轨道电路典型故障及分析
- 格式:pptx
- 大小:2.28 MB
- 文档页数:40
轨道电路故障分析与处理轨道电路用来检查进路是否空闲,反映区段或进路的锁闭和解锁状态,监督列车和调车车列的运行情况。
当轨道电路故障时会出现两种情况:1、有车占用无红光带。
2、无车占用亮红光带。
原因分析:一、有车占用无红光带:当有车占用时控制台无红光带显示故障是非常危险的,当发生这类故障后应首先通知车站值班员停用设备,然后进行处理。
这类故障发生的原因一般在室外设备,可先检查控制台光带表示灯是否有故障,以及轨道继电器是否落下或接点卡阻或粘连等。
这类故障发生在室外设备的主要原因:1、在道岔区段轨道电路,设有轨端绝缘但没有设在受电端的双动道岔渡线或测线上,因轨端接续线或岔后跳线断开、脱落,而造成死区段。
2、轨面电压调整过高或送电端可调电阻调整的阻值过小,造成轨道电路不能正常分路。
3、一送多受轨道区段,因各受电端距离较远,轨面电压调整不平衡,有个别受电端轨面电压过高而造成分路不良。
4、因钢轨轨面生锈,车辆自重较轻或轮对电阻过大等,使车辆轮对分路不良。
5、室外发生混线,有其他电源混入,或牵引电流干扰等使轨道继电器误动。
二、无车占用亮红光带:发生这种故障时,应先在控制台观察故障现象,做出初步判断。
如果几个轨道电路区段同时出现红光带,应重点在分线盒检查轨道电源熔断器熔丝和送电电缆芯线;若相邻两个轨道区段同时出现红光带,一般是相邻两轨道电路轨道绝缘双破损;只有一个轨道区段亮红光带,应首先在分线盘处测试送电电缆端子有无电压,若有电压。
确认为室外故障时,再去室外处理。
判断轨道电路是开路故障还是短路故障是分析故障的关键。
轨道电路开路故障:轨道电路开路后继电器落下,控制台点亮红光带。
开路故障应查钢轨接续线、道岔跳线、箱盒与轨面的引导线(是否断线)。
轨道电路短路故障:短路故障应查绝缘,绝缘破损;其他异物短路,如铁丝等金属褡裢或跳线、引导线混线造成。
高压脉冲轨道电路施工典型故障分析及预防摘要:轨道电路分路不良是影响铁路行车安全的高度风险点,严重危及行车安全。
为了克服轨道电路分路不良问题,现场采用高压脉冲轨道电路解决。
本文通过对现场施工改造过程中发生两起典型故障的分析,提出了高压脉冲轨道电路改造施工的注意事项及预防方法。
关键词:高压脉冲典型故障预防1 、轨道电路分路不良的现状目前我局站内电气化区段以25Hz相敏轨道电路为主,25Hz相敏轨道电路虽因具有诸多优点而得以推广使用。
但由于原设计轨面电压过低和终端阻抗选取值较小,在轨道较长时期不过车导致钢轨生锈时,出现了大量的分路不良区段,对行车安全带来严重威胁,多年来一直是行车安全控制中的高风险点。
目前采用高压脉冲轨道电路对现有25Hz相敏轨道电路进行改造,是解决分路不良最好的技术方案之一,通过逐步采用技术改造,可大量减少现场轨道电路分路不良区段,减少轨道电路分路不良对行车安全的干扰。
2、高压脉冲轨道电路的特点高压脉冲轨道电路是在以前高压不对称轨道电路的基础上改进的,它在保留高压不对称电路设备简单,分路安全,可以防护极性交叉和断轨检查等优点的基础上选用军品级别的电子元器件,同时开发研制了用于高压脉冲轨道电路的抑制器和隔离匹配盒,克服了电子元器件故障率高,抗干扰能力差,不能叠加电码化等缺点,使高压脉冲轨道电路可以有效的增加轮轨击穿能力,提高轨道电路的分路灵敏度,解决分路不良问题。
