初一数学下学期期中考试试题与答案
- 格式:doc
- 大小:605.00 KB
- 文档页数:8
七年级下学期数学期中考试试题满分150分时间:120分钟一.单选题。
(每小题4分,共40分)1.某手机使用5nm芯片,椅子5nm=0.0000005cm,其中0.0000005cm用科学记数法表示为()A.50×10﹣8 cmB.0.5×10﹣7 cmC.5×10﹣7 cmD.5×10﹣8 cm2.下面的四个图形中,∠1和∠2是对顶角的是()A. B. C. D.3.某市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化情况,并画出了风力随时间变化的图象如图所示,下列说法正确的是()A.在8时至14时,风力不断增大B.在8时至12时,风力最大的是7级C.在16时至20时,风力不断减小D.8时风力最小(第3题图)(第5题图)(第6题图)4.下列各组线段能组成三角形的是()A.3cm,4cm,5cmB.4cm,6cm,10cmC.3cm,3cm,6cmD.5cm,12cm,18cm5.如图,在平分角的仪器中,AB=AD,BC=DC,将点A放在一个角的顶点,AB和AD分别与这个角的两边重合,能说明AC就是这个角的平分线的数学依据是()A.SSSB.ASAC.SASD.AAS6.如图,在△ABC中,AD是△ABC的中线,若△ABD的面积是5,则△ABC的面积为()A.14B.12C.10D.87.图①是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空白部分的面积不能表示为()A.(m+n)2-4mnB.(m-n)2C.(m-n)2+2mnD.m2-2mn+n2(第7题图)(第8题图)(第10题图)8.如图,已知a∥b,小宇把三角板的直角顶点放在直线b上,若∠1=25°,则∠2的度数是()A.115°B.120°C.125°D.135°9.小明现已存款500元,为赞助希望工程,他计划今后每月存款20元,则存款总金额y(元)与时间x(月)之间的关系式是()A.y=20xB.y=500xC.y=500+20xD.y=500-20x10.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE,以下四个结论:①BE=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°,其中结论正确的个数是()A.1B.2C.3D.4二.填空题。
浙教版七年级数学第二学期期中考试试题及答案一、选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.2.下列属于二元一次方程的是()A.B.C.x2+y=0 D.3.计算:(6a3b4)÷(3a2b)=()A.2 B.2ab3C.3ab3D.2a5b54.如图所示,两只手的食指和拇指在同一平面内,它们构成的一对角可以看成()A.内错角B.同位角C.同旁内角D.对顶角5.已知某个二元一次方程的一个解是,则这个方程可能是()A.2x+y=5 B.x﹣2y=0 C.2x﹣y=0 D.x=2y6.下列计算正确的是()A.2a+a=3a2B.a6÷a2=a3C.(a3)2=a6D.a3•2a2=2a67.如图,有以下四个条件:其中不能判定AB∥CD的是()①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;A.①B.②C.③D.④8.下列整式乘法不能用平方差公式运算的是()A.(a+b)(a﹣b)B.(﹣a+b)(a﹣b)C.(﹣a﹣b)(a﹣b)D.(a+b)(b﹣a)9.已知a>b,a>c,若M=a2﹣ac,N=ab﹣bc,则M与N的大小关系是()A.M<N B.M=N C.M>N D.不能确定10.如图所示:在长为30米,宽为20米的长方形花园里,原有两条面积相等的小路,其余部分绿化.现在为了增加绿地面积,把公园里的一条小路改为绿地,只保留另一条小路,并且使得绿地面积是小路面积的4倍,则x 与y的值为()A.B.C.D.二、填空题(每题5分,满分30分,将答案填在答题纸上)11.在二元一次方程x+3y=8的解中,当x=2时,对应的y的值是.12.计算:﹣2x(x﹣3y)=.13.