最新传热学知识点
- 格式:doc
- 大小:210.00 KB
- 文档页数:12
传热学复习资料汇总一、名词汇总1.热流量:单位时间内所传递的热量2.热流密度:单位传热面上的热流量3.导热:当物体内有温度差或两个不同温度的物体接触时,在物体各局部之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。
4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为外表对流传热,简称对流传热。
5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。
同时,物体也不断接收周围物体辐射给它的热能。
这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为外表辐射传热,简称辐射传热。
6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。
7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。
对流传热系数表示对流传热能力的大小。
8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。
辐射传热系数表示辐射传热能力的大小。
9.复合传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。
复合传热系数表示复合传热能力的大小。
10.总传热系数:总传热过程中热量传递能力的大小。
数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。
11.温度场:某一瞬间物体内各点温度分布的总称。
一般来说,它是空间坐标和时间坐标的函数。
12.等温面(线):由物体内温度相同的点所连成的面〔或线〕。
13.温度梯度:在等温面法线方向上最大温度变化率。
14.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于 1 K/m 的温度梯度作用下产生的热流密度。
热导率是材料固有的热物理性质,表示物质导热能力的大小。
绪论一、概念1. 传热学: 研究热量传递规律的科学。
2. 热量传递的基本方式: 热传导、热对流、热辐射。
3. 热传导(导热): 物体的各部分之间不发生相对位移、依靠微观粒子的热运动产生的热量传递现象。
(纯粹的导热只能发生在不透明的固体之中。
)4. 热流密度:通过单位面积的热流量(W/m2)。
5.热对流: 由于流体各部分之间发生相对位移而产生的热量传递现象。
热对流只发生在流体之中, 并伴随有导热现象。
6. 自然对流: 由于流体密度差引起的相对运功c7. 强制对流: 出于机械作用或其他压差作用引起的相对运动。
8. 对流换热:流体流过固体壁面时, 由于对流和导热的联合作用, 使流体与固体壁面间产生热量传递的过程。
9. 辐射: 物体通过电磁波传播能量的方式。
10.热辐射: 由于热的原因, 物体的内能转变成电磁波的能量而进行的辐射过程。
11. 辐射换热:不直接接触的物体之间, 出于各自辐射与吸收的综合结果所产生的热量传递现象。
12. 传热过程;热流体通过固体壁而将热量传给另一侧冷流体的过程。
13.传热系数: 表征传热过程强烈程度的标尺, 数值上等于冷热流体温差1时所产生的热流密度。
14. 单位面积上的传热热阻:单位面积上的导热热阻: 。
单位面积上的对流换热热阻:对比串联热阻大小就可以找到强化传热的主要环节。
15. 导热系数是表征材料导热性能优劣的系数, 是一种物性参数, 不同材料的导热系数的数值不同, 即使是同一种材料, 其值还与温度等参数有关。
对于各向异性的材料, 还与方向有关。
常温下部分物质导热系数: 银: 427;纯铜: 398;纯铝: 236;普通钢: 30-50;水: 0.599;空气: 0.0259;保温材料: <0.14;水垢: 1-3;烟垢: 0.1-0.3。
16. 表面换热系数不是物性参数, 它与流体物性参数、流动状态、换热表面的形状、大小和布置等因素都有关。
17. 稳态传热过程(定常过程):物体中各点温度不随时间而变。
传热学知识点总结本文将围绕传热学的基本概念、传热方式、传热方程、传热实验和应用等方面进行详细的介绍和总结,以便读者更好地了解传热学的相关知识。
一、传热学的基本概念1. 热量传递热量传递是指物体内部或物体之间由于温度差异而产生的热量的传递过程。
热量的传递方式主要有传导、对流和辐射三种。
2. 传热方程传热方程描述了物体内部或物体之间热量传递的数学关系,是传热学的基础理论。
传热方程一般包括传热率、温度差和传热面积等参数,可以用来计算热量传递的速率和大小。
3. 传热系数传热系数是描述物体材料对热量传递率影响的重要参数,通常用符号h表示。
在物质传热过程中,传热系数的大小直接影响热量的传递速率。
4. 传热表面积传热表面积是指在热量传递过程中热量流经的表面积,是计算热传递速率的重要参数。
传热表面积的大小与物体的形状和大小有关,也与传热方式和传热系数有关。
5. 热传导热传导是一种物质内部热量传递的方式,指的是热量通过物质内部原子、分子之间相互作用的传递过程。
热传导是传热学的基本概念之一。
6. 热对流热对流是一种物体表面热量传递的方式,指的是热量通过流体传递到物体表面,然后再由物体表面传递到其它介质的传热过程。
7. 热辐射热辐射是一种通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
热辐射是传热学的另一个基本概念之一。
二、传热方式1. 传导传热传导传热是指热量通过物质内部的原子、分子的直接作用而传递的方式。
在传导传热过程中,热量的传递是从高温区向低温区进行的,其传热速率与温度差和物质的传热系数有关。
2. 对流传热对流传热是指流体传热传递的方式,包括自然对流和强制对流两种。
在对流传热过程中,流体的流动是热量传递的主要形式,其传热速率与流体的流速、温度差和传热面积有关。
