噪声和干扰
- 格式:pdf
- 大小:187.48 KB
- 文档页数:6
第3章噪声与干扰讲授内容:3.1 概述3.2 噪声3.3 额定功率和额定功率增益3.4 线性四端网络的噪声系数3.5 等效输入噪声温度3.6 接收灵敏度3.7 工业干扰与天电干扰3.1 概述噪声对有用信号的接收产生了干扰,当有用信号较弱时, 噪声的影响就更为突出, 严重时会使有用信号淹没在噪声之中而无法接收。
外部噪声:噪声从器件外部窜扰来。
噪声分为外部噪声和内部噪声。
内部噪声:噪声从器件内部生。
内部噪声源主要有电阻热噪声、晶体管噪声和场效应管噪声三种。
3.2 噪声3.2.1 电阻热噪声1、起伏噪声电流:电阻内部自由电子热运动在导体内形成微弱的电流, 由于这种电流呈杂乱起伏的状态,称为起伏噪声电流。
2、起伏噪声电压:起伏噪声电流流过电阻本身在其两端产生的电压称起伏噪声电压。
3、起伏噪声电压特征:起伏噪声电压的瞬时振幅和瞬时相位是随机的,且不规则地偏离平均值而起伏变化。
起伏噪声电压的平均值为零,均方值为一定值,即其功率频谱密度是一个常数,这种在整个无线电频段内具有均匀频谱的起伏噪声称为白噪声。
阻值为R的电阻产生的噪声电流功率频谱密度和噪声电压功率频谱密度分别为:其中:k=1.38×10-23J /K ;T 为电阻温度,以绝对温度计算。
在频带宽度为BW内产生的热噪声均方值电流和均方值电压分别为:一个实际电阻可以分别用噪声电流源和噪声电压源表示, 如图所示:例 2.5 试计算510k Ω电阻的噪声均方值电压和均方值电流各是多少?设T=290K ,BW=100k Hz。
解:I2n=4k ·T ·BW /R=4×1.38×10-23×290×105/510×103≈3.14×10-21A2U2n=4k·T·R·BW=4×1.38×10-23×290×510×103×105≈8.16×10-10V23.2.2 晶体管噪声晶体管噪声主要包括以下四部分。
移动通信中的噪声和干扰
移动通信中的噪声和干扰
移动通信中的噪声和干扰是影响通信质量和性能的重要因素。
在移动通信系统中,噪声是由各种源产生的随机波动,而干扰则是
指外部信号对通信系统的干扰。
噪声
噪声是由于电子元件的热运动和其他因素引起的无规律电磁波,它会对通信信号进行干扰和破坏。
在移动通信系统中,噪声主要包括:
1. 热噪声:由于传输介质和电子元件内部的热运动产生的电磁波;
2. 散弹噪声:由电子元件内电子的离散性引起的电磁波;
3. 交调噪声:由于不同频率的信号交叉混合而产生的电磁波。
噪声对通信系统的影响可以通过信噪比(信号与噪声的比值)
来衡量,信噪比越大,通信质量越好。
为了降低噪声的影响,通信
系统通常采用信号处理、误差检测和纠正等方法。
干扰
干扰是指环境中的其他电磁信号对通信系统的干扰。
在移动通信系统中,干扰主要来源于以下几个方面:
1. 邻近信道干扰:由于邻近频道的信号相互干扰导致的;
2. 同频干扰:由于系统内不同用户或不同基站之间的信号相互干扰导致的;
3. 多径干扰:由于信号在传播过程中发生多次反射、绕射、折射等导致的;
4. 外界干扰:来自于其他无线设备、电源设备、人造信号等的干扰信号。
干扰会导致通信信号的失真、丢失和误解等问题,降低通信的可靠性和性能。
为了减少干扰,通信系统通常采用多址技术、频率规划、功率控制和重复传输等方法。
,噪声和干扰是移动通信中不可避免的问题,对通信质量和性能产生重要影响。
通过合理的设计和优化,可以降低噪声和干扰对通信系统的影响,提高通信质量和性能。
通信工程中的噪声与干扰分析在当今信息时代,通信工程扮演着至关重要的角色,它让我们能够在全球范围内迅速、准确地传递信息。
然而,在通信过程中,噪声与干扰的存在却常常给信息的传输带来诸多问题。
了解和分析通信工程中的噪声与干扰,对于提高通信质量、保障信息的可靠传输具有重要意义。