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是.14.若∠α与∠β的两边分别平行,且∠α=(2x+10)°,∠β=(3x﹣20)°,则∠α的度数为.15.方程x2﹣y2=31的正整数解为.16.如图,直线l1⊥直线l2,垂足为O,Rt△ABC如图放置,过点B作BD∥AC交直线l2于点D,在△ABC内取一点E,连接AE,DE.(1)若∠CAE=15°,∠EDB=25°,则∠AED=.(2)若∠EAC=∠CAB,∠EDB=∠ODB,则∠AED=°.(用含n的代数式表示)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:(1)2a2b•(﹣3b2c)÷4ab3;(2).18.(1)解方程:;(2)简便计算:19.92+19.9×0.2+0.12.19.先化简,再求值:(2x﹣1)2﹣(2x+1)(2x﹣1)+(x+1)(3﹣x),其中x=.20.已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠EFD=72°,则∠EGC等于多少度?21.已知关于x,y的方程组的解满足4x+y=3,求m的值.22.在(x2+ax+b)(2x2﹣3x﹣1)的结果中,x3项的系数为﹣5,x2项的系数为﹣6,求a,b的值.解:原式=2x4﹣3x3﹣x2+2ax3﹣3ax2﹣ax+2bx2﹣3bx﹣b①=2x4﹣(3+2a)x3﹣(1﹣3a+2b)x2﹣(a﹣3b)x﹣b②由题可知,解得③(1)上述解答过程是否正确?若不正确,从第步开始出现错误.(2)请你写出正确的解答过程.23.“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?24.教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等问题.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);求代数式2x2+4x﹣6的最小值,2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:x2﹣4x﹣5=.(2)当x为何值时,多项式﹣2x2﹣4x+3有最大值?并求出这个最大值.(3)利用配方法,尝试解方程﹣2ab﹣2b+1=0,并求出a,b的值.参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.【分析】根据平移与旋转的性质得出.解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.2.下列属于二元一次方程的是()A.B.C.x2+y=0 D.【分析】根据二元一次方程的定义判断即可.解:A、符合二元一次方程定义,是二元一次方程;B、不是整式方程,所以不是二元一次方程;C、最高项的次数为2,不是二元一次方程;D、不是等式,不是二元一次方程.故选:A.3.计算:(6a3b4)÷(3a2b)=()A.2 B.2ab3C.3ab3D.2a5b5【分析】利用单项式除以单项式法则计算即可得到结果.解:(6a3b4)÷(3a2b)=2ab3.故选:B.4.如图所示,两只手的食指和拇指在同一平面内,它们构成的一对角可以看成()A.内错角B.同位角C.同旁内角D.对顶角【分析】图中两只手的食指和拇指构成”Z“形,根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.解:两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是内错角.故选:A.5.已知某个二元一次方程的一个解是,则这个方程可能是()A.2x+y=5 B.x﹣2y=0 C.2x﹣y=0 D.x=2y【分析】把x=1、y=2分别代入所给选项进行判断即可.解:A、当x=1,y=2时,2x+y=2+2=4≠5,故不是方程2x+y=5的解;B、当x=1,y=2时,x﹣2y=1﹣4=﹣3≠5,故不是方程x﹣2y=0的解;C、当x=1,y=2时,2x﹣y=2﹣2=0,故是方程2x﹣y=0的解;D、当x=1,y=2时,x=1≠2y,故不是方程x=2y的解.