3. 辐射传热辐射传热是通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
在辐射传热过程中,热量的传递不依赖于介质,而是通过电磁波的辐射进行的。
传热学知识点概念总结传热学是研究热量传递的科学,主要涉及热传导、热辐射和对流传热三个方面。
下面将对传热学中的一些重要知识点进行概念总结。
1.热传导:热传导是指物质内部由于分子或原子之间的相互作用而引起的热量传递。
热传导的速率与传热介质的导热性质有关,如导热系数、传热介质的温度梯度和传热介质的厚度。
2.热辐射:热辐射是指由于物体表面温度而产生的电磁辐射,无需经过介质媒质进行传热。
热辐射的能量传递与物体的温度和表面特性有关,如表面发射率和吸收率。
3.对流传热:对流传热是指通过流体的流动使热量传递的过程。
对流传热受到流体流动速度、温度差和流体介质的热传导性质的影响。
对流传热可以分为自然对流和强制对流两种形式。
4.导热系数:导热系数是描述材料导热性质的物理量,定义为单位厚度和单位温度梯度时的热流密度。
导热系数是描述热传导能力大小的重要参数,与物质的组成、结构和温度有关。
5.温度梯度:温度梯度是指在物体内部或空间中温度随着距离的变化率。
温度梯度越大,热传导的速率越快。
6.热阻:热阻是指单位时间内单位温差时热传导的阻力。
热阻与传热介质的导热系数和厚度有关。
可通过热阻来描述传热介质对热传导的阻碍程度。
7.热容量:热容量是指单位质量物质温度升高单位温度所需的热量。
热容量与物质的物理性质有关,如比热容和密度。
8.辐射强度:辐射强度是指单位时间内单位面积上辐射通过的能量。
辐射强度与物体的表面发射率和温度有关。
9.辐射传热:辐射传热是指由于物体表面发射和吸收辐射而进行的传热。
辐射传热受到物体表面发射率、吸收率、温度差和介质的辐射传递能力的影响。
10.热傅里叶定律:热傅里叶定律是描述物体内部热传导的定律,其表达式为热流密度与传热介质的导热系数、温度梯度和传热介质的横截面积成正比。
以上是传热学中一些重要的知识点的概念总结。
传热学的研究对于理解和应用热量传递过程具有重要意义,可广泛应用于工程领域的热处理、热能转化和热工学等方面。
传热学基本概念知识点1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率2集总参数法:忽略物体内部导热热阻的简化分析方法3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值5效能:表示换热器的实际换热效果与最大可能的换热效果之比6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。
对流仅能发生在流体中,而且必然伴随有导热现象。
对流两大类:自然对流与强制对流。
影响换热系数因素:流体的物性,换热表面的形状与布置,流速7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的?蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。
不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。
蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。
因此,不凝结气体层的存在增加了传递过程的阻力。
8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。
首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。
主要分为两个阶段:非正规状况阶段和正规状况阶段9 灰体有什么主要特征?灰体的吸收率与哪些因素有关?灰体的主要特征是光谱吸收比与波长无关。
灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。
10气体与一般固体比较其辐射特性有什么主要差别?气体辐射的主要特点是:( 1)气体辐射对波长有选择性( 2)气体辐射和吸收是在整个容积中进行的11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别?平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。
传热学基本知识总结传热学是研究热能在物质中传递的科学,是物体内部的热平衡和热不平衡的原因和规律的研究。
传热学的基本知识涵盖了传热的基本概念、传热方式、传热导率与传热过程的数学描述等内容。
以下是对传热学基本知识的总结。
一、传热的基本概念1.温度:物体内部分子运动的程度的度量。
温度高低决定了热能的传递方向。
2.热量:物体之间由于温度差异而传递的能量。
热量沿温度梯度从高温区向低温区传递。
3.热平衡:物体内部各点的温度相等,不存在热量传递的状态。
4.热不平衡:物体内部存在温度差异,热量从高温区传递到低温区。
二、传热方式1.热传导:固体内部的分子传递热量的方式,通过分子的碰撞传递热量。
2.对流传热:液体或气体中,由于温度差异而产生的流动传递热量的方式。
3.辐射传热:热能通过电磁波的传播传递热量的方式,无需介质参与。
三、热导率热导率是物体传导热量的能力,用导热系数λ来衡量。
热导率取决于物质本身的性质,与物质的材料、温度有关。
热导率越大,物体传热能力越强。
四、传热数学描述1.热量传递方程:描述物体内部传热过程的数学方程,根据物体内部各点之间的温度差和传热方式的不同可以分为热传导方程、热对流方程和热辐射方程。
2.热导率公式:用来计算物体传热量的数学公式,通常与热导率、温度差、传热面积等物理量相关。
五、传热实例1.热传导:例如铁棒的两端被加热,热量通过铁棒内部分子的传递向另一端传递。
2.对流传热:例如空气中的对流传热,空气受热后变热上升,形成了对流传热。
3.辐射传热:太阳的辐射热量通过空间传递到地球表面,为地球提供能量。
在工程中,传热学常常运用于热工系统的设计和优化。
工程师可以通过对传热方式的研究和对材料热导率的了解,提高传热效率,减少能量损耗。
