;3、直流侧谐波可全部控制在阀厅内,不会产生对通信设备的干扰;4、换流站不需要接地极,无需直流滤波器、直流避雷器、直流开关场、直流载波等直流设备,因而比常规的高压直流输电节省投资。
换流站是直流输电工程中直流和交流进行相互能量转换的系统,除有交流场等与交流变电站相同的设备外,直流换流站还有以下特有设备:换流器、换流变压器、交直流滤波器和无功补偿设备、平波电抗器。
换流器主要功能是进行交直流转换,从最初的汞弧阀发展到现在的电控和光控晶闸管阀,换流器单位容量在不断增大。
换流变压器是直流换流站交直流转换的关键设备,其网侧与交流场相联,阀侧和换流器相联,因此其阀侧绕组需承受交流和直流复合应力。
由于换流变压器运行与换流器的换向所造成的非线性密切相关,在漏抗、绝缘、谐波、直流偏磁、有载调压和试验方面与普通电力变压器有着不同的特点。
特高压直流换流变压器励磁涌流引起保护动作分析摘要:换流变压器对于直流输电来说可以说保证系统运行可靠安全的重要基础,因此变压器的运行至关重要,所以,在整个换流站的建设中,变压器在投资上比例占得很大。
但是变压器会受到多放因素的影响从而出现一些不利于运行安全的问题,因此,对于其运行的安全性保护就在整个直流输电的系统运行中凸显。
文章在下面专门就换流变压器在运行特点上进行了介绍,并结合了直流输电在系统的运行中各个情况对于变压器造成的或者可能造成的影响,提出了一些合理化的方案。
关键词:特高压;变压器;保护动作由于换流变压器的运行与换流变的换相所造成的非线性密切相关,所以换流变压器在漏抗、绝缘、谐波、直流偏磁、有载调压和试验等方面与普通变压器有着不同的特点。
但在换流变的保护配置方面,换流变压器与传统变压器类似,也需要考虑换流变空载合闸时的励磁涌流问题,只是其励磁涌流是两台变压器的。
1 换流变压器的优势目前的输电系统都是采用了超高压式的直流输电系统,这种系统的应用的广泛度其实也是由于其自身所具有的高适应性的有点决定的。
具体说来主要有以下几点优势:①无需对稳定性进行考虑;②在恢复故障的能力上较强;③交流系统的稳定性调节能力较强;④可以有效的对互联交流的电路系统出现的短路容量现象进行降低;⑤在建设投资上更为的经济。
在直流输电的系统中,换流变压器是作为必要设备存在的。
换流变压器的主要作用就是通过提供交流电压对系统中的谐波电流进行降低,这种电流主要会集中在交流侧,换句话说就是通过作为一种电气隔离在直流以及交流系统中进行换相电抗,在最大的程度下对交流电压进行调节,从而保证直流输电在系统的运行状态可以保持最佳。
2 换流变压器保护的实现2.1 保护的配置原则在对换流变压器进行保护的时候既要考虑安全问题,有需要对经济问题进行考虑,在简单经济以及安全可靠的情况下,通过配置上的设置进行变压器的保护工作。
通过对变压器设置两个保护设备对每台的电源以及输入设备进行保护。
±800kV直流换流变压器一、产品简介特高压直流输电建设已成为国家的一项重大技术装备政策,随着我国电力事业的发展,我国高压直流输电线路电压等级已经从±500kV全面迈向±800kV等级。
目前国家电网公司和南方电网公司已经先后完成并投运三个±800kV项目,工程额定输送容量从最初南网公司云广项目的5000 MW 、国网公司向上项目的6400 MW、发展到国网公司锦屏项目的7200 MW,两个±800kV项目正在建设,南网公司输送容量糯扎渡仍为5000 MW,国网公司哈郑项目已经发展到8000MW,为目前世界上该电压等级最高直流输电项目中,输送容量最大的直流项目。
云南至广东直流输电工程的发送端位于云南省楚雄换流站,接受端位于广东省穗东换流站,直流输电距离约为1418公里。
额定直流运行电压为±800kV,额定直流电流为3125A,输送容量5000MW。
云广直流工程采用双十二脉动阀组串联接线。
换流变压器电气接线如图1所示。
与每个12 脉动桥相连的有6 台换流变压器,其中3台换流变压器的阀侧绕组应为星形连接,另外3台采用三角形连接。
从高压端到低压端的换流变压器阀侧绕组连接方式依次为星形接线-三角形接线-星形接线-三角形接线。
图1 换流变压器电气接线示意图图2 ±800kV直流换流变压器其中Y H、D H表示高端换流变,Y L、D L表示低端换流变。
二、技术介绍(一)产品技术特点与±500kV直流输电比较,更加节能、环保、高效,建设成本降低。