3、改造高压脉冲轨道电路的典型故障分析3.1宝鸡南站施工改造后扼流变压器线圈击穿故障分析宝鸡南站1DG是在3V化轨道电路基础上改造的高压脉冲区段,该区段开通正常运行半年后出现红光带,故障时现场测试通道电压如表一3.2、固川站高压脉冲电路区段机车信号掉码故障分析固川站7DG是轨道电路分路不良区段,改造成高压脉冲轨道电路区段开通正常运行一个月之后,机信反馈在该股道1G区段运行时有机车信号掉白灯现象,该股道是到发线,电码化电路如图一1道由1G、7DG、5-7WG三个轨道电路区段组成,采用25HZ 叠加移频方式实现电码化,发码方式为列车占用发码,该轨道两端设置S1FS、X1FS两个发送送盘发送不同载频的移频信号,机车接收运行方向的移频信息。
轨道电路常见故障及处理方法轨道电路是指用于铁路、地铁等轨道交通系统的供电和信号控制系统。
在实际运行中,轨道电路可能会出现各种故障,这些故障可能会导致列车无法正常运行,甚至危及行车安全。
因此,及时排查和处理轨道电路故障至关重要。
以下是一些轨道电路常见故障以及处理方法。
1.轨道电路电源故障:电源故障是轨道电路常见的故障之一,可能是由于电源电压不稳定、电源线路短路、电源开关故障等原因引起的。
处理方法如下:-检查电源电压,确保电源电压稳定。
-检查电源线路,排除短路问题。
-检查电源开关,确认开关是否正常。
2.轨道电路接触不良:接触不良是轨道电路常见的故障之一,可能是由于接触器松动、电缆接头腐蚀、连接线松动等原因引起的。
处理方法如下:-检查接触器,确保接触器紧固牢固。
-检查电缆接头,清洁接头并检查是否腐蚀。
-检查连接线,确保连接线紧固。
3.信号传输故障:信号传输故障可能是由于信号线路故障、信号设备故障等原因引起的。
处理方法如下:-检查信号线路,排除线路故障。
-检查信号设备,确认设备是否正常工作。
4.轨道电路短路故障:轨道电路短路故障可能是由于线路绝缘损坏、设备线路短路等原因引起的。
处理方法如下:-检查线路绝缘情况,修复绝缘损坏部分。
-检查设备线路,排除线路短路问题。
5.轨道电路地线故障:地线故障可能是由于地线松动、断裂等原因引起的。
处理方法如下:-检查地线连接情况,确保地线连接牢固。
-检查地线是否断裂,修复或更换地线。
6.轨道电路信号冲突:信号冲突可能是由于信号设备设置错误、信号设备故障等原因引起的。
处理方法如下:-检查信号设备设置是否正确,进行校正。
-检查信号设备是否出现故障,修复故障设备或更换设备。
7.轨道电路地震故障:地震可能导致轨道电路出现各种故障,如线路破裂、设备松动等。
处理方法如下:-进行地震后的检查,排除破裂和松动问题。
-进行地震后的维护,确保设备运行正常。
总之,对于轨道电路常见故障的处理,需要进行全面的检查和排查,修复故障设备或更换设备,并确保设备的正常运行和可靠性。
铁路轨道电路分路不良原因分析及解决措施铁路轨道电路分路不良是指铁路轨道上的电路断路或故障,这种情况一旦发生,会对列车行驶安全和正常的运输造成严重影响。
对铁路轨道电路分路不良的原因进行分析,并提出相应的解决措施,对确保铁路运输的安全和顺畅具有十分重要的意义。
1. 设备老化铁路轨道上的电路设备长期使用后会出现老化,比如接触网、信号设备、电缆等,这些老化会导致设备性能下降,甚至发生故障,从而引起轨道电路的分路不良现象。
2. 天气因素恶劣的天气条件也是造成轨道电路分路不良的一个重要因素。
在恶劣的天气条件下,比如大雨、大雪、强风等,铁路轨道电路设备容易受到侵蚀和损坏,从而引发分路不良的问题。
3. 人为操作不当的人为操作也是造成铁路轨道电路分路不良的原因之一。