例如,在电子设备的设计中,通过优化散热结构和选择高热导率的材料,可以有效降低设备的温度,提高设备的工作效率和寿命。
传热学也广泛应用于暖通空调系统、汽车引擎、核反应堆等领域。
传热学基本概念知识点1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率2集总参数法:忽略物体内部导热热阻的简化分析方法3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值5效能:表示换热器的实际换热效果与最大可能的换热效果之比6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。
对流仅能发生在流体中,而且必然伴随有导热现象。
对流两大类:自然对流与强制对流。
影响换热系数因素:流体的物性,换热表面的形状与布置,流速7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的?蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。
不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。
蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。
因此,不凝结气体层的存在增加了传递过程的阻力。
8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。
首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。
主要分为两个阶段:非正规状况阶段和正规状况阶段9灰体有什么主要特征?灰体的吸收率与哪些因素有关?灰体的主要特征是光谱吸收比与波长无关。
灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。
10气体与一般固体比较其辐射特性有什么主要差别?气体辐射的主要特点是:(1)气体辐射对波长有选择性(2)气体辐射和吸收是在整个容积中进行的11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别?平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。
传热学知识点总结传热学是研究热量从一个物体或一个系统传递到另一个物体或系统的科学。
它是热力学的一部分,具有广泛的应用领域,包括能源转换、热力学系统设计和工艺优化等。
以下是传热学的一些重要知识点的总结:1.热传导:热量通过直接接触和分子间的碰撞传递。
在固体中,热传导是最主要的传热方式,其传递速率与物质的热导率、温度梯度和传热距离有关。
2.热对流:热量通过流体(液体或气体)的流动传递。
对流传热的速率取决于流体的速度、温度差和传热面积。
3.热辐射:热能以电磁波的形式从热源发出,无需介质介导即可传递热量。
热辐射与物体的温度和表面特性有关,如表面的发射率和吸收率。
4.导热方程:描述了热传导现象,可以用来计算温度随时间和空间的变化。
它与热导率、物体的几何形状和边界条件有关。
5.导热系数:材料的物理性质,描述了材料导热性能的好坏。
较高的导热系数表示材料更好地传递热量。
6.热对流换热系数:描述了流体换热的能力,表示单位面积上的热量传递速率和温度差之间的关系。
7.四能截面:描述了热辐射的性质,反映了物体吸收、反射和透射电磁波的能力。
8.热阻和热导率:用于描述物体或系统中热量传递的难易程度。
热阻与热导率成反比。
9.传热过程中的能量守恒:热量传递过程中,能量守恒定律适用。
传热的总能量输入等于输出。
10.辐射传热公式:根据黑体辐射定律,描述了热辐射的能量传递,常用于计算热源辐射的热量。
11.对流换热公式:根据精细的实验和理论研究,发展了一系列对流换热公式,用于估算流体对流传热。
12.热导率与温度的关系:大多数材料的热导率随温度的升高而增大,但也有一些例外情况。
13. 传热表征:传热通常使用无量纲数值来表征,如Nusselt数、Prandtl数和Reynolds数,它们描述了传热过程中流体的性质和行为。
14.界面传热:当两个物体或系统接触时,它们之间的传热称为界面传热。
界面传热常见的形式包括对流传热和热辐射。
15.传热器件和应用:传热学的知识应用于各种传热器件和系统,如换热器、蒸发器、冷却器等,为工程和科技应用提供了基础。
传热学基本概念知识点1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率2集总参数法:忽略物体内部导热热阻的简化分析方法3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值5效能:表示换热器的实际换热效果与最大可能的换热效果之比6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。
对流仅能发生在流体中,而且必然伴随有导热现象。
对流两大类:自然对流与强制对流。
影响换热系数因素:流体的物性,换热表面的形状与布置,流速7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的?蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。
不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。
蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。
因此,不凝结气体层的存在增加了传递过程的阻力。
8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。
首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。
主要分为两个阶段:非正规状况阶段和正规状况阶段9灰体有什么主要特征?灰体的吸收率与哪些因素有关?灰体的主要特征是光谱吸收比与波长无关。
灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。
10气体与一般固体比较其辐射特性有什么主要差别?气体辐射的主要特点是:(1)气体辐射对波长有选择性(2)气体辐射和吸收是在整个容积中进行的11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别?平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。
传热学1.热力学三大定律+第零定律① 热力学第一定律:一个热力学系统的内能增量等于外界向他传递的热量与外界对他做功的和。
② 热力学第二定律:克劳修斯表述:热量可以自发地从较热的物体传递到较冷的物体,但是反之不行。
开尔文表述:不可能从单一热源吸收热量,并将这热量变为功,而不产生其他影响。
只要温差存在的地方,就有热能从自发地从高温物体向低温物体传递。
③ 热力学第三定律:绝对零度不可能达到。
④ 热力学第零定律:如果两个热力学系统都第三个热力学系统处于热平衡状态,那么这两个系统也必定处于热平衡。
2.各个科技技术领域中遇到的的传热学问题可以大致归纳为三种类型的问题 ①强化传热 ②削弱传热 ③温度控制3.热能传递的三种方式①热传导—物体各部分之间不发生相对位移,依靠分子、原子及自由电子等微观粒子的热运动而产生热能传递。
②热对流—由于流体的宏观运动二引起的流体各部分之间发生相对位移、冷热流体相互混掺所导致的热量传递。
③热辐射—物体通过电磁波来传递能量的方式。
(由于热的原因发出的辐射为热辐射)4.傅里叶定律(导热基本定律)热流密度q=-λdx dt(一维) 负号表示热量传递方向与温度升高方向相反 q —单位时间内通过某一给定面积的热量(矢量)。
λ金属>λ液体>λ气体 λ—导热系数表示材料的导热性能优劣的参数,即是一种热物性参数。
W/(m ·k )5.自然对流与强制对流自然对流—由于流体冷热各部分的密度不同而引起的。
强制对流—流体的流动是由于水泵、风机或者其他压差作用所造成的。
Q=Ah tf tw - 表面传热系数h —不仅取决于流体物性(λρCp )以及换热表面的形状、大小与布置海域流速密切相关。
① 水的对流传热比空气强②有相变的优于无相变的③强制对流优于自然对流6.热辐射的特点①热辐射可以在真空中传递(即无物质存在也可以传递)② 热辐射不仅产生能量传递,而且还伴随着能量形式的转换(热能—>辐射能—>热能)7.斯托芬-波尔兹曼定律φ=AT εσ4 -σ斯托芬-波尔兹曼常量 -ε物体发射率(黑度<1)8.导热机理气体导热—气体分子不规则热运动导电固体—自由电子的运动非导电固体—晶格结构振动的传递9.笛卡尔坐标系三维非稳态导热微分方程φλλλτρ+∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂)()()(zt z y t y x t x t c ⇒c z t y t x t a t ρφτ+∂∂+∂∂+∂∂=∂∂)(222222 令a =cρλ(热扩散系数) ⇒常物性,无内热源)(222222zt y t x t a t ∂∂+∂∂+∂∂=∂∂τ ⇒常物性,稳态0222222=+∂∂+∂∂+∂∂λφzt y t x t 泊松方程 ⇒常物性,稳态,无内热源0222222=∂∂+∂∂+∂∂zt y t x t 拉普拉斯方程10.定解条件对于非稳态导热问题⇒定解条件(初始条件+边界条件)①第一类边界条件:规定了边界上的温度②第二类边界条件:规定了边界上的热流密度③第三类边界条件:规定了边界上物体与周围流体间的表面传热系数及周围流体的温度。
传热学知识点传热学是研究热量传递的学科,对人类生活和工业生产有着重要的影响。
以下是关于传热学的一些知识点:1.热量传递方式:传热学研究的首要内容是热量在不同物质之间的传递方式。
热量传递有三种方式:导热、对流和辐射。
导热是指热量通过固体或液体的直接接触传递。
对流是指热量通过流体的运动传递,可以分为自然对流和强制对流两种。
辐射是指热量通过电磁波传递,无需介质参与。
2.热传导:导热是最常见的传热方式,它是由于不同物质内部的分子间作用力导致的。
导热的速度和物质的热导率有关,热导率是物质表征导热性能的物理量。
3.对流传热:对流是在流体中传递热量的方式。
它是由于流体的运动导致的热量传递。
在自然对流中,热量传递是由于流体受热后的密度变化产生的,而在强制对流中,热量传递是由于外界施加的压力或泵力导致的。
4.辐射传热:辐射是通过电磁波传递热量。
辐射传热不需要介质的参与,可以在真空中进行。
辐射传热的强度与物体的温度和表面性质有关,通常用斯特藩-玻尔兹曼定律来描述。
5.热传导的控制:控制热传导是提高节能和减少能源消耗的关键。
可以通过增加物体之间的接触面积、减少物体之间的间距、增加物质的热导率等方法来提高热传导效率。
6.流体流动换热:对流传热是通过流体的运动来传递热量的,研究流体流动条件下的传热现象是传热学的一个重要方向。
流体流动的方式有层流和湍流,研究边界层和流动分离等现象对于准确预测和控制流体流动换热过程至关重要。
7.换热设备:传热学在工程中的应用主要是研究和设计换热设备,如换热器、冷却塔、锅炉等。
这些设备的设计要考虑热量传递效率、流体流动特性以及材料的选择等因素。
8.相变传热:相变是物质由一种状态向另一种状态转变的过程,如液体变为固体时释放的凝固潜热。
相变传热是一种特殊的传热方式,研究相变传热现象对于设计冷凝器、蒸发器等设备有着重要意义。
9.传热计算和实验:传热学的研究方法包括传热计算和实验。
通过传热方程和边界条件来计算热传导、对流和辐射等传热过程。
(完整版)传热学知识点传热学主要知识点1. 热量传递的三种基本方式。
热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。
2. 导热的特点。
a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。
3. 对流(热对流)(Convection)的概念。
