第1章噪声与干扰
- 格式:pdf
- 大小:1.29 MB
- 文档页数:35
传感器中的噪声和干扰抑制技术传感器是现代科技领域中的重要组成部分,被广泛应用于各个领域。
然而,传感器在工作过程中常常会受到噪声和干扰的干扰,降低了其性能和准确性。
为了解决这一问题,人们提出了各种噪声和干扰抑制技术,本文将从几个方面详细介绍这些技术的原理和应用。
一、噪声来源与分类在了解噪声和干扰抑制技术之前,我们首先需要了解噪声的来源和分类。
噪声主要可以分为外部噪声和内部噪声。
外部噪声主要来自于环境,如电磁辐射、震动、温度变化等。
内部噪声则是由于传感器本身的结构和电路等因素引起的,如放大器电路噪声、电源噪声等。
根据频率范围的不同,噪声可以进一步分为低频噪声、中频噪声和高频噪声。
低频噪声一般在1Hz以下,主要来源于环境震动和温度变化等;中频噪声在几百Hz至几百kHz范围内,主要由电磁干扰引起;高频噪声则在几百kHz以上,如来自于放大器电路的噪声。
二、噪声抑制技术1. 信号滤波技术信号滤波技术是最常用的噪声抑制技术之一。
滤波器可以根据噪声的频率范围进行选择。
常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
低通滤波器用于滤除高频噪声,高通滤波器则用于滤除低频噪声,带通滤波器和带阻滤波器可以根据实际噪声频谱的分布来选择。
2. 系统抗干扰技术系统抗干扰技术主要包括防电磁干扰和防震动技术。
防电磁干扰主要通过合理设计传感器的结构和电路布局以及屏蔽等手段来降低外界电磁信号对传感器的干扰。
防震动技术则通过采用减振材料、调整传感器的安装方式等方式来降低震动对传感器的影响。
3. 信号处理技术信号处理技术是一种较为复杂的噪声抑制技术,它可以通过对传感器采集到的信号进行处理,提取有用的信息并滤除噪声。
常见的信号处理技术包括数字滤波、小波变换、自适应滤波等。
这些技术可以对传感器信号进行干扰抑制、特征提取和信号重建等处理,从而提高传感器的性能。
三、干扰抑制技术的应用噪声和干扰抑制技术在各个领域都有广泛的应用。
例如,在无线通信领域,通过采用合适的信道编码和解码技术,可以降低信道噪声对通信质量的影响,提高通信的可靠性和性能。
电路噪声讲解—噪声第一章一、电磁噪声干扰定义外部电磁波造成的干扰称为电磁噪声干扰,而造成干扰的电磁波称为电磁噪声(噪声)。
如果一台电子设备视为噪声源,则噪声的产生称为发射(噪声发射)。
相应地,如果一台电子设备视为噪声受体,则噪声容忍度称为抗扰度(噪声容忍度)。
噪声规定指定了电子设备的发射和抗扰度。
(抗扰度也称为EMS: 电磁敏感度)二、电磁噪声分类根据电磁噪声的来源,可分为自然噪声和人为噪声。
随着电子设备进一步的高密集化、高性能化及小型化,噪声干扰问题会更加严重。
EMC=EMI+EMS内EMC。
四、噪声抑制讲解1.噪声传导:噪声传导有空间传导和导体传导1)空间传导噪声处理:增加屏蔽屏蔽指用金属板或其他保护装置封闭目标物体,把周围的电磁场排除在外。
尽管屏蔽的效果通常取决于所用材料的传导性、导磁率和厚度,但用铝箔等极薄的金属板会令常规电子设备的噪声抑制更有效果。
电子设备的噪声抑制效果会因形成外壳的连接方法(间隙、接触阻抗等)而异,而与材料规格无关。
在散热所用的屏蔽罩上制作开口时,限制每个开口的超大尺寸比限制开口的总面积更加重要。
如果存在细长的开口或狭缝,这个部分可以起到狭缝天线的作用(特别是图中的长度l超过了波长1/2时的高频范围),且无线电波可以进出屏蔽罩。
为了避免这样,应保持每个开口较小。
