第二章 传热基本知识
- 格式:ppt
- 大小:1.77 MB
- 文档页数:33
《传热学》资料第一章概论一、名词解释1.热流量:单位时间内所传递的热量2.热流密度:单位传热面上的热流量3.导热:当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。
4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。
5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。
同时,物体也不断接收周围物体辐射给它的热能。
这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。
6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。
7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。
对流传热系数表示对流传热能力的大小。
8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。
辐射传热系数表示辐射传热能力的大小。
9.复合传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。
复合传热系数表示复合传热能力的大小。
10.总传热系数:总传热过程中热量传递能力的大小。
数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。
简答题1.试述三种热量传递基本方式的差别,并各举1~2个实际例子说明。
(提示:从三种热量传递基本方式的定义及特点来区分这三种热传递方式)2.请说明在传热设备中,水垢、灰垢的存在对传热过程会产生什么影响?如何防止?(提示:从传热过程各个环节的热阻的角度,分析水垢、灰垢对换热设备传热能力与壁面的影响情况)3. 试比较导热系数、对流传热系数和总传热系数的差别,它们各自的单位是什么?(提示:写出三个系数的定义并比较,单位分别为W/(m·K),W/(m2·K),W/(m2·K)) 4.在分析传热过程时引入热阻的概念有何好处?引入热路欧姆定律有何意义? (提示:分析热阻与温压的关系,热路图在传热过程分析中的作用。
传热的基本知识电子产品的散热,依据的基本原理是热传导、热对流和热辐射。
这3种方式往往同时存在,在考虑产品散热时,根据具体情况只考虑其中一种或两种主要的即可。
1.热传导(1)热传导的过程热传导是指物体内部或两物体接触面之间的热能变换,如图5—l2所示,芯片温度为T1,环境温度为T2(T1>T2),芯片通过导热材料,将热量传导到环境中去,从而将芯片温度降低。
希迪电子(4)接触热阻钽电容热阻是热流途径上的阻力,接触热阻是接触面之间热流途径上的阻力。
接触热阻是接触传热很重要的一个影响因家。
在两物体通过接触面传导时,接触热阻的大小是影响传热的英键因穷,因此散热设计对此很重视。
接触热阻是如何形成的呢?见图5—13,当两物体的表面接触时,理想的情况应该是紧密吻合的。
但实际情况并非如此,它们是凹凸不平的,是点接触或线接触而非面接触。
器件的空隙充满空气,因而使两接触面的热传递受到很大的阻力,此阻力即称接触热阻,用Rc表示。
接触热阻的存在使热的传递因难。
要设法提高接触质量,减小接触热阻。
传导过程中还存在另一个热阻,见图5—14(a),当热量从传导过程中还存在另一个热阻,见图5—14(a),当热量从物体A的左端传到右端,以及从物体B的左端传到右端时,都要受到阻力,即都存在一十热阻,该热阻即为传导热阻,用Rs表示。
Rs与材料的导热系数、导热面积及导热路径十度有关。
这样热量从t1传到t4,可以用3个热阻串联来表示,见图5—14(b)。
总热阻为电阻R,则可把传热学的问题按电路的问题进行处理。
这种方法称为热电模拟:这个概念很有用,结分析和计算带来了很大的方便。
贴片钽电容(5)加强热传导的主要措施①选用导热系数大的材料作为导热零件,可降低传导热阻,如用铜或铝等材料作为散热器。
②扩大热传导零件间的接触面积,增加接触压力,接触表面应光滑乎整。
还可以在接触面间涂硅脂导热膏或垫入软金属箔,如姻片、饲箔等,以提高接触质量,降低接触热阻。
传热学知识点总结本文将围绕传热学的基本概念、传热方式、传热方程、传热实验和应用等方面进行详细的介绍和总结,以便读者更好地了解传热学的相关知识。
一、传热学的基本概念1. 热量传递热量传递是指物体内部或物体之间由于温度差异而产生的热量的传递过程。
热量的传递方式主要有传导、对流和辐射三种。
2. 传热方程传热方程描述了物体内部或物体之间热量传递的数学关系,是传热学的基础理论。