流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。
4 对流换热的特点。
当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5. 牛顿冷却公式的基本表达式及其中各物理量的定义。
q ' = h (t w - t ∞ )(w)= q 'A = Ah (t w - t ∞ )w / m 2h 是对流换热系数单位 w/(m 2 k) q ' 是热流密度(导热速率),单位(W/m 2)是导热量 W6. 热辐射的特点。
a 任何物体,只要温度高于 0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的 4 次方。
7. 导热系数, 表面传热系数和传热系数之间的区别。
导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。
表面传热系数:当流体与壁面温度相差1 度时、每单位壁面面积上、单位时间内所传递的热量。
影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。
第一章导热理论基础1 傅立叶定律的基本表达式及其中各物理量的意义。
傅立叶定律(导热基本定律):q ' = -k ?dT q ' = -k ?T = -k (i ?T + j ?T + k ?T) x ?dx ?x ?y ?zq ' = -k ?T n ?nT(x,y,z)为标量温度场圆筒壁表面的导热速率 q r= -kA dTdr = -k (2rL ) dT dr垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。
传热学知识点总结传热学是研究物质内部和不同物质之间能量传递的一门科学。
它广泛应用于工程领域,涉及到热传导、对流传热和辐射传热等多个方面。
下面我将总结一些传热学的重要知识点。
1.傅立叶定律:它是传热学中最基本的定律之一,也被称为热传导定律。
根据傅立叶定律,热传导速率正比于温度梯度的负值。
数学上可以表示为q=-k∇T,其中q是单位时间内的热流量,k是导热系数,∇T是温度梯度。
2.热传导:指的是热量通过物质内部的传递过程。
在固体中,热传导主要通过分子振动、电子热传导和晶格热传导等方式进行。
3.热对流:指的是通过流体的流动来传递热量。
热对流可以分为自然对流和强制对流两种形式。
自然对流是由于密度差异引起的,而强制对流是通过外部力的作用产生的。
4.辐射传热:是指热量通过电磁波的辐射传递。
所有物体在温度大于绝对零度时都会发出辐射,而辐射传热不需要通过介质传递。
辐射传热受到物体的表面性质和温度的影响。
5.热导率:是材料传导热量的能力的度量,通常用导热系数k来表示。
热导率越大,材料传导热量的能力就越强。
各种材料的热导率不同,可以用于选择合适的材料来满足特定的传热要求。
6.热阻和热导:热阻是指阻碍热量传递的能力。
热阻的大小与材料的导热性质和传热面积有关。
热导是热量在单位时间内通过材料的能力,可以用于计算传热速率。
7.对流换热系数:对流传热时,介质和界面的性质会影响传热速率。
通过引入对流换热系数h,可以描述介质与界面之间的热量传递能力。
对流换热系数与流体性质、流动方式和传热界面的条件有关。
8.对流传热的努塞尔数:努塞尔数是用于表征对流传热能力的无量纲数。
努塞尔数与热传导、对流传热系数和传热面积有关。
9.辐射传热的黑体辐射:黑体辐射指的是一个完美吸收和辐射的物体的辐射行为。
根据斯蒂芬-波尔兹曼定律,黑体辐射功率与温度的四次方成正比。
黑体辐射是辐射传热中一个重要的概念。
10.换热器:换热器是用于在两个流体之间传递热量的设备。
传热学主要知识点1. 热量传递的三种基本方式。
热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。
2. 导热的特点。
a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子 热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。
3. 对流(热对流)(Convection)的概念。
流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把 热量由一处传递到另一处的现象。
4 对流换热的特点。
当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下 特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5. 牛顿冷却公式的基本表达式及其中各物理量的定义。
q ' = h (t w - t ∞ )(w)= q 'A = Ah (t w - t ∞ )w / m 2h 是对流换热系数单位 w/(m 2 k) q ' 是热流密度(导热速率),单位(W/m 2)是导热量 W6. 热辐射的特点。
a 任何物体,只要温度高于 0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的 4 次方。
7. 导热系数, 表面传热系数和传热系数之间的区别。
导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。
表面传热系数:当流体与壁面温度相差 1 度时、每单位壁面面积上、单位时间内所传递的热量。
影响 h 因素:流速、流体物性、壁面形状大小等传热系数: 是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。
第一章 导热理论基础1 傅立叶定律的基本表达式及其中各物理量的意义。
傅立叶定律(导热基本定律):q ' = -k ∂dT q ' = -k ∇T = -k (i ∂T + j ∂T + k ∂T) x ∂dx ∂x ∂y ∂zq ' = -k ∂T n ∂nT(x,y,z)为标量温度场圆筒壁表面的导热速率 q r= -kA dTdr = -k (2rL ) dT dr垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。