由此看来,带许多小孔的板材(例如冲孔的金属和延展的金属)是很好的材料,既有利于通风,又有利于屏蔽。
2)导体传导噪声处理:增加滤波电路因为噪声往往分布在相对较高的频率范围内,所以电子设备的噪声抑制通常使用低通滤波器来消除高频成分。
可以把电感器(线圈)、电阻和电容等通用元件用作低通滤波器。
但是为了完全隔离噪声,可以使用EMI静噪滤波器等专用的元件。
除了这些利用噪声不均匀频率分布的滤波器以外,还有些滤波器是利用压差(变阻器等)或利用传导模式差异(共模扼流线圈等)。
除了这些滤波器,变压器、光缆或光隔离器均可用作一种滤波器。
什么是电路的噪声和干扰电路的噪声和干扰是在电子设备和电路中常见的问题,它们可能会对信号传输和设备性能产生负面影响。
了解噪声和干扰的类型、来源以及如何减少它们对电路的影响是电子工程师和电路设计师的重要任务之一。
一、噪声的定义和分类噪声是指在电子设备和电路中引入的非期望的信号,它包含了各种频率和振幅的信号成分。
噪声可以来自内部和外部的源头。
内部噪声是由电子元件和电路中的电流、电压以及其他物理过程产生的。
外部噪声则是来自设备周围的各种信号源。
根据噪声的统计特性,我们可以将其分为两类:分布均匀的白噪声和频率相关性的有色噪声。
白噪声是指所有频率上的噪声功率谱密度相等,而有色噪声则具有频率相关性,不同频率成分的功率不同。
二、噪声的来源1. 热噪声(热涨落噪声):热噪声是由于温度引起的原子和电子的热运动所导致的噪声。
在电子元器件中,例如电阻器、晶体管等,由于内部电阻和电流的存在,会产生热噪声。
2. 亚原子干扰:亚原子干扰是由于电子的原子与原子之间的运动和相互作用引起的。
3. 辐射噪声:辐射噪声是指由电子装置或电子器件辐射而来的非期望信号。
4. 交流电源干扰:由于电源的电压和电流的不稳定性,交流电源本身也会引入噪声。
5. 信号线串扰:信号线之间的接近会导致相互耦合,引起信号传输中的串扰。
三、干扰的定义和分类干扰是指在电子设备和电路中的不相关信号,它可能会使电路、传感器或通信系统产生误差或性能下降。
干扰可以来自内部设备或外部环境。
根据干扰的特征,我们可以将其分为以下几类:1. 电磁干扰(EMI):电磁干扰是指由电磁辐射或电磁感应引起的干扰。
例如,无线电发射器、电视机、雷达等设备都会发出电磁辐射信号,这些信号可能会干扰周围的电子设备。
2. 电源杂散:电源本身可能会产生不稳定的电压或电流,这些电气杂散信号可能会对其他电子设备或电路产生干扰。
3. 瞬态干扰:瞬态干扰是指非持续性的干扰信号,通常是由突发事件引起的。
例如,电源开关的切换、电气设备的启动和停止等都可能会产生瞬态干扰。
硬件测试中的噪声与干扰测试方法硬件测试在现代科技领域中具有重要的意义,它能够有效地评估硬件设备的性能和可靠性。
然而,在测试过程中,噪声和干扰问题经常成为阻碍测试准确性的主要因素。
本文将介绍硬件测试中噪声和干扰的定义,以及有效的测试方法,旨在帮助读者更好地理解和解决这些问题。
第一部分:噪声和干扰的定义在硬件测试中,噪声和干扰是指来自内外部环境的不期望的信号或电磁波,对被测试设备的正常运行产生负面影响。
噪声和干扰可以来自多个来源,例如电源线、电磁辐射、其他设备等。
而对噪声和干扰进行有效的测试成为保障硬件设备可靠性的关键。
第二部分:噪声与干扰测试方法在硬件测试中,噪声与干扰测试方法的选择和应用都需要根据具体的硬件设备和测试目的来确定。
以下是几种常见的噪声与干扰测试方法。
1. 功率干扰测试:该测试方法主要应用于无线通信设备等需要进行功率传输的硬件设备。