一、通信工程中的噪声噪声,简单来说,就是在通信系统中除了有用信号之外的各种随机的、不可预测的信号。
它就像是信号传输道路上的“绊脚石”,会使信号发生失真、误码等问题。
热噪声是通信中常见的一种噪声,它是由电子的热运动引起的。
无论通信设备是否在工作,热噪声始终存在。
在导体中,电子的无规则热运动导致了电流的微小波动,这种波动就形成了热噪声。
热噪声的功率谱密度在很宽的频率范围内是均匀分布的,因此也被称为白噪声。
散粒噪声则主要出现在电子设备的半导体器件中,比如二极管、晶体管等。
当电流通过这些器件时,由于载流子的离散性,电流会出现微小的起伏,从而产生散粒噪声。
还有一种常见的噪声是闪烁噪声,也称为 1/f 噪声。
它的功率谱密度与频率成反比,通常在低频段较为显著。
闪烁噪声的产生机制比较复杂,与半导体器件中的缺陷、杂质等因素有关。
二、通信工程中的干扰干扰与噪声有所不同,干扰通常是指由外部因素引起的、具有一定规律性和可预测性的信号。
同频干扰是指在通信系统中,使用相同频率的多个信号源之间相互干扰。
例如,在移动通信中,如果多个基站使用相同的频率,并且它们的覆盖区域有重叠,那么手机在这些区域就可能接收到多个相同频率的信号,从而导致干扰。
邻频干扰则是由于相邻频段的信号泄漏到有用信号的频段内而产生的干扰。
在频谱资源有限的情况下,相邻频段之间的隔离不够充分,就容易出现邻频干扰。
互调干扰是当多个不同频率的信号通过非线性器件时,产生的新的频率成分对有用信号造成的干扰。
这种干扰在通信系统中的放大器、混频器等非线性部件中较为常见。
三、噪声与干扰对通信系统的影响噪声和干扰会严重影响通信系统的性能。
什么是电路的噪声和干扰电路的噪声和干扰是在电子设备和电路中常见的问题,它们可能会对信号传输和设备性能产生负面影响。
了解噪声和干扰的类型、来源以及如何减少它们对电路的影响是电子工程师和电路设计师的重要任务之一。
一、噪声的定义和分类噪声是指在电子设备和电路中引入的非期望的信号,它包含了各种频率和振幅的信号成分。
噪声可以来自内部和外部的源头。
内部噪声是由电子元件和电路中的电流、电压以及其他物理过程产生的。
外部噪声则是来自设备周围的各种信号源。
根据噪声的统计特性,我们可以将其分为两类:分布均匀的白噪声和频率相关性的有色噪声。
白噪声是指所有频率上的噪声功率谱密度相等,而有色噪声则具有频率相关性,不同频率成分的功率不同。
二、噪声的来源1. 热噪声(热涨落噪声):热噪声是由于温度引起的原子和电子的热运动所导致的噪声。
在电子元器件中,例如电阻器、晶体管等,由于内部电阻和电流的存在,会产生热噪声。
2. 亚原子干扰:亚原子干扰是由于电子的原子与原子之间的运动和相互作用引起的。
3. 辐射噪声:辐射噪声是指由电子装置或电子器件辐射而来的非期望信号。
4. 交流电源干扰:由于电源的电压和电流的不稳定性,交流电源本身也会引入噪声。
5. 信号线串扰:信号线之间的接近会导致相互耦合,引起信号传输中的串扰。
三、干扰的定义和分类干扰是指在电子设备和电路中的不相关信号,它可能会使电路、传感器或通信系统产生误差或性能下降。
干扰可以来自内部设备或外部环境。
根据干扰的特征,我们可以将其分为以下几类:1. 电磁干扰(EMI):电磁干扰是指由电磁辐射或电磁感应引起的干扰。
例如,无线电发射器、电视机、雷达等设备都会发出电磁辐射信号,这些信号可能会干扰周围的电子设备。
2. 电源杂散:电源本身可能会产生不稳定的电压或电流,这些电气杂散信号可能会对其他电子设备或电路产生干扰。
3. 瞬态干扰:瞬态干扰是指非持续性的干扰信号,通常是由突发事件引起的。
例如,电源开关的切换、电气设备的启动和停止等都可能会产生瞬态干扰。
移动通信中的噪声和干扰移动通信中的噪声和干扰1.引言在移动通信系统中,噪声和干扰是影响通信质量的重要因素。