比如设备维修保养时的操作不当,或者施工作业中的疏忽大意等,都有可能导致轨道电路分路不良。
4. 设计缺陷在铁路轨道电路的设计中,如果存在缺陷,比如电缆走线不合理、设备选择不当等,也容易引发分路不良的问题。
5. 非铁路人员进入当非铁路工作人员进入轨道电路区域,进行一些不正当的操作行为,也会导致轨道电路分路不良的问题发生。
1. 加强设备检修和维护对轨道电路的设备进行定期的检修和维护是非常重要的。
在设备老化、天气恶劣等情况下,通过定期的检修和维护,及时发现设备的问题,并进行维修和更换,可以有效避免轨道电路分路不良的发生。
2. 强化保护措施在恶劣的天气条件下,可以加强对轨道电路设备的保护措施,比如加装防护设施、增加设备维护人员的巡视频率等,以有效防止轨道电路设备受损和分路不良的发生。
3. 完善操作规程对铁路轨道电路的操作规程进行完善,加强对操作人员的培训和管理,以保证操作人员对设备进行正确的操作,避免因为人为操作导致分路不良的问题发生。
5. 加强安全管理加强对铁路轨道电路区域的安全管理,严禁非铁路人员进入,对已进入的人员进行有效管控,防止他们的行为对轨道电路的安全造成影响。
铁路信号轨道电路介绍及故障分析摘要:随着我国经济的繁荣发展,铁路“事业”也蒸蒸日上,铁路信号对于铁路运行、铁路发展的作用是关键性的、核心性的。
铁路信号关乎行车质量,是行车安全运行,顺利推进不可或缺的因素。
当铁路信号系统出现一些故障时,铁路信号会出现弱化,错误等情况,严重干扰行车安全,必须及时进行故障检修,确保铁路安全行车。
文章对铁路信号系统及故障维修进行了概述,并分析了铁路信号系统故障维修工作面临的问题,最后给出了铁路信号故障维修工作的有效对策。
关键词:铁路信号系统;故障;措施引言列车在轨道上运行时,轨道电路会不断采集列车的运行信息,并将其反馈给控制中心,然后由控制中心分析当前列车的运行状态,从而判断列车运行是否安全,并为列车的运行提供信号支持。
因此,一旦轨道电路出现故障,那么列车将无法及时得到数据反馈,这样就会造成其他的安全隐患。
为了避免类似故障,需要详细了解铁路信号轨道电路,并掌握各种故障出现的原因,接下来才能有效解决。
1铁路信号轨道电路的组成铁道信号轨道电路有导体、钢轨、绝缘送电端设备、受电端设备等部分组成。
其中钢轨连接线、25Hz轨道、扼流连接线、ZPW-2000A轨道调谐引接线等构成了导体。
钢轨绝缘的方式有机械绝缘和电气绝缘两种,其中应用机械结缘的是25Hz 相敏轨道电路,应用电气绝缘的是ZPW-2000A型轨道电路,这里有一点需要注意,一般在接近站内的区段使用的都是机械绝缘,比如站内一离去区段和三接近区段。
轨道电源、变压器、熔断器以及防雷设施等都是送电端设备。
扼流变压器、轨道变压器、限流电阻、防雷设施、继电器等都是受电端设备。
2铁路信号轨道电路故障2.1联锁设备断电故障铁路信号机连锁设备系统中,UPS担负着设备的供电需求,连锁上下位机的安全用电和部分网络设备供电。
上位机的作用是人和电脑沟通的桥梁,是实现信号集中管控的关键要素;下位机的作用是控制者现在所有设备的反馈情况,将所有设备的运转情况都反馈在下位机上,实现对所有设备的检测[1]。
ZPW—2000A一体化轨道电路故障分析及处理* ZPW-2000A一体化轨道电路作为高速铁路系统的子系统,设备工作的可靠性直接影响行车安全,文章总结了ZPW-2000A一体化轨道电路故障处理的基本程序及其判断与处理方法。