故选:C.6.下列计算正确的是()A.2a+a=3a2B.a6÷a2=a3C.(a3)2=a6D.a3•2a2=2a6【分析】根据同类项、同底数幂的除法、幂的乘方和同底数幂的乘法计算即可.解:A、2a+a=3a,错误;B、a6÷a2=a4,错误;C、(a3)2=a6,正确;D、a3•2a2=2a5,错误;故选:C.7.如图,有以下四个条件:其中不能判定AB∥CD的是()①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;A.①B.②C.③D.④【分析】根据平行线的判定定理求解,即可求得答案.解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴不能得到AB∥CD的条件是②.故选:B.8.下列整式乘法不能用平方差公式运算的是()A.(a+b)(a﹣b)B.(﹣a+b)(a﹣b)C.(﹣a﹣b)(a﹣b)D.(a+b)(b﹣a)【分析】根据平方差公式计算必须满足两个条件,一是相乘的两个多项式只有两项,二是两个多项是中一项相同,另一项互为相反数;判定不符合条件的是B答案.解:由平方差公式条件判断:A答案:(a+b)(a﹣b)=a2﹣b2,满足条件;B答案:(﹣a+b)(a﹣b)=﹣(a﹣b)(a﹣b),不满足条件;C答案:(﹣a﹣b)(a﹣b)=﹣(a+b)(a﹣b)=b2﹣a2,满足条件;D答案:(a+b)(b﹣a)=b2﹣a2,满足条件;故选:B.9.已知a>b,a>c,若M=a2﹣ac,N=ab﹣bc,则M与N的大小关系是()A.M<N B.M=N C.M>N D.不能确定【分析】直接利用M﹣N进而分解因式,再利用已知判断各式的符号进而得出答案.解:∵M=a2﹣ac,N=ab﹣bc,∴M﹣N=a2﹣ac﹣(ab﹣bc)=a(a﹣c)﹣b(a﹣c)=(a﹣c)(a﹣b),∵a>b,a>c,∴a﹣c>0,a﹣b>0,∴M﹣N=(a﹣c)(a﹣b)>0,∴M>N.故选:C.10.如图所示:在长为30米,宽为20米的长方形花园里,原有两条面积相等的小路,其余部分绿化.现在为了增加绿地面积,把公园里的一条小路改为绿地,只保留另一条小路,并且使得绿地面积是小路面积的4倍,则x 与y的值为()A.B.C.D.【分析】由题意可知:20x=30y,30×20﹣30y=30y×4,由此联立方程组求得答案即可.解:由题意可知:解得:.故选:D.二、填空题(每题5分,满分30分,将答案填在答题纸上)11.在二元一次方程x+3y=8的解中,当x=2时,对应的y的值是2.【分析】把x=2代入方程计算即可求出y的值.解:把x=2代入方程得:2+3y=8,解得:y=2,故答案为:2.12.计算:﹣2x(x﹣3y)=﹣2x2+6xy.【分析】利用单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,可得结果.解:﹣2x(x﹣3y)=﹣2x•x+(﹣2x)•(﹣3y)=﹣2x2+6xy,故答案为:﹣2x2+6xy.13.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是25°.【分析】根据两直线平行,内错角相等求出∠3的内错角,再根据三角板的度数求差即可得解.解:∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣∠3=45°﹣20°=25°.故答案为:25°.14.若∠α与∠β的两边分别平行,且∠α=(2x+10)°,∠β=(3x﹣20)°,则∠α的度数为70°或86°.【分析】根据两边互相平行的两个角相等或互补列出方程求出x,然后求解即可.解:∵∠α与∠β的两边分别平行,∴①∠α=∠β,∴(2x+10)°=(3x﹣20)°,解得x=30,∠α=(2×30+10)°=70°,或②∠α+∠β=180°,∴(2x+10)°+(3x﹣20)°=180°,解得x=38,∠α=(2×38+10)°=86°,综上所述,∠α的度数为70°或86°.故答案为:70°或86°.15.方程x2﹣y2=31的正整数解为.【分析】先将方程左边分解因数,再利用方程的解为正整数,建立方程组求解,即可得出结论.解:原方程可化为(x+y)(x﹣y)=31×1,∵x,y为正整数,∴x+y>x﹣y,∴,解得,,方程x2﹣y2=31的正整数解为,故答案为:.16.