本文将详细介绍移动通信中的噪声和干扰的概念、类型以及对通信系统的影响。
2.噪声的概念和类型2.1 噪声的定义噪声是指在通信过程中产生的非期望的信号,它可以是各种形式的电磁波、电压或电流,会干扰到正常的通信信号。
2.2 噪声的类型●热噪声:________由于器件温度引起的随机电子运动所产生的噪声。
通信系统中常见的热噪声有热噪声、热噪声等。
●内部噪声:________由于器件本身的非线性特性引起的噪声,如放大器的非线性失真引起的失真噪声。
●外部噪声:________来自外部环境的噪声,如电源线干扰、雷电噪声等。
3.干扰的概念和类型3.1 干扰的定义干扰是指在通信系统中,除了传输目标信号外,还伴随着其他非期望信号。
这些非期望信号的存在会干扰到接收端正常的信号解调过程,降低通信系统的性能。
3.2 干扰的类型●频率干扰:________当接收到与目标信号频率相近的其他信号时,会由于频率共振和互调干扰的作用,导致接收端混淆和失真。
●多径干扰:________在移动通信中,由于信号在传播过程中经历多个路径反射和折射,到达接收端时会叠加形成多径信号,造成接收端的干扰。
●同频干扰:________当同一个频率上有多个信号源时,可能会造成接收端的同频干扰,导致通信质量下降。
4.噪声和干扰对通信系统的影响4.1 信号质量下降由于噪声和干扰的存在,接收到的信号与发送的信号相比,可能会引起信号质量的降低。
如信噪比下降、误码率增加等。
4.2 通信范围受限噪声和干扰会减弱信号的功率,从而影响信号的传输范围。
特别是在无线通信中,干扰信号可以覆盖到很远的距离。
4.3 通信速率降低当噪声和干扰存在时,接收端需要更多的时间和精确度去解调传输信号,从而降低了通信系统的速率。
5.本文档涉及附件本文档附带的附件包括相关的统计数据、图表和实验结果,读者可根据需要参考。
硬件测试中的噪声与干扰测试方法硬件测试在现代科技领域中具有重要的意义,它能够有效地评估硬件设备的性能和可靠性。
然而,在测试过程中,噪声和干扰问题经常成为阻碍测试准确性的主要因素。
本文将介绍硬件测试中噪声和干扰的定义,以及有效的测试方法,旨在帮助读者更好地理解和解决这些问题。
第一部分:噪声和干扰的定义在硬件测试中,噪声和干扰是指来自内外部环境的不期望的信号或电磁波,对被测试设备的正常运行产生负面影响。
噪声和干扰可以来自多个来源,例如电源线、电磁辐射、其他设备等。
而对噪声和干扰进行有效的测试成为保障硬件设备可靠性的关键。
第二部分:噪声与干扰测试方法在硬件测试中,噪声与干扰测试方法的选择和应用都需要根据具体的硬件设备和测试目的来确定。
以下是几种常见的噪声与干扰测试方法。
1. 功率干扰测试:该测试方法主要应用于无线通信设备等需要进行功率传输的硬件设备。
通过在特定频率范围内植入合成信号,可以评估设备在不同干扰条件下的性能。
2. 电磁兼容性测试:该测试方法主要用于评估硬件设备的抗干扰能力以及电磁辐射水平。
通过将设备暴露在特定的电磁场中,可以测量设备的辐射和敏感性水平,并评估其对外界干扰的抵抗能力。
3. 噪声抑制测试:该测试方法主要应用于音频和视频设备等需要进行信号处理的硬件设备。
通过注入不同程度的噪声信号,可以评估设备对噪声的抑制能力,以及对正常信号的保真度。
4. 瞬态电磁干扰测试:该测试方法主要应用于评估硬件设备对瞬态电磁干扰的抵抗能力。
通过在设备周围产生突发电磁波,可以观察设备在不同干扰强度下的工作状态,并评估其稳定性和可靠性。
第三部分:测试结果分析与优化噪声与干扰测试的结果分析是测试过程中的关键环节,必须根据具体的测试目的和硬件设备特点进行合理的评估和优化。
以下是几种常见的测试结果分析与优化方法。
1. 信噪比分析:通过测量设备在不同信号强度下的信号与噪声比,可以评估设备的接收能力和信号处理能力,并找出可能的改进方案。