标签:ZPW-2000A;一体化;故障分析;程序引言ZPW-2000A一体化轨道电路具有传输性好、安全性高、可维修性强的特点。
目前,已在客运专线上推广使用。
该系统受环境影响大,若检修及维护不良,会导致系统出现故障,如何减少故障是亟待解决的问题[1]。
1 故障处理程序ZPW-2000A一体化轨道电路衰耗器面板及列控中心机柜上有很多指示灯,室内设备工作情况可以通过指示灯报警,室外设备没有检测及报警装置,其故障类型分为有或没有报警指示两种。
1.1 有报警指示的故障处理ZPW-2000A一体化轨道电路衰耗器面板有主发送器、备发送器、接收器工作指示灯及轨道占用灯和正反向运行指示灯,在列控中心与移频柜的通信接口板面板上有CPU与CAN总线通信的指示灯,还有微机监测设备。
(1)通过查看微机监测找到设备故障,然后到信号机械室相应设备处查看衰耗器面板指示灯及发送器、接收器的工作指示灯是否正常。
由于发送器和接收器都有冗余设计,系统正常工作时有可能中断或不中断。
(2)判断故障是否对行车造成影响,若只有一台主发送器有故障,并且已切换到备用发送器上,接收器仍正常工作,则不影响行车。
若只有一台接收器故障,由于双机成对并联运用,另一台仍能正常工作,不影响行车。
(3)检查发送器。
检查发送电源、断路器、是否断开功出电压等,判断发送器内外故障,如备发送器工作正常,估计是主发送器内部故障或CAN总线通道故障,更换发送器。
(4)检查接收器。
检查接收电源、断路器、是否断开输入电压(主轨道、小轨道)等,区分接收器内外故障,如并机仍可保证GJ工作,估计是单一接收器故障,可更换接收器。
(5)检查轨道电路通信盘。
通信盘工作灯亮红灯,表示轨道电路通信盘故障,更换通信盘,查看轨道电路通信盘面板CANA、CANB、CANC、CAND、CANE总线通信灯状态,常亮或常灭为相应CPU与CAN总线的故障,检查相应CAN总线通道连接或检查移频柜内发送接收设备的工作状态。
轨道电路常见故障出现原因轨道电路是一种用于铁路系统的信号与控制系统,它能够监测轨道上的列车位置、速度和状态,并通过信号灯、道岔控制器等设备向列车司机和调度员传递信息,保证列车行驶的安全和顺利。
然而,轨道电路常常会遇到各种故障,这些故障可能会影响列车的正常运行,甚至带来安全隐患。
下面将介绍一些轨道电路常见的故障出现原因。
1. 线路接头松动:轨道电路中线路接头松动可能是由于安装不牢固或者老化导致的。
线路接头松动会导致信号传输不畅,造成信号误差或者丢失。
此外,线路接头松动还会增大电阻,导致电路电流不稳定,甚至爆燃。
2. 设备故障:轨道电路中的各种设备,例如信号机、道岔控制器、继电器等,都存在着故障的可能。
这些设备可能由于长时间使用导致磨损或者老化,也可能由于使用不当或者外部环境的影响而发生故障。
3. 环境因素:轨道电路设备通常安装在户外,受到风雨、日晒等自然环境的影响。
恶劣的天气条件可能导致设备受潮、腐蚀,影响设备的正常运行。
此外,大风、雷电等极端天气也可能导致设备受损。
4. 人为因素:轨道电路设备的安装、使用、维护都需要人员参与,人为因素也是轨道电路故障的一个重要原因。
例如,安装人员在安装过程中操作不当,维护人员在日常维护过程中疏忽大意等都可能导致故障的发生。
5. 电源问题:轨道电路设备需要得到稳定的电源供应,如果电源线路出现断路、短路、接触不良等问题,都可能导致轨道电路设备无法正常工作。
以上是轨道电路常见的故障出现原因,针对这些原因,我们可以采取以下措施来预防和解决轨道电路故障:1. 定期检查和维护:对轨道电路设备进行定期的检查和维护,包括线路接头的紧固、设备的清洁和保养等工作,可以有效预防设备故障的发生。