通过在特定频率范围内植入合成信号,可以评估设备在不同干扰条件下的性能。
2. 电磁兼容性测试:该测试方法主要用于评估硬件设备的抗干扰能力以及电磁辐射水平。
通过将设备暴露在特定的电磁场中,可以测量设备的辐射和敏感性水平,并评估其对外界干扰的抵抗能力。
3. 噪声抑制测试:该测试方法主要应用于音频和视频设备等需要进行信号处理的硬件设备。
通过注入不同程度的噪声信号,可以评估设备对噪声的抑制能力,以及对正常信号的保真度。
4. 瞬态电磁干扰测试:该测试方法主要应用于评估硬件设备对瞬态电磁干扰的抵抗能力。
通过在设备周围产生突发电磁波,可以观察设备在不同干扰强度下的工作状态,并评估其稳定性和可靠性。
第三部分:测试结果分析与优化噪声与干扰测试的结果分析是测试过程中的关键环节,必须根据具体的测试目的和硬件设备特点进行合理的评估和优化。
以下是几种常见的测试结果分析与优化方法。
1. 信噪比分析:通过测量设备在不同信号强度下的信号与噪声比,可以评估设备的接收能力和信号处理能力,并找出可能的改进方案。
如何规避实验中的电路噪声与干扰在进行实验时,电路噪声与干扰是我们常常面临的问题。
这些噪声和干扰的存在会影响我们实验的结果,降低实验的准确性和可靠性。
因此,为了保证实验结果的准确性,我们有必要规避电路噪声与干扰。
下面,我将介绍一些方法来规避实验中的电路噪声与干扰。
1. 清洁电路环境在进行实验之前,我们应该确保电路环境的清洁。
清除电路周围的杂乱物品,将电路放置在干净的工作台上。
避免电路与其他设备或杂散电磁场的直接接触,以减少干扰。
2. 使用屏蔽材料在设计电路时,可以使用屏蔽材料来减少外部干扰对电路的影响。
屏蔽材料可以有效地阻挡电磁波传播,减少干扰。
例如,在设计放大器电路时,可以采用金属壳体来包裹电路板,起到屏蔽的效果。
3. 优化电路布局电路布局的合理优化可以减少电路噪声和干扰。
合理地安排各个元件的位置,减少信号线的长度和交叉。
将输入和输出信号线分开布置,避免相互干扰。
此外,注意地线和信号线的分离,以减少接地环路带来的干扰。
4. 选择低噪声元件在电路设计中,选择低噪声的元件是减少电路噪声与干扰的重要手段。
例如,在放大器电路中,选用低噪声的运放和电阻,可以降低噪声的引入。
此外,合理选择元件的工作点,减小元件本身的非线性失真,也可以减少干扰。
5. 使用滤波器如果电路噪声和干扰主要来自输入信号中的高频成分,可以在电路中加入滤波器来将高频噪声滤除。
滤波器可以选择合适的截止频率,通过滤波器的作用,将高频噪声滤掉。
6. 地线处理在电路设计中,地线处理是非常重要的一环。
良好的接地能够减少电路噪声和干扰。
要注意避免接地回路带来的干扰,尽量将地线与信号线分开。
7. 使用屏蔽电缆在信号传输过程中,可以使用屏蔽电缆来减少传输过程中的噪声和干扰。
屏蔽电缆内部带有金属屏蔽层,可以有效地阻挡外部电磁波对信号的干扰。
总结起来,规避实验中的电路噪声与干扰是我们进行实验的重要环节。
通过保持电路环境的清洁,使用屏蔽材料,优化电路布局,选择低噪声元件,使用滤波器,合理处理地线以及使用屏蔽电缆等方法,我们可以有效地减少电路中的噪声和干扰,提高实验结果的准确性和可靠性。
1
噪声、干扰:泛指有用信号以外的其他一切无用信号
噪声:通常指内部噪声,由电路内部产生的无用信号 干扰:通常指外部噪声,来自电路外部产生的无用信号
第一章噪声与干扰1. 什么是噪声、干扰,对系统有什么影响?2. 噪声和干扰从那里来,有什么特点?3. 如何度量噪声和干扰对系统的影响?4. 如何降低噪声和干扰对系统的影响?