传热方程一般包括传热率、温度差和传热面积等参数,可以用来计算热量传递的速率和大小。
3. 传热系数传热系数是描述物体材料对热量传递率影响的重要参数,通常用符号h表示。
在物质传热过程中,传热系数的大小直接影响热量的传递速率。
4. 传热表面积传热表面积是指在热量传递过程中热量流经的表面积,是计算热传递速率的重要参数。
传热表面积的大小与物体的形状和大小有关,也与传热方式和传热系数有关。
5. 热传导热传导是一种物质内部热量传递的方式,指的是热量通过物质内部原子、分子之间相互作用的传递过程。
热传导是传热学的基本概念之一。
6. 热对流热对流是一种物体表面热量传递的方式,指的是热量通过流体传递到物体表面,然后再由物体表面传递到其它介质的传热过程。
7. 热辐射热辐射是一种通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
热辐射是传热学的另一个基本概念之一。
二、传热方式1. 传导传热传导传热是指热量通过物质内部的原子、分子的直接作用而传递的方式。
在传导传热过程中,热量的传递是从高温区向低温区进行的,其传热速率与温度差和物质的传热系数有关。
2. 对流传热对流传热是指流体传热传递的方式,包括自然对流和强制对流两种。
在对流传热过程中,流体的流动是热量传递的主要形式,其传热速率与流体的流速、温度差和传热面积有关。
3. 辐射传热辐射传热是通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
在辐射传热过程中,热量的传递不依赖于介质,而是通过电磁波的辐射进行的。
绪 论一、概念1.传热学:研究热量传递规律的科学。
2.热量传递的基本方式:热传导、热对流、热辐射。
3.热传导(导热):物体的各部分之间不发生相对位移、依靠微观粒子的热运动产生的热量传递现象。
(纯粹的导热只能发生在不透明的固体之中。
)4.热流密度:通过单位面积的热流量(W /m 2)。
5.热对流:由于流体各部分之间发生相对位移而产生的热量传递现象。
热对流只发生在流体之中,并伴随有导热现象。
6.自然对流:由于流体密度差引起的相对运功c7.强制对流:出于机械作用或其他压差作用引起的相对运动。
8.对流换热:流体流过固体壁面时,由于对流和导热的联合作用,使流体与固体壁面间产生热量传递的过程。
9.辐射:物体通过电磁波传播能量的方式。
10.热辐射:由于热的原因,物体的内能转变成电磁波的能量而进行的辐射过程。
11.辐射换热:不直接接触的物体之间,出于各自辐射与吸收的综合结果所产生的热量传递现象。
12.传热过程;热流体通过固体壁而将热量传给另一侧冷流体的过程。
13.传热系数:表征传热过程强烈程度的标尺,数值上等于冷热流体温差1时所产生的热流密度)/(2k m W ⋅。
14.单位面积上的传热热阻:k R k 1=单位面积上的导热热阻:λδλ=R 。
单位面积上的对流换热热阻:h R 1=λ 对比串联热阻大小就可以找到强化传热的主要环节。
15.导热系数λ是表征材料导热性能优劣的系数,是一种物性参数,不同材料的导热系数的数值不同,即使是同一种材料,其值还与温度等参数有关。
对于各向异性的材料,还与方向有关。
常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。
16.表面换热系数h不是物性参数,它与流体物性参数、流动状态、换热表面的形状、大小和布置等因素都有关。
17.稳态传热过程(定常过程):物体中各点温度不随时间而变。
一、参考书目:传热学A 《传热学》杨世铭、陶文铨,高等教育出版社,2006年二、基本要求1. 掌握热量传递的三种方式(导热、对流和辐射)的基本概念和基本定律;2. 能够对常见的导热、对流、辐射换热及传热过程进行定量的计算,并了解其物理机理和特点,进行定性分析;3. 对典型的传热现象能进行分析,建立合适的数学模型并求解;4. 能够用差分法建立导热问题的数值离散方程,并了解其计算机求解过程。
三、主要知识点第一章绪论:热量传递的三种基本方式;导热、对流和热辐射的基本概念和初步计算公式;热阻;传热过程和传热系数。
第二章导热基本定律和稳态导热:温度场、温度梯度;傅里叶定律和导热系数;导热微分方程、初始条件与边界条件;单层及多层平壁的导热;单层及多层圆筒壁的导热;通过肋端绝热的等截面直肋的导热;肋效率;一维变截面导热;有内热源的一维稳态导热。
第三章非稳态导热:非稳态导热的基本概念;集总参数法;描述非稳态导热问题的数学模型(方程和定解条件);第四章导热问题的数值解法:导热问题数值解法的基本思想;用差分法建立稳态导热问题的数值离散方程。