传热学简要知识点传热学这玩意儿,听起来挺高大上,其实和咱日常生活那是息息相关。
就说冬天吧,为啥在屋里咱裹得严严实实还是觉得冷,夏天在大太阳底下没一会儿就热得不行?这里面可都藏着传热学的知识呢。
先来说说热传导。
想象一下,你拿着一根金属棒,一头放在火上烤,没一会儿,另一头也烫得没法摸,这就是热传导。
金属是热的良导体,热量顺着它就快速传递过去了。
但要是换成木头棒子,那情况可就大不一样,木头导热性能差,等半天另一头可能还是凉凉的。
在我们的生活里,热传导的例子随处可见。
比如家里用的铁锅,锅底受热了,锅里的菜很快也热起来,这是因为铁能很好地传导热量。
再比如说,大冬天你要是光脚踩在瓷砖地上,那叫一个透心凉,瓷砖导热比木地板厉害多啦,所以热量从你脚丫子“嗖”地就跑走了。
接下来聊聊热对流。
热对流简单说就是靠液体或者气体的流动来传热。
就像咱们开了空调,屋子里的空气流动起来,热空气被带走,冷空气进来,温度就慢慢降下来了。
夏天去游泳,刚下水的时候觉得水凉得要命。
但游一会儿就好多了,这可不光是你适应了水温,还有热对流在起作用呢。
水在你身边流动,把你身上的热量带走,让你感觉没那么热了。
还有个有趣的例子,煮汤的时候,你会看到锅里的水咕嘟咕嘟冒泡,这就是热对流。
锅底的水受热变轻往上跑,上面的冷水往下沉,这样不断循环,整锅水就慢慢都热了。
再讲讲热辐射。
太阳晒在身上暖洋洋的,这可没有直接接触,靠的就是热辐射。
火塘里的火,就算离得有点距离,你也能感受到那股热气,这也是热辐射。
冬天的时候,在户外晒太阳是件特别舒服的事儿。
太阳的热量通过辐射传到地球上,咱们就享受到了温暖。
晚上睡觉,你要是觉得冷,加一床厚被子,为啥能保暖呢?除了被子能阻止你身体的热量向外传导,还有一部分原因是被子能反射一部分热辐射,让你自身散发的热量尽量留在身边。
传热学在工业上的应用那可就多了去了。
比如说汽车发动机,工作的时候产生大量的热,如果不及时把这些热散出去,发动机就容易出故障。
传热学知识点复习传热学是研究热量的传递和热工过程的科学。
它涉及到热传递的基本机理,如热传导、对流和辐射,以及它们在工程中的应用。
下面是传热学的一些知识点复习。
1.热传导热传导是物质内部热量传递的一种方式。
它是由于粒子在物体内部的自由运动引起的。
热传导的速率与温度梯度成正比,与物体的导热性能成反比。
传热方程可以用傅里叶定律表示为q = -kA (dT/dx),其中q是传热速率,k是导热系数,A是传热面积,dT/dx是温度梯度。
2.对流传热对流传热是物质与流体之间热量传递的一种方式。
它是由于流体内部的热量运动引起的。
对流传热可以分为自然对流和强制对流两种。
自然对流是由于温度差异引起的自发热对流,强制对流是通过外部力或设备引起的流体运动。
对流传热的速率与温度差、流体速度和流体性质有关。
3.辐射传热辐射传热是由于物体之间的热辐射引起的热量传递。
辐射传热不需要介质来传递热量,并且可以发生在真空中。
辐射传热的速率与物体的温度的四次方成正比,与表面特性和相互关系有关。
4.热传导方程热传导方程描述了热传导过程中温度分布随时间和空间变化的关系。
一维热传导方程可以表示为dT/dt = α(d²T/dx²),其中T是温度,t是时间,x是空间位置,α是热扩散系数。
该方程可以用于分析稳态和非稳态的热传导过程。
5.热传导的边界条件热传导问题需要确定边界条件,以求解热传导方程。
常见的边界条件有第一类边界条件(指定温度或热流密度),第二类边界条件(指定热流量),和第三类边界条件(指定混合边界条件)。
6.热传导的导热性能导热性能是一个物体传导热量的能力。
导热性能由物体的导热系数、物体的尺寸、物体的形状和物体的材料性质决定。
导热系数是一个材料导热能力的度量,它取决于物质的热导率、密度和比热容。
7.传热器件和传热设备传热器件和传热设备是应用传热学原理进行热量传递的装置。
常见的传热器件有换热器、冷凝器、蒸发器、加热器等。
传热学知识点总结传热学是物理学的一个重要分支,研究物体间传递热量的规律和方式。
下面是一些传热学的重要知识点的总结。
1.热量传递方式:传热学研究的第一个重要问题是热量的传递方式。
主要有三种方式:传导、对流和辐射。
传导是通过固体或液体内部的分子振动和自由电子振动而传递热量的方式;对流是通过液体或气体的运动而传递热量的方式;辐射是通过热辐射的电磁波传递热量的方式。
不同物体间的传热方式通常是综合应用这些方式。
2.热传导:热传导是固体或液体内部的热量传递方式。
它遵循傅里叶热传导定律,即热传导速率正比于温度梯度,与导热系数成正比。
导热系数是物质的一个固有特性,用于描述物质对热量的导热能力。
热情况下,低导热系数的物质不容易传递热量,而高导热系数的物质能够更好地传递热量。
3.对流传热:对流是热量通过液体或气体的运动而传递的方式。
它分为自然对流和强迫对流。
自然对流是由密度差异引起的液体或气体的自发运动,如气流中的热空气上升;强迫对流是通过外部力量推动流体运动,如风扇吹起的空气。
对流传热具有较高的传热效率,因为流体的运动可以带走物体表面的热量。
4.辐射传热:辐射是通过热辐射的电磁波传递热量的方式。
所有物体在室温下都会发射辐射,其强度与温度的四次方成正比。
黑体是指一个理想化的物体,能够完全吸收所有辐射,并以最大强度发射辐射。
根据斯特藩-玻尔兹曼定律,黑体辐射的强度正比于温度的四次方。
实际物体的辐射强度可以用其发射率和黑体辐射强度之间的比例来描述。
5.热传导方程:热传导方程是研究固体或液体内部热量传递的数学模型。
它描述了材料内部温度随时间和空间的变化。
热传导方程是一个偏微分方程,其中包含了热传导系数、材料的热容和密度等参数。
6.传热换热系数:传热换热系数描述了传热过程中介质对热量的传递能力。
它是一个物质特性,不同物质和不同传热方式都有不同的传热换热系数。
传热换热系数的大小直接影响传热速率,较大的传热换热系数意味着更快的传热速率。
传热知识点总结一、传热的基本概念1. 热传递方式热传递是指热能从高温物体传递到低温物体的过程。