2
内部噪声
自然噪声:热噪声、散粒噪声、闪烁噪声等
人为噪声:交流噪声、感应噪声、接触不良等
外部噪声(干扰)
自然干扰:天电干扰、宇宙干扰等
人为噪声:工业干扰、无线电干扰等噪声和干扰主要特性:随机性
说明:1.噪声和干扰问题涉及范围广、计算复杂、详细理论分析不属于本课程范围2.只需要掌握噪声和干扰问题的基本概念和简要分析,主要是自然噪声中的热噪声2. 噪声和干扰从那里来,有什么特点?
1.1 噪声的来源和特点
无噪声电阻的串联(或并联)。
5
为波尔的功率谱密度在所讨论的频带范围内与频率无关,即热噪声具。
把在所讨论频带内功率谱分布不均匀R
若系统工作带宽为,则电阻热噪声电压的均方值
f
当网络与前端匹配时,输入噪声的额kT f
6
9
耗电容,求输出端噪声电压的均方值。
网络的传递函数为输出端噪声均方电压谱密度220()()n kT v S f H f df C 2()()()o S f S f H f 14n BW RC 132dB BW RC 带宽:
()i S f 等效噪声带宽
11
小结:电阻、电感和电容的噪声 电阻:电阻热噪声
电感:等效于理想电感与损耗电阻的串联,主要是损耗电阻产生的热噪声 电容:等效于理想电容与损耗电阻的串联,但是电容损耗电阻非常小,频率很高时才考虑,因此损耗电阻热噪声因损耗电阻非常小而通常忽略不计。
噪声的主要来源:构成系统的电路元器件 电阻、电感、电容、BJTs 、FETs 、二极管等2. 噪声和干扰从那里来,有什么特点?
1.1.2 晶体管的噪声
晶体管的噪声通常比电阻的热噪声大得多,来源有 基区体电阻热噪声
散粒噪声(散弹噪声)
分配噪声
低频噪声(闪烁噪声,爆裂噪声)
12
1.1.3 场效应管的噪声
来源:沟道热噪声,栅极感应噪声,闪烁噪声,散粒噪声等
沟道热噪声
栅极感应噪声
闪烁噪声(1/f 噪声)
栅极散粒噪声
通常:在频率不是很高时,FET的噪声比BJT的噪声低
13
1.1.4 二极管的噪声
正偏工作状态
散粒噪声
闪烁噪声
反偏工作状态
由于反相饱和电流小,故引起的散粒噪
声较小
对于稳压二极管
齐纳击穿型:主要是散粒噪声,也有1/f噪声
雪崩击穿型:噪声较大,主要是散粒噪声和
多态噪声
14
1.1.5 天线噪声
1.1.6 多个噪声源作用于电路时的计算
1.2 噪声的表示和计算
根据P si,P so ,P ni,P no的概念,定义
19
例对于一个晶体管放大器,假如测量到其输入端的信噪比S/N 为10,输出端信噪比为5,则其F=2,NF=3dB 。
这是较典型的晶体管NF 。
低噪声晶体管放大器的NF 可以低于1dB 。
NF 频率特性曲线低噪声器件:噪声系数等值线图说明:1.设备制造商通常提供NF 频率特性曲线或者NF 等值线图来表示器件的NF 特性。
2.器件的NF 不仅与制造有关,还与工作频率和工作条件(如集电极电流,信号源内阻等)有关。
多级级联放大电路的总噪声系数
电路中某一点处信噪比与该点处的负载大小无关因此,根据噪声系数的定义,其值与输出端所接负载大小也无关,所以可以用额定功率表示实际功率naom Pm n im P P
等于网络额定功率增益的倒数,
噪声系数与以下因素有关
噪声系数与网络内部噪声大小有关。
噪声系数与输入噪声P ni的大小或者说与信号源噪声温度T有关,因此测量网络的噪声系数时,
规定信号源内阻取标准噪声温度,即T=290K。
噪声系数还与信号源内阻R s0有关,因此存在使网络噪声系数最小的最佳源阻抗。
噪声系数只适用于线性电路(或准线性电路)
23
所示电路中点画线框内电路的噪声)额定功率法,对于输入、输出端均匹配的无源有耗网络nom nim P P kT f
1.2.2 等效噪声温度
e 说明:1.噪声系数和等效噪声温度是描述同一网络噪声的两中不同方法。
2.