第五章对流换热:对流换热的主要影响因素和基本分类、牛顿冷却公式和对流换热系数的主要影响因素;速度边界层和热边界层的概念;横掠平板层流换热边界层的微分方程组;横掠平板层流换热边界层积分方程组;动量传递和热量传递比拟的概念;相似的概念及相似准则;管槽内强制对流换热特征及用实验关联式计算;绕流单管、管束对流换热特征及用实验关联式计算;大空间自然对流换热特征及对流换热特征及用实验关联式计算。
第六章凝结与沸腾换热:凝结与沸腾换热的基本概念;珠状凝结与膜状凝结特点;膜状凝结换热计算;影响膜状凝结的因素;大容器饱和沸腾曲线;影响沸腾换热的因素。
第七章热辐射基本定律及物体的辐射特性:热辐射的基本概念;黑体、白体、透明体;辐射力与光谱辐射力;定向辐射强度;黑体辐射基本定律:普朗克定律,维恩定律,斯忒藩-玻尔兹曼定律,兰贝特定律;实际固体和液体的辐射特性、黑度;灰体、基尔霍夫定律。
传热学基本知识总结传热学是研究热能在物质中传递的科学,是物体内部的热平衡和热不平衡的原因和规律的研究。
传热学的基本知识涵盖了传热的基本概念、传热方式、传热导率与传热过程的数学描述等内容。
以下是对传热学基本知识的总结。
一、传热的基本概念1.温度:物体内部分子运动的程度的度量。
温度高低决定了热能的传递方向。
2.热量:物体之间由于温度差异而传递的能量。
热量沿温度梯度从高温区向低温区传递。
3.热平衡:物体内部各点的温度相等,不存在热量传递的状态。
4.热不平衡:物体内部存在温度差异,热量从高温区传递到低温区。
二、传热方式1.热传导:固体内部的分子传递热量的方式,通过分子的碰撞传递热量。
2.对流传热:液体或气体中,由于温度差异而产生的流动传递热量的方式。
3.辐射传热:热能通过电磁波的传播传递热量的方式,无需介质参与。
三、热导率热导率是物体传导热量的能力,用导热系数λ来衡量。
热导率取决于物质本身的性质,与物质的材料、温度有关。
热导率越大,物体传热能力越强。
四、传热数学描述1.热量传递方程:描述物体内部传热过程的数学方程,根据物体内部各点之间的温度差和传热方式的不同可以分为热传导方程、热对流方程和热辐射方程。
2.热导率公式:用来计算物体传热量的数学公式,通常与热导率、温度差、传热面积等物理量相关。
五、传热实例1.热传导:例如铁棒的两端被加热,热量通过铁棒内部分子的传递向另一端传递。
2.对流传热:例如空气中的对流传热,空气受热后变热上升,形成了对流传热。
3.辐射传热:太阳的辐射热量通过空间传递到地球表面,为地球提供能量。
在工程中,传热学常常运用于热工系统的设计和优化。
工程师可以通过对传热方式的研究和对材料热导率的了解,提高传热效率,减少能量损耗。
例如,在电子设备的设计中,通过优化散热结构和选择高热导率的材料,可以有效降低设备的温度,提高设备的工作效率和寿命。
传热学也广泛应用于暖通空调系统、汽车引擎、核反应堆等领域。
传热学知识点总结传热学知识点总结传热学,是研究热量传递规律的科学,是研究由温差引起的热能传递规律的科学。
大约在上世纪30年代,传热学形成了独立的学科。
以下是小编整理的传热学知识点总结,欢迎阅读!第一章§1-1 “三个W”§1-2 热量传递的三种基本方式§1-3 传热过程和传热系数要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。
作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。
本章重点:1.传热学研究的基本问题物体内部温度分布的计算方法热量的传递速率增强或削弱热传递速率的方法2.热量传递的三种基本方式(1).导热:依靠微观粒子的热运动而产生的热量传递。
传热学重点研究的是在宏观温差作用下所发生的热量传递。
傅立叶导热公式:(2).对流换热:当流体流过物体表面时所发生的热量传递过程。
牛顿冷却公式:(3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。
由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。
黑体热辐射公式:实际物体热辐射:3.传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。
最简单的传热过程由三个环节串联组成。
4.传热学研究的基础傅立叶定律能量守恒定律+ 牛顿冷却公式 + 质量动量守恒定律四次方定律本章难点1.对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。
2.热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。
思考题:1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。
为什么?2.试分析室内暖气片的散热过程。