如图,直线l1⊥直线l2,垂足为O,Rt△ABC如图放置,过点B作BD∥AC交直线l2于点D,在△ABC内取一点E,连接AE,DE.(1)若∠CAE=15°,∠EDB=25°,则∠AED=40.(2)若∠EAC=∠CAB,∠EDB=∠ODB,则∠AED=()°.(用含n的代数式表示)【分析】(1)过点E作EF∥AC,利用平行线的性质解答即可;(2)根据平行线的性质和角的关系解答即可.解:(1)过点E作EF∥AC,∵AC∥EF,∵AC∥BD,∴AC∥EF∥BD,∴∠CAE=∠AEF,∠EDB=∠FED,∴∠AED=∠AEF+∠FED=∠CAE+∠EDB=15°+25°=40°;(2)∵AC∥BD,∴∠AGD=∠ODB,∠CAO+∠AGD=90°,∴∠CAB+∠ODB=90°,∵∠EAC=∠CAB,∠EDB=∠ODB,由(1)同理可得:∠AED=∠CAE+∠EDB=(∠CAB+∠ODB)=,故答案为:40°;().三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:(1)2a2b•(﹣3b2c)÷4ab3;(2).【分析】(1)直接利用单项式乘以单项式运算法则计算,进而利用整式的除法运算法则计算得出答案;(2)直接利用绝对值的性质和零指数幂的性质、负整数指数幂的性质分别化简得出答案.解:(1)2a2b•(﹣3b2c)÷4ab3=﹣6a2b3c÷4ab3=﹣ac;(2)=3﹣1+4=6.18.(1)解方程:;(2)简便计算:19.92+19.9×0.2+0.12.【分析】(1)方程组利用加减消元法求出解即可;(2)利用完全平方公式计算即可.解:(1),①+②得,6x=42,解得x=7,将x=7代入①,得2×7+y=23,解得y=9,故原方程组的解为;(2)19.92+19.9×0.2+0.12=(19.9+0.1)2=202=400.19.先化简,再求值:(2x﹣1)2﹣(2x+1)(2x﹣1)+(x+1)(3﹣x),其中x=.【分析】首先计算完全平方、平方差和多项式乘以多项式,然后再去括号,合并同类项,化简后,再代入x的值计算即可.解:原式=4x2﹣4x+1﹣(4x2﹣1)+(3x﹣x2+3﹣x),=4x2﹣4x+1﹣4x2+1+3x﹣x2+3﹣x,=﹣x2﹣2x+5,将代入,原式=.20.已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠EFD=72°,则∠EGC等于多少度?【分析】根据两直线平行,同旁内角互补求出∠BEF,再根据角平分线的定义可得∠BEG=∠BEF,然后根据两直线平行,内错角相等即可得解.解:∵AB∥CD,∴∠BEF=180°﹣∠EFD=180°﹣72°=108°,∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,∵AB∥CD,∴∠EGC=∠BEG=54°.21.已知关于x,y的方程组的解满足4x+y=3,求m的值.【分析】根据等式的性质,二元一次方程组的解法即可得到答案.解:由题意可得,解得,将代入mx+(m﹣1)y=3,得m+(m﹣1)=3,解得.22.在(x2+ax+b)(2x2﹣3x﹣1)的结果中,x3项的系数为﹣5,x2项的系数为﹣6,求a,b的值.解:原式=2x4﹣3x3﹣x2+2ax3﹣3ax2﹣ax+2bx2﹣3bx﹣b①=2x4﹣(3+2a)x3﹣(1﹣3a+2b)x2﹣(a﹣3b)x﹣b②由题可知,解得③(1)上述解答过程是否正确?若不正确,从第②步开始出现错误.(2)请你写出正确的解答过程.【分析】(1)根据解答过程可得答案,注意符号的变化问题;(2)合并同类项时,注意符号的确定,然后根据题意列出方程组,再解即可.解:(1)解答过程不正确,从第②步开始出现错误;(2)原式=2x4﹣3x3﹣x2+2ax3﹣3ax2﹣ax+2bx2﹣3bx﹣b,=2x4﹣(3﹣2a)x3﹣(1+3a﹣2b)x2﹣(a+3b)x﹣b,由题可知,解得.23.“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?【分析】设甜果买了x个,苦果买了y个,根据九百九十九文钱买了甜果和苦果共一千个,即可得出关于x,y 的二元一次方程组,解之即可得出x,y的值,再将其代入x,y中即可求出结论.