2. 强化培训:对轨道电路设备的安装、操作、维护人员进行专业培训,提高他们的专业技能和责任意识,减少人为因素对设备的影响。
3. 加强环境保护:对轨道电路设备的安装位置采取合理的防护措施,保护设备免受恶劣环境的影响;定期清理设备周围的杂物,确保设备正常通风散热。
JZXC-480型轨道电路故障分析一、电路工作原理轨道电路是利用两根钢轨作为通道构成的电路,起着检查线路是否空闲的作用。
电路工作原理如图所示。
轨道电路一般由送电端、轨道、受电端3部分组成。
送电端使用的是交流电源,主要设备有熔断器、BG1-50型变压器、限流电阻和相应的连线。
室内送出的220V轨道电源经过BG1-50型变压器降压之后经过限流电阻送上轨面。
在调整、检修轨道电路时,要注意限流电阻的调整,保证轨道电路的调整、分路和断轨性能。
线路部分是用以传输送电端送出的信号电流的,主要由钢轨绝缘、钢轨接续线和轨道电路引接线组成。
平时要注意线路部分有关设备的完整性,保证轨道电路的良好工作状态。
受电端设备接收送电端送出的信号电流,并控制有关设备执行命令。
受电端主要设备有BZ4型中继变压器、室内轨道继电器和有关的连线组成。
受电端的继电器有一定的要求,一般调整在10.5~16V之间;正常分路时,继电器的端电压不得大于2.7V。
对轨道电路的基本要求是:当轨道电路上没有车且设备完整时,轨道继电器应该可靠吸起。
当轨道电路上有车占用或钢轨断裂或轨道电路的有关元件发生故障时,轨道继电器应该可靠失磁落下。
在调整、维修轨道电路时,要保证轨道电路在以下3种基本工作状态下正常工作:1、调整状态,即轨道电路空闲,设备完整的状态。
此时,轨道继电器应可靠吸起,前接点闭合。
2、分路状态,即轨道电路上有车占用的状态。
此时,轨道继电器应该可靠失磁落下,后接点闭合。
3、断轨状态,即轨道电路的钢轨发生断裂的状态。
此时,轨道继电器应该可靠失磁落下,后接点闭合。
轨道电路的3种基本工作状态的工作情况与它的3个可变参数,即钢轨阻抗、道碴电阻、电源电压的变化有关。
要求轨道电路在下列最不利工作状态时,应该可靠工作:1、电源电压最低,钢轨阻抗最大,道碴电阻最小,轨道电路为极限长度时,轨道继电器应能可靠工作。
2、电源电压最高,钢轨阻抗最小,道碴电阻最大,用0.06Ω标准分路电阻线分路,轨道继电器应能可靠失磁落下,继电器残压不得大于2.7V。
铁路信号轨道电路介绍及故障分析1. 引言1.1 铁路信号轨道电路概述铁路信号轨道电路是铁路运输中至关重要的一部分,它承担着列车行驶时的信号传递和轨道电流控制的功能。
铁路信号轨道电路通过信号灯、信号旗、信号音、信号插发等形式,向列车驾驶员传递列车行驶和停车等信息,确保列车运行的安全和顺畅。
轨道电路则是通过电路连接铁路轨道和信号设备,用来检测轨道上的列车位置和运行状态,控制信号的变化和列车的行驶。
铁路信号轨道电路的设计和维护与列车运行的安全密切相关,它需要高度的稳定性和可靠性。
一旦出现故障,可能会给列车运行带来严重的后果。
及时发现故障并及时解决是铁路信号轨道电路工作人员的重要任务之一。
本文将介绍铁路信号轨道电路的基本概念和构成,以及常见的故障及解决方法。
还将介绍故障分析技术和轨道电路的维护方法,帮助读者更好地了解铁路信号轨道电路的重要性以及未来发展趋势。
2. 正文2.1 铁路信号系统简介铁路信号系统是铁路运输中的重要组成部分,其作用是保证列车运行的安全和有效性。