用等效噪声温度的好处:可以将网络噪声与等效噪声温度为相加,作为总的输入噪声,而把网络看做是无噪声的,处理比较方便。
3.等效噪声温度适合描述噪声系数接近于阻抗匹T
261.2.3 放大器的通用噪声等效电路*BJT,FET 放大器的噪声非常复杂,难以获取精确的等效电路。
假设:所有噪声具有相同的频谱,而且无相关性
将放大器的噪声等效到
输入端,形成串联噪声
电压源和并联噪声电流
源,而放大器等效为一
个无噪声放大器。
放大器的噪声系数=信
号源到Z i 两端的噪声系数a b c
,,a c a b F F 无噪声放大器,1b c F
1.2.4 噪声系数与灵敏度
SNR min min ()S ni a e o P P SNR k T T BW SNR
28小结
信噪比适合于描述网络中某一处信号质量的好坏
噪声系数适合于描述一般线性(或准线性)网络的噪声性能,例如高频放大、变频、中频放大
等效噪声温度适合在噪声较低的场合描述噪声性能,如卫星通信的地面接收机,接收机的天线和前端低噪声放大器 接收机灵敏度适合于描述一定条件下整个接收机接收信号的微弱程度
29
1.3 降低噪声系数的措施 常用减小内部噪声的方法1.选用低噪声元器件
2.正确选择晶体管的直流工作点
3.选择合适的信号源内阻
4.选择合适的工作频带,不应过宽
5.选用合适的放大电路
6.降低器件的工作温度
4. 如何降低噪声和干扰对系统的影响?
301.4 干扰*1.4.1 工业干扰
1.4.2 天电干扰外部干扰自然干扰:天电干扰、宇宙干扰等
人为噪声:工业干扰、无线电干扰等工业干扰主要由产生电火花的电器装置引发。
可通过直接电磁辐射、沿电力线传输进入交流电源、或者耦合进入接收机形成干扰。
属于脉冲干扰。
天电干扰主要由雷电现象引发。
对低频段影响较大。
强度与地理位置、季节等因素有关。
31
1.5 低噪声放大器* 低噪声放大器(LNA )是射频接收机前端的主要部件,主要特点:
位于接收机的最前端,噪声系数越小越好,具有一定增益但不宜过大; 是线性范围大、增益最好可调节的小信号线性放大器; 放大器输入端通过传输线与天线或天线滤波器相连,需要阻抗匹配;
具有一定的选频功能,通常为频带放大器。
LNA 的主要性能指标: 低的噪声系数 足够的线性范围 合适的增益 输入/输出阻抗的匹配 输入/输出间的良好隔离 低电源电压和低功耗
第一章小结
噪声和干扰的基本概念
来源、特性等
热噪声的定量分析
噪声电压均方谱密度、噪声电压均方值、噪声电压有效值、额定噪声功率
信噪比、噪声系数、等效噪声温度、灵敏度 低噪放*
33
习题
1.1.1 , 1.
2.1 , 1.2.2 , 1.2.3, 1.2.4
基础知识回顾
基础知识回顾
()()()e t e t h t )f ()()S f S f H。