解:设甜果买了x个,苦果买了y个,依题意,得:,解得:,∴x=803,y=196.答:甜果买了657个,需要803文钱;苦果买了343个,需要196文钱.24.教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等问题.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);求代数式2x2+4x﹣6的最小值,2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:x2﹣4x﹣5=(x+1)(x﹣5).(2)当x为何值时,多项式﹣2x2﹣4x+3有最大值?并求出这个最大值.(3)利用配方法,尝试解方程﹣2ab﹣2b+1=0,并求出a,b的值.【分析】(1)根据题目中的例子,可以将题目中的式子因式分解;(2)根据题目中的例子,先将所求式子配方,然后即可得到当x为何值时,所求式子取得最大值,并求出这个最大值;(3)将题目中的式子化为完全平方式的形式,然后根据非负数的性质,即可得到a、b的值.解:(1)x2﹣4x﹣5=(x﹣2)2﹣9=(x﹣2+3)(x﹣2﹣3)=(x+1)(x﹣5),故答案为:(x+1)(x﹣5);(2)∵﹣2x2﹣4x+3=﹣2(x+1)2+5,∴当x=﹣1时,多项式﹣2x﹣4x+3有最大值,这个最大值是5;(3)∵,∴(﹣2ab+2b2)+(b2﹣2b+1)=0∴(a﹣b)2+(b﹣1)2=0∴a﹣b=0,b﹣1=0,解得,a=2,b=1.。
七年级第二学期期中考试试卷数 学一、选择题(本大题共8小题,共24分)1. 下列各图中,∠1与∠2是对顶角的是( ) A. B. C. D.2. 4的平方根是( ) A. 2 B. C.2 D.±23. 在下列所给出坐标的点中,在第二象限的是( )A. (2,3)B. (-2,3)C. (-2,-3)D. (2,3)4. 在实数5,227,38-,0,,2π,36,0.1010010001中,无理数有( )A. 2个B. 3个C. 4个D. 5个5.如图,直线AB ,CD 被直线EF 所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠56. 若a ,b 为实数,且229943a a b a -+-=++,则a b +的值为( )A .-1B .1C .1或7D .77. 已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A. 有且仅有一条B. 有两条C. 不存在D. 有一条或不存在8. 下列语句中是命题的有()①如果两个角都等于70°,那么这两个角是对顶角; ②三角形内角和等于180°;③画线段AB=3 cm.A、0个B、1个C、2个D、3个二、填空题(本大题共8小题,共24分)9.若3m-12与12-3m都有平方根,则m的平方根为10.如图,直线AB,CD,EF交于点O,OG平分,且,,则∠DOG= 。
11.把9的平方根和立方根按从小到大的顺序排列为______.12.从新华书店向北走100 m,到达购物广场,从购物广场向西走250 m到达体育馆,若体育馆所在位置的坐标是(-250,0),则选取的坐标原点是_ __13.在如图所示的长方体中,与AB垂直且相交的棱有__ _条.14.如果,其中为有理数,则a+b=______.15.若两个连续整数x,y满足,则x+y的值是_____16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点,,,,那么点为自然数的坐标为______用n表示.三、解答题(本大题共9小题,共72分)17.计算:(每小题4分,共8分)求下列各式中x的值:(每小题4分,共8分)(1)2x2=4;;(2)64x3+27=019.如图,直线a∥b,点B在直线b上,AB⊥BC,∠1=55°,求∠2的度数.(6分)20.完成下面的证明(8分)如图,点E 在直线DF 上,点B 在直线AC 上,若∠AGB=∠EHF, ∠C=∠D .求证:∠A=∠F .证明:∵∠AGB=∠EHF∠AGB =______对顶角相等∴∠EHF=∠DGF∴DB∥EC ( )∴∠ =∠DBA ( )又∵∠C=∠D ∴∠DBA=∠DDF ∥ ( )∴∠A=∠F( )21.已知a+2的立方根是3,3a+b-1算术平方根是4,c 是 整数部分.(9分) (1)求a,b,c 的值;(2)求3a - b+c 的平方根。