在自然界中,热传递有三种方式:传导、对流和辐射。
1)传导:是指热量在固体或液体内部通过分子的传递而进行传热的现象。
传导的速度取决于物体的热导率和温度梯度。
2)对流:是指热量通过流体内部的流动而进行传热的现象。
对流传热是一种辐射传热和传导传热的耦合方式。
3)辐射:是指热能在真空和空气中通过电磁波传递而进行传热的现象。
辐射传热不需要介质,能够在真空中进行传递。
2. 热传递规律根据热传递方式的不同,热传递规律也有所不同。
在传导传热中,热流密度与温度梯度成正比;在对流传热中,热流密度与温度差、流体性质和流体速度有关;在辐射传热中,表面辐射率与物体表面性质、温度和波长有关。
3. 热传递计算在工程设计中,通常需要计算物体的传热过程。
传热计算需要考虑传热方式、传热系数、温度梯度等因素,并且可以利用传热方程进行计算。
二、传热的机制1. 传导传热传导传热是通过颗粒内部的分子振动而进行热传递的过程。
传导传热取决于介质的热导率和温度梯度。
传导传热的传热率与温度梯度成正比,与距离成反比,通常可以用傅立叶传热定律进行描述。
2. 对流传热对流传热是通过流体内部的流动而进行热传递的过程。
对流传热的传热率与温度差、流体性质和流体速度有关。
对流传热还与流体的黏度、密度、导热系数等物性参数有关。
3. 辐射传热辐射传热是通过电磁波在真空或空气中进行热传递的过程。
辐射传热的传热率与物体的表面性质、温度和波长有关。
辐射传热的计算通常需要考虑黑体辐射、灰体辐射等因素。
三、传热的数学模型1. 一维传热在一维情况下,传热可以用傅立叶传热方程进行描述。
该方程包括传热导数和传热系数两个物理量,并可以用来描述传导传热、对流传热和辐射传热。
2. 二维传热在二维情况下,传热可以用拉普拉斯传热方程进行描述。
该方程可以用来描述平板、圆柱、球体等形状的传热过程,并可以通过适当的边界条件进行求解。
传热学主要知识点1. 热量传递的三种基本方式。
热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。
2.导热的特点。
a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。
3.对流(热对流)(Convection)的概念。
流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。
4对流换热的特点。
当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5.牛顿冷却公式的基本表达式及其中各物理量的定义。
h 是对流换热系数单位 w/(m 2 k) q ''是热流密度(导热速率),单位(W/m 2)φ是导热量W6. 热辐射的特点。
a 任何物体,只要温度高于0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。
7.导热系数, 表面传热系数和传热系数之间的区别。
导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。
表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。
影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。
(w))(∞-=''t t h q w 2/)(m w t t Ah A q w ∞-=''=φ第一章 导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。
傅立叶定律(导热基本定律):dxdTkq x ∂∂-='' )(zT y T x T k T k q ∂∂+∂∂+∂∂-=∇-=''k j iT(x,y,z)为标量温度场nTk q n∂∂-='' 圆筒壁表面的导热速率drdT rL k dr dT kA q r )2(π-=-= 垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。
(1)空隙中充有空气,空气导热系数小,因此保温性好;(2)空隙太大,会形成自然对流换热,辐射的影响也会增强,因此并非空隙越大越好。
(3)由于水分的渗入,替代了相当一部分空气,而且更主要的是水分将从高温区向低温区迁移而传递热量。
因此,湿材料的导热系数比干材料和水都要大。
所以,建筑物的围护结构,特别是冷、热设备的保温层,都应采取防潮措施。
导热微分方程式的理论基础。
傅里叶定律 + 热力学第一定律导热与导出净热量(使用傅里叶定律)+微元产生的热量=微元的内能变化量。
tTc q z T k z y T k y x T k p ∂∂=+∂∂∂∂+∂∂∂∂+∂∂ρ )()()(k 是导热率----导热系数)tT k q z T y T x T ∂∂⨯=+∂∂+∂∂+∂∂α1222222 热扩散系数)/(p c k ρα= (可以用来计算tT∂∂,温度随时间的变化率) 0)(=dx dT k dx d热扩散率的概念热扩散率(用a 表示)反映了导热过程中材料的导热能力与沿途物质储热能力之间的关系值大,即λ值大或ρc 值小,说明物体的某一部分一旦获得热量,该热量能在整个物体中很快扩散。
热扩散率表征物体被加热或冷却时,物体内各部分温度趋向于均匀一致的能力在同样加热条件下,物体的热扩散率越大,物体内部各处的温度差别越小。
热扩散率反应导热过程动态特性,是研究不稳态导热的重要物理量。
完整数学描述:导热微分方程 + 单值性条件导热微分方程式描写物体的温度随时间和空间变化的关系;它没有涉及具体、特定的导热过程。
是通用表达式。
对特定的导热过程,需要补充单值性条件,才能得到特定问题的唯一解。
单值性条件包括四项:几何条件、物理条件、时间条件(初始条件)、边界条件。
边界条件边界条件说明导热体边界上过程进行的特点反映过程与周围环境相互作用的条件(1)第一类边界条件:已知任一瞬间导热体边界上温度值;(2)第二类边界条件:已知物体边界上热流密度的分布及变化规律,第二类边界条件相当于已知任何时刻物体边界面法向的温度梯度值;(3)第三类边界条件:当物体壁面与流体相接触进行对流换热时,已知任一时刻边界面周围流体的温度和表面传热系数。