移动通信中的噪声和干扰移动通信中的噪声和干扰1.前言1.1 研究背景1.2 目的和重要性2.噪声和干扰的概念2.1 噪声的定义和分类2.2 干扰的定义和分类3.噪声和干扰对移动通信的影响3.1 信号质量下降3.2 数据传输错误率增加3.3 通信系统容量限制4.噪声来源及其特点4.1 热噪声4.1.1 原理和特点4.1.2 对通信系统的影响4.2 外部噪声4.2.1 来源和特点4.2.2 对通信系统的影响 4.3 其他噪声4.3.1 来源和特点4.3.2 对通信系统的影响5.干扰来源及其特点5.1 自然干扰5.1.1 天气干扰5.1.2 大气干扰5.1.3 地面干扰5.2 人为干扰5.2.1 其他通信系统的干扰 5.2.2 电磁辐射干扰5.2.3 电源干扰6.噪声和干扰的抑制和解决方法6.1 功率控制技术6.2 编码和调制技术6.3 天线设计和优化6.4 频率规划和资源分配策略6.5 接收机设计和优化7.法律名词及注释7.1 电信法7.1.1 定义和适用范围7.1.2 主要规定和条款7.2 频谱管理法7.2.1 定义和适用范围7.2.2 主要规定和条款8.结论8.1 总结本文主要内容8.2 对噪声和干扰研究的启示和展望9.附件附录1、实验数据结果附录2、图表和图形---附注:1.本文中提到的附件包括实验数据结果和相关图表、图形等,具体内容请参考附件部分。
2.本文中涉及的法律名词及注释,具体内容请参考第7章节中有关电信法和频谱管理法的解释。
652577。
移动通信中的噪声和干扰在我们日常使用手机进行通话、上网、发送信息的时候,可能很少会想到在这看似顺畅的通信过程背后,存在着诸多影响通信质量的因素,其中噪声和干扰就是两个关键的“捣蛋鬼”。
先来说说噪声。
噪声就像是通信信号传输道路上的“小石子”,让原本清晰的信号变得模糊不清。
它无处不在,而且来源多种多样。
热噪声就是其中之一,这就好比是在一个热闹的集市里,人们的嘈杂声总是存在,无法避免。
热噪声是由电子的热运动产生的,无论通信设备是否在工作,它都存在。
在移动通信中,这种噪声会影响信号的接收和解读,使得通信质量下降。
另一种常见的噪声是散粒噪声。
想象一下,电子就像一个个调皮的小精灵,它们的随机运动导致了电流的微小波动,这就是散粒噪声。
在半导体器件中,比如手机的芯片里,这种噪声就比较常见。
它虽然微小,但在一些对信号精度要求极高的情况下,也可能会产生明显的影响。
还有一种噪声是宇宙噪声。
来自宇宙深处的各种射线和电磁波,就像是远方传来的“神秘干扰”,也会对我们的移动通信信号造成影响。
虽然这种影响通常比较微弱,但在特定的条件下,比如在偏远地区或者高灵敏度的通信设备中,也不能忽视。
说完了噪声,再来说说干扰。
干扰可比噪声更有“攻击性”,它往往是有特定来源并且有较强影响力的。
同频干扰就是一个常见的例子。
在移动通信中,有限的频谱资源被众多的用户共享。
如果两个或多个基站使用了相同的频率,它们的信号就可能会相互干扰,导致通信混乱。
这就好比在一个房间里,几个人同时大声说着相同的话,谁也听不清楚。
邻频干扰也不容忽视。
当相邻的频率过于接近时,信号之间会产生重叠和干扰。
就像是相邻的两个乐队演奏,声音稍微大一点就会互相“串台”,影响听众的体验。
在移动通信中,这种干扰会导致信号失真、误码率增加等问题。
互调干扰则是一种更为复杂的情况。
当多个不同频率的信号同时进入非线性器件时,会产生新的频率成分,这些新的频率成分如果落在了通信频段内,就会形成干扰。
模拟电子技术基础知识噪声与干扰的来源与消除方法噪声与干扰是现代电子技术领域中常见的问题。
在电子设备和电路中,噪声与干扰会对正常的信号传输和处理造成不可避免的影响。
本文将围绕模拟电子技术的基础知识展开,探讨噪声与干扰的来源及其消除方法。