2024年期中质量监测试卷七年级数学(试题卷)温馨提示:1.本试卷包括试题卷和答题卡。
考生作答时,选择题和非选择题均须作答在答题卡上,在本试题卷上作答无效。
考生在答题卡上按答题卡中注意事项的要求答题。
2.考试结束后,将本试题卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
本试卷共三道大题,26个小题。
如有缺页,考生须声明。
一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
本大题共10个小题,每小题3分,共30分)1.下列方程组中,是二元一次方程组的是()A .B .C .D .2.下列各式从左到右的变形中,是因式分解的是( )A .B .C .D .3.下列运算正确的是( )A .B .C .D .4.已知是因式分解的结果,则的值为( )A .B .C .D .5.将多项式提公因式后,另一个因式为()A .B .C .D .6.若是一个完全平方公式,则的值为()A .6B .12C .D .7.从甲地到乙地有一段上坡路与一段下坡路。
如果上坡平均每小时走,下坡平均每小时走,那么从甲地走到乙地需要15分钟,从乙地走到甲地需要20分钟。
若设从甲地到乙地上坡路程为,下坡路程为,则所列方程组正确的是()A.B.C.D.8.如果是方程组的解,则的值为()A.1B.C.2D.9.“九宫图”于我国古代夏禹时期的《洛书》(如图1),是世界上最早的矩阵,又称“幻方”,其实幻方就是把一些有规律的数填在正方形图内,使每一行、每一列和每一条对角线上各个数之和都相等(如图2),图3的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则的值为()图1 图2 图3A.0B.1C.3D.610.如图,将两张边长分别为和的正方形纸片按图1,图2两种方式放置长方形内(图1,图2中两张正方形纸片均有部分重叠),未被这两张正方形纸片覆盖的部分用阴影表示,若长方形中边的长度分别为.设图1中阴影部分面积为,图2中阴影部分面积为.当时,的值为()图1 图2A.B.C.D.二、填空题(本大题共8个小题,每小题3分,共24分,请将答案填在答题卡的答案栏内)11.计算:______.12.已知一个正方形的边长是,则它的面积是______(用科学记数法表示)。
J12共同体联盟校学业质量检测2024(初一下)数学试题卷亲爱的同学:欢迎参加考试!答题时,请注意以下几点:1.全卷共4页,有三大题,24小题,满分120分.考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.3.答题前,认真阅读答题纸上的《注意事项》,按规定答题.祝你成功! 卷I一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.如图,直线m ,n 被直线l 所截,1∠与2∠是一对( )A.同位角B.内错角C.对顶角D.同旁内角2.下列各式是二元一次方程的是( )A.223x y −=B.23x y −=C.3x y +=D.23x y z +=3.下列计算正确的是( )A.235x x x +=B.235x x x ⋅=C.()325x x =D.()3326x x = 4.已知1,2x y = =是关于x ,y 的二元一次方程210x my −=的一个解,则m 的值为( ) A.6 B.6− C.4 D.4−5.古代数学趣题:老头提篮去赶集,一共花去七十七;满满装了一菜篮,十斤大肉三斤鱼;买好未曾问单价,只因回家心里急;道旁行人告诉他,九斤肉钱五斤鱼.意思是:77元钱共买了10斤肉和3斤鱼,9斤肉的钱等于5斤鱼的钱,问每斤肉和鱼各是多少钱?设每斤肉x 元,每斤鱼y 元,可列方程组为( )A.10377,95x y x y += =B.31077,95x y x y+= = C.10377,59x y x y += = D.31077,59x y x y += =6.