1) ±800kV直流输电与两个±500kV直流输电比较:a、换流站投资少,总体损耗小。
b、输电线路走廊窄,占地面积小。
c、输电线路造价低, 输电用电缆少一半。
±800kV输电线路及换流变压器与两个±500kV输电线路及换流变压器对比如下表:2)±800kV直流换流变压器产品采用全密封结构,变压器油无渗漏的特点,对环境无污染,符合国家环保政策的要求。
变压器绝缘电阻直流电阻试验及方法变压器是电力系统中不可或缺的电气设备,其主要用途是将电能的电压由一种变为另一种。
为了确保变压器在正常运行时不会发生绝缘击穿等故障,需要进行绝缘电阻试验。
绝缘电阻试验是变压器试验中的一项重要内容,其目的是测试变压器绝缘系统的绝缘可靠性和质量,以及检测绝缘材料的固有缺陷。
下面将介绍绝缘电阻试验的方法及步骤。
首先,进行绝缘电阻试验之前应先完成变压器的外观检查和通电试验,确保变压器正常运行。
1.试验仪器准备:绝缘电阻试验需要使用绝缘电阻测试仪,常用的有相应额定电压的电桥和万用电表。
此外,还需要准备电源、电压表、电源线和测试线等。
2.试验方式选择:绝缘电阻试验通常有两种方式,分别是直流电阻试验和交流电阻试验。
直流电阻试验适用于确定变压器绝缘材料的直流电阻值,而交流电阻试验适用于检测变压器绝缘介质的交流电阻性能。
3.试验前准备:确定试验电压,一般按照变压器的额定电压的1.5倍进行选择。
然后将试验电压与测试仪器连接。
4.试验步骤:将测试仪器的电极分别连接到变压器的绝缘材料两端,例如高压绕组和地线终端,然后将试验电压加到绝缘材料上,并记录测试仪器显示的电阻值。
5.试验结果判断:根据变压器的实际情况,根据相关标准对试验结果进行判断。
一般来讲,当绝缘电阻值大于一定数值(一般为几百兆欧姆)时,即可认为变压器的绝缘条件良好。
需要特别注意的是,绝缘电阻试验应在无气候雨雪等条件下进行,以免影响试验的准确性。
绝缘电阻试验是变压器试验中的重要内容,它能够准确判断变压器绝缘系统的质量,预测变压器绝缘系统的寿命,提高电力系统的安全性和稳定性。
因此,在进行绝缘电阻试验时,需要严格按照相关标准和规程进行,以确保试验的准确性和可靠性。
同时,也需要根据试验结果进行相应的维修和保养,以延长变压器的使用寿命。
电力变压器高压试验及故障处理电力变压器是电力系统中非常重要的设备,它们被广泛用于升压、降压、分配和传输电能。
在变压器的运行过程中,高压试验是至关重要的一个环节,它可以有效地发现潜在的故障和提高设备的可靠性。
本文将介绍电力变压器的高压试验及相关的故障处理方法。
一、电力变压器的高压试验高压试验是指在变压器运行之前对其进行的一种耐压性测试。
通过高压试验可以检测变压器绝缘系统是否完好,以及是否存在局部放电、绝缘老化等问题。
在高压试验中,通常会采用交流耐压试验和雷电冲击试验。
1. 交流耐压试验交流耐压试验是指在高压下对变压器绝缘系统进行持续的交流电压加载。
试验过程中,将变压器的高压绕组和低压绕组分别接于耐压设备的高压端和低压端,然后加以一定的交流电压,通常为额定电压的2.5倍。
试验的持续时间通常为数分钟至数十分钟不等,其目的是检测变压器的绝缘系统能否耐受额定工作电压的2.5倍电压的持续加载。
如果试验顺利通过,则表明变压器的绝缘系统完好,可以投入运行。
2. 雷电冲击试验雷电冲击试验是指在高压下对变压器绝缘系统进行一次短暂的、高能量的脉冲电压加载。
试验过程中,利用雷电仿真测试设备对变压器绝缘系统进行一次雷电冲击模拟试验,以检测其能否耐受来自雷电的瞬时高能量冲击。
如果试验通过,则表明变压器的绝缘系统能够在雷电冲击下正常运行。
在进行高压试验时,有时会出现一些故障问题,需要及时进行处理。
下面我们将介绍一些常见的高压试验故障及处理方法。
1. 局部放电局部放电是指在绝缘材料中发生的局部放电现象,通常表现为微小的闪络和声响。
局部放电可能导致绝缘材料的老化和破坏,严重影响绝缘系统的可靠性。
在高压试验中,如发现局部放电现象,应立即停止试验,并对变压器进行详细的检查。
通常需要使用特殊的探测设备对变压器绝缘系统进行定位和评估,以找出局部放电的具体位置和原因。
一旦确定局部放电的位置和原因,必须采取针对性的措施进行修复和处理,以保证变压器的可靠运行。