铁路信号系统通常由信号设备、轨道电路和控制中心等组成。
铁路信号系统的基本原理是通过信号设备向列车驾驶员发送不同的信号,指示列车行驶方向和速度。
这些信号包括进站信号、出站信号、调车信号等,以确保列车在铁路线路上安全行驶。
轨道电路是铁路信号系统中的重要组成部分,它通过安装在铁轨上的电路设备,实现对列车位置的监测和控制。
轨道电路能够检测列车的位置、速度和状态,以及检测轨道上是否有异常情况,如异物、道岔异常等。
在铁路信号系统运行过程中,常见的故障包括信号设备故障、轨道电路故障、通信故障等。
针对这些故障,可以采取相应的解决方法,如及时维修和更换设备、调整信号系统参数等。
故障分析技术在铁路信号系统中起着重要作用,通过对故障进行准确分析,可以找到故障的根源并迅速解决。
轨道电路维护也是保证铁路信号系统正常运行的关键,定期检查和维护轨道电路设备可以减少故障的发生率,提高系统的稳定性和可靠性。
(一)轨道电路道床漏泄过大1.故障现象:轨道区段无车占用,但控制台上却亮红光带。
2.查找步骤:1):是一个区段红光带呢,还是几个相邻区段同时红光带呢?仅一个区段亮红光带,说明可以排除轨道电路送电线束故障。
2)轨道继电器GJ励磁吸起否?轨道继电器没有励磁吸起,说明该区段轨道电路故障。
3)在交流轨测盘上该区段测有电压否?该区段有电压。
4)该区段AC电压正常否?该区段电压值为6.2V,说明AC电压值不正常,是该区段送端电压调整不当或道床漏泄过大。
3.查找结果:该区段轨道电路因排水不畅,道渣电阻仅为0.4欧姆/KM,道床漏泄过大。
4.处理:按轨道电路调整同时向表调整该区段,同时向分局电务科写出书面报告,以解决轨道电路排水问题。
5.说明:道渣电阻低于0.6欧姆/KM的轨道区段,常在大雨中出现。
(二)轨道继电器二极管开路故障1.故障现象:轨道区段无车占用,但控制台上却亮红光带。
2.查找步骤:1):是一个区段红光带呢,还是几个相邻区段同时红光带呢?仅一个区段亮红光带,说明可以排除轨道电路送电线束故障。
2)轨道继电器GJ励磁吸起否?轨道继电器没有励磁吸起,说明该区段轨道电路故障。
3)在交流轨测盘上该区段测有电压否?该区段有电压。
4)该区段AC电压正常否?该区段AC电压值为15v,说明该区段AC电压为正常值,是轨道继电器GJ二极管开路故障或GJ线圈断线故障,用代换法更换轨道继电器,GJ即励磁吸起。
3.GJ二极管开路故障。
4.处理:更换GJ,轨道红光带消失。
5.说明:GJ为JZXC-480型继电器。
更换下的轨道继电器应及时做好详细记录,随继电器送信号检修所。
(三)轨道继电器二极管短路故障1.故障现象:轨道区段无车占用,但控制台上却亮红光带。
2.查找步骤:1):是一个区段红光带呢,还是几个相邻区段同时红光带呢?仅一个区段亮红光带,说明可以排除轨道电路送电线束故障。
2)轨道继电器GJ励磁吸起否?轨道继电器没有励磁吸起,说明该区段轨道电路故障。
铁路轨道电路分路不良原因分析及解决措施铁路轨道电路是铁路运输系统中的重要组成部分,它通过信号和道岔的控制,确保列车在轨道上安全、准确地行驶。
在实际运行中,铁路轨道电路分路不良问题时有发生,给铁路运输带来了一定的安全隐患和运营压力。
本文将通过对铁路轨道电路分路不良原因的分析及解决措施的讨论,为解决这一问题提供参考。
一、铁路轨道电路分路不良原因分析1. 轨道绝缘损坏轨道绝缘损坏是导致铁路轨道电路分路不良的主要原因之一。