一、噪声与干扰的来源噪声是指电子设备或电路中与所需信号无关的随机信号。
噪声产生的原因有多种,主要包括以下几个方面。
1. 热噪声:热噪声是由于电子元件(如电阻)内部的热运动引起的。
这种噪声与温度相关,温度越高,热噪声也越大。
热噪声通常具有频谱密度均匀、功率随频率成正比的特点。
2. 互制噪声:互制噪声是指多个电子元件之间的非线性相互作用所引起的噪声。
例如在放大器中,由于元件的非线性特性,输入信号的不同频率分量会相互干扰,导致输出信号出现频率失真或混频现象。
3. 损耗噪声:损耗噪声是由于电子元件的内阻引起的。
当电流经过电阻时,电子与原子之间的碰撞会产生噪声。
损耗噪声通常与电阻的大小及其工作频率有关。
4. 外界干扰:外界干扰源包括电力线噪声、地磁噪声、无线电频率互调等。
这些干扰源可以通过电磁辐射、电磁感应等方式进入电子设备或电路,影响其正常工作。
二、噪声与干扰的消除方法为了保证电子设备和电路的正常运行,需要采取一系列的措施来降低噪声与干扰的影响。
下面介绍几种常用的消除方法。
1. 增加信噪比:信噪比是指信号与噪声功率之比。
通过增大信号功率或减小噪声功率,可以提高信噪比,从而降低噪声对系统的影响。
常用的方法包括增加信号的输入功率、优化信号源的设计以及增加前端的增益。
2. 使用低噪声元件:选用低噪声的电子元件可以有效降低噪声的影响。
例如,在放大器中使用低噪声的晶体管,可以减小放大器引入的噪声。
3. 有效地屏蔽和隔离:通过合理的屏蔽和隔离措施,可以减少外界干扰对电子设备或电路的影响。
例如,在设计电路板时,可以采用屏蔽罩或屏蔽板来阻挡外界电磁辐射的干扰。
4. 优化电路布局:合理的电路布局可以降低元件之间的互制干扰,减少噪声的产生。
噪声和干扰摘要:本文介绍了噪声、干扰的概念、分类及产生的原因,并就此提出了相应的解决方法。
同时讲了滤波电容在降噪电路中和模拟数字电路中的降噪技术的应用。
关键词:噪声、干扰一、噪声和干扰的概念1、噪声噪声指在信号检测的领域内,检测系统检测和传输的有用信号以外的一切信号均被称为噪声。
当噪声进入电子设备接收机时,在有用信号上附加了一个随机信号,使有用信号部分地改变或失去原有的信号特征。
当噪声功率大于有用信号功率时,有用信号就会完全淹没在噪声干扰之中,而使电子设备难以检测到有用信号。
所以,噪声问题是一个极其重要的工程问题。
噪声按来源分为内部噪声和外部噪声两种:内部噪声主要是由于器件本身、电路设计、制造工艺等因素产生的。
由元器件产生的称固有噪声,电路中几乎所有的元器件在工作时都会产生一定的噪声。
这种噪声是连续的,基本上是固定不变的,并且频谱分布很广泛。
这种噪声几乎可以不用实验,在图纸上进行计算就可以推算出来。
电路本身的设计失误或者安装工艺上的缺陷也会产生噪声。
电路设计失误往往会导致电路的轻微自激。
安装工艺失误产生噪声的情况很多,比如接插件接触不良,接触表面形成二极管效应或者接触电阻随温度、振动等影响发生变化而导致信号传输特性变化,将高热的元器件排布在对温度敏感的元器件旁边,将一些有轻微振动的元器件放在对振动敏感的元器件旁边,或者没有足够的避震措施等都会产生噪声。
外部噪声是由设备所在的电子环境和自然环境所造成的。
外部噪声主要三方面:空间辐射干扰噪声:任何导体通过交变电流的时候都会引起周围电场强度的变化,这种变化就是电场辐射。
同样,像变压器这样的磁体也会引起周围磁场强度的交替变化。
交变电场和磁场中的闭合导体会产生和电场磁场变化频率相同的感应电流。
这种感应电流叠加在信号中就会产生噪声。
线路串扰噪声:某些电气设备会产生干扰信号,这些干扰信号通过电源、信号线等线路直接窜入电气设备中会产生噪声。
传输噪声:这种噪声是信号在传输过程中由于传输介质的问题产生的,比如接插件的接触不良、信号线材质不佳、地电流串扰等等。