()],0([|0t T T h xTk x -=∂∂-∞=)第二章 稳态导热(一维导热结果总汇P.80)热阻:(径向系统的热阻P.74) 导热(conduction )热阻kAL q T T R xs s cond t =-≡2,1,, 对流(convection )热阻hA q T T R s convt 1,=-≡∞辐射(radiation )热阻A h q T T R r rad sur s radt 1,=-≡接触(thermal contact )热阻定义式xBA ct q T T R -='',总传热系数U :T UA q x∆≡总热阻:UAq T R R t tot 1=∆=∑= 圆筒壁中的径向导热热阻 Lk r r R condt π2)/ln(12,=圆筒壁表面的对流换热热阻)2(1,rL h R conv t π=1.由第三类边界条件下通过平壁的一维稳态导热量关系式,分析为了增加传热量,可以采取哪些措施?第三类边界条件下通过平壁的一维稳态导热量关系式:Ah kA L A h T T 212,1,11++-=Φ∞∞为了增加传热量,可以采取哪些措施?(1)增加平壁两边的温差(T ∞,1-T ∞,2),但受工艺条件限制 (2)减小热阻:a) 金属壁一般很薄(L 很小)、热导率很大,故导热热阻一般可忽略 b) 增大h 1、h 2,但提高h 1、h 2并非任意的c) 增大换热面积 A 也能增加传热量在一些换热设备中,在换热面上加装肋片是增大换热量的重要手段。
2.在管道外覆盖保温层是不是在任何情况下都能减少热损失?为什么? 不是,只有当管道外径大于临界热绝缘直径时,覆盖保温层才能减小热损失.接触热阻的概念。
实际固体表面不是理想平整的,所以两固体表面直接接触的界面容易出现点接触,或者只是部分的而不是完全的和平整的面接触 —— 给导热带来额外的热阻,即接触热阻。
5.什么是形状因子?为了便于工程设计计算,对于有些二维、三维的稳态导热问题,针对已知两个恒定温度边界之间的导热热流量,可以采用一种简便的计算公式。
在这种公式中,将有关涉及物体几何形状和尺寸的因素归纳在一起,称为形状因子。
第三章 非稳态导热(瞬态导热--确定瞬态过程中固体内的温度分布随时间变化的确定方法。
)1.非稳态导热的分类。
周期性非稳态导热和瞬态非稳态导热2.Bi 准则数, Fo 准则数的定义及物理意义。
Bi 准则数(瞬态导热问题第一件事,计算Bi 准则数):/1/h Bi h δδλλ===物体内部导热热阻物体表面对流换热热阻法误差较小。
定性长度s c A V L /≡Fo 准则数:2,a Fo τδ=是非稳态导热过程的无量纲时间。
在稳态导热过程中,Fo愈大,热扰动愈能深入地传播到物体内部,使物体内部各点温度趋于均匀一致。
并接近于周围介质温度。
3.集总参数法的物理意义及应用条件。
忽略物体内部导热热阻、认为物体温度均匀一致的分析方法。
此时,温度分布只与时间有关,与空间位置无关。
应用条件:0.1Bi <4.热时间常数的定义及物理意义。
度T 所需的时间。
反向计算可以计算在某一个时间t 到达的温度。
其中t schA V τρ=是所谓的热时间常数-------它是指环境温度改变时,热敏电阻器改变了环境温度改变值的63%所用的时间。
(采用集总参数法分析时,物体中 过余温度 随时间变化的关系式中的/()cV hA ρ具有时间的量纲,称为时间常数。
)时间常数的数值越小表示测温元件越能迅速地反映流体的温度变化。
5.非稳态导热的正常情况阶段的物理意义。
当0.2Fo ≥时,物体在给定的条件下冷却或加热,物体中任何给定地点过余温度的对数值将随时间按线性规律变化。
物体中过余温度的对数值随时间按线性规律变化的这个x 阶段,称为瞬态温度变化的正常情况阶段。
6.半无限大物体的概念。
半无限大物体的概念如何应用在实际工程问题中? 半无限大物体,是指以无限大的y-z 平面为界面,在正x 方向伸延至无穷远的物体。
在实际工程中,对于一个有限厚度的物体,在所考虑的时间范围内,若渗透厚度小于本身的厚度,这时可以认为该物体是个半无限大物体。
第四章 导热问题数值解法基础1.数值解法的基本求解过程数值解法,即把原来在时间和空间连续的物理量的场,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,从而获得离散点上被求物理量的值;并称之为数值解。
2.热平衡法的基本思想。
对每个有限大小的控制容积应用能量守恒,从而获得温度场的代数方程组,它从基本物理现象和基本定律出发,不必事先建立控制方程,依据能量守恒和傅立叶导热定律即可。
第五章对流换热分析影响对流换热的主要物理因素.对流换热是流体的导热和对流两种基本传热方式共同作用的结果。
其影响因素主要有以下五个方面:(1)流动起因; (2)流动状态; (3)流体有无相变; (4)换热表面的几何因素; (5)流体的热物理性质。
2.对流换热是如何分类的?(1)流动起因:自然对流和强制对流;(2)流动状态: 层流和紊流;(3)流体有无相变: 单相换热和相变换热(4)换热表面的几何因素:内部流动对流换热和外部流动对流换热。
3.对流换热问题的数学描写中包括那些方程?连续性方程、动量微分方程、能量微分方程、对流换热过程微分方程式。
4.边界层概念的基本思想。
流场可以划分为两个区:边界层区与主流区边界层区:流体的粘性作用起主导作用,流体的运动可用粘性流体运动微分方程描述(N-S方程)主流区:速度梯度为0,t=0;可视为无粘性理想流体;流体的运动可用欧拉方程描述。
5.流动边界层的几个重要特性。
(1) 边界层厚度d与壁的定型尺寸L相比极小,d << L(2) 边界层内存在较大的速度梯度(3) 边界层流态分层流与湍流;湍流边界层紧靠壁面处仍有层流特征,存在层流底层;(4) 流场可以划分为边界层区与主流区边界层区:由粘性流体运动微分方程描述主流区:由理想流体运动微分方程—欧拉方程描述。
可以划分为两个区:热边界层区与等温流动区7.数量级分析的方法。
比较方程中各量或各项的量级的相对大小;保留量级较大的量或项;舍去那些量级小的项,方程大大简化。