在车辆行驶过程中,轨道绝缘受到了重压和磨损,随着使用时间的增加,绝缘可能发生老化、变形或碎裂等情况,导致电路分路不良。
2. 大气环境影响铁路周围的大气环境也是导致铁路轨道电路分路不良的重要原因之一。
在潮湿多雨的地区,铁路轨道电路易受潮气和水气的影响,增加了电路分路的可能性。
3. 设备故障铁路轨道电路设备的故障也是导致电路分路不良的原因之一,例如接触线、电缆、信号机等设备出现故障或缺陷,都可能导致电路分路不良的发生。
4. 维护不到位铁路轨道电路的维护不到位也是导致电路分路不良的原因之一。
对于老旧设备和老化的绝缘,如果没有及时进行维护和检修,就容易导致电路分路不良。
二、铁路轨道电路分路不良解决措施1. 维护保养针对轨道绝缘老化和设备故障等问题,铁路部门应当加强对轨道绝缘和设备的维护保养工作,定期进行检修和更换,确保轨道电路设备的正常运行。
2. 技术更新采用新的材料和技术,提高轨道绝缘的使用寿命和抗老化能力,减少因轨道绝缘老化导致的电路分路不良的可能性。
3. 设备监测建立设备监测体系,实时监测轨道电路设备的运行状态,提前发现并解决设备故障和缺陷,降低电路分路不良的发生概率。
4. 环境保护采取措施,改善铁路周边的大气环境,减少潮湿和水气对轨道电路的影响,降低电路分路不良的可能性。
5. 人员培训加强对铁路维护人员的培训和管理,提高其对轨道电路设备的维护保养水平,确保设备的正常运行和电路分路不良的预防。
ZPW-2000轨道电路故障分析处理案例一、发送盒故障1.现象描述⑴控制台移频报警;⑵衰耗盒面板“发送工作”指示灯绿灯熄灭。
2.案例记录某日某站控制台移频报警,无红光带。
3.原因分析⑴用C D96数字选频表的直流档,在衰耗盒面板上“发送电源”插孔测试,工作电源正常;⑵用C D96数字选频表选好相应频率,在衰耗盒面板上“发送功出”插孔测试,无电压输出,判断为发送器故障。
4.解决措施更换损坏的发送盒,故障恢复。
分析提示:⑴发送器工作电源正常,但没有功出电压输出,可以考虑发送器故障。
但是当低频编码不良时,也没有功出电压输出,这时应考虑其它故障点。
⑵测量直流电压或单一频率的交流电压时,也可以使用普通数字万用表,但不要使用机械式万用表。
二、编码电路断线故障1.现象描述⑴控制台移频报警;⑵衰耗盒面板“发送工作”指示灯绿灯熄灭。
2.案例记录某日某站开放某信号时控制台移频报警,无红光带。
3.原因分析⑴用C D96数字选频表的直流档,在衰耗盒面板上“发送电源”插孔测试,工作电源正常;⑵因仅在开放某信号时移报警,怀疑编码电路故障,取消某信号后,移频报警消失,判断正确。
⑶对照电路原理图查找为组合侧面端子压接不良。
4.解决措施重新压接万可端子恢复。
因编码电路故障造成主发送F B J落下,自动切换至N+1F S 工作,不会出现红光带,为缩小故障查找范围,有条件时可以开放不同信号进行试验。
三、发送器底座接触不良1.现象描述衰耗盒面板“发送工作”指示灯绿灯点亮,轨道空闲但“轨道占用”指示灯红灯点亮。
2.案例记录某日某站X X区段红光带,控制台无移频报警。
3.原因分析⑴用C D96数字选频表的直流档,在衰耗盒面板上“发送电源”插孔测试,工作电源正常;⑵在衰耗盒上测试“发送功出”无电压输出。
⑶怀疑为发送盒故障,更换发送盒仍未恢复。
⑷测试发送盒后部S1、S2仍无输出,拆除发送盒发现发送器底座S1端子碳化严重,更换端子后恢复。
4.解决措施更换端子后恢复因功出端子高电压、大电流,如果虚接会造成局部发热,长时会造成端子损坏,造成开路故障。