如图,直线AM BN ∥,把一块三角板如图放置,使直角顶点落在点A ,30°角的顶点恰好落在点B ,若AM 平分CAB ∠,则1∠的度数为( )A.135°B.125°C.120°D.105°7.已知方程组526213x y x y += +=,则2x y +=( ) A.26 B.13 C.39 D.208.下列式子中,不能用平方差公式运算的是( )A.()()x y x y −−−+B.()()y x x y +−C.()()x y x y −+−D.()()y x x y −+9.已知关于x ,y 的方程组2,352x y k x y k += +=− 有以下结论:①当0k =时,方程组的解是1,2;x y =− =②当20x y +=,则3k =;③不论k 取什么实数,x y +的值始终不变.其中正确的是( )A.①②B.①③C.②③D.①②③10.两个长为a ,宽为b 的长方形,按如图方式放置,记阴影部分面积为1S ,空白部分面积为2S ,若212S S =,则a ,b 满足( )A.2a b =B.23a b =C.34a b =D.35a b =卷II二、填空题(本题有6小题,每小题3分,共18分)11.已知方程25x y +=,用含x 的代数式表示y ,则y =______.12.计算:223a b a ⋅=______. 13.如图,将一条长方形纸片沿AB 折叠,已知70DAB ∠=°,则CBF ∠=______.14.如图,将三角形ABC 平移得到三角形A B C ′′′,若图中阴影部分面积与所有空白部分面积之比为1:6,则阴影部分面积与三角形ABC 面积的比值为______.15.已知关于x ,y 的二元一次方程组111222a x b y c a x b y c += += 的解为21x y = = ,则关于x ,y 的二元一次方程组()()1111222232,32a x b y b c a x b y b c ++−= ++−=的解为______. 16.如图,两条平行直线1l ,2l 被直线AB 所截,点C 位于两平行线之间,且在直线AB 右侧,点E 是1l 上一点,位于点A 右侧.小明进行了如下操作:连结AC ,BC ,在EAC ∠平分线上取一点D ,过点D 作DF BC ∥,交直线2l 于点F .记ACB ∠α=,CBF ∠β=,ADF ∠γ=,则γ=______(用含α,β的代数式表示).三、解答题(本题有8小题,共72分,解答需写出必要的文字说明、演算步骤或说理过程)17.(本题6分)解下列二元一次方程组:(1)329,7.x y y x += =− (2)2512,43 2.x y x y −= +=−18.(本题6分)如图,在66×的正方形方格纸中有一格点三角形ABC (即三角形的顶点都在格点上),D 是方格纸中一格点.(1)将三角形ABC 平移后得到三角形DEF ,使点A 的对应点为D ,在图中画出平移后的图形.(2)三角形DEF 是由三角形ABC 先向______平移______个单位,再向上平移______个单位得到.19.(本题8分)先化简,再求值:()()()x y x y x x y +−−−,其中2x =,1y =.20.(本题8分)如图,AE 平分BAC ∠,CAE AEC ∠∠=.(1)判断AB 与CD 是否平行,并说明理由.(2)若GF CD ∥,EF AE ⊥,4BAC F ∠∠=,求FED ∠的度数.21.(本题10分)定义:任意两个数a ,b ,按规则22c a b ab =+−运算得到一个新数c ,称c 为a ,b 的“和方差数”.(1)求2,3−的“和方差数”.(2)若两个非零数a ,b 的积是a ,b 的“和方差数”,求22a b −的值.(3)若3,4a b ab +==,求a ,b 的“和方差数”c .22.(本题10分)某校组织七年级350名学生去研学,已知1辆A 型车和2辆B 型车可以载学生110人;3辆A 型车和1辆B 型车可以载学生130人.(1)A 、B 型车每辆可分别载学生多少人?(2)若租一辆A 型车需要1000元,一辆B 型车需1200元,请你设计租车方案,使得恰好送完学生,并且租车费用最少?23.(本题12分)如图1,自行车尾灯是由塑料罩片包裹的若干个小平面镜组成,利用平面镜反射光线,以提醒后方车辆注意.小亮所在学习小组对其工作原理进行探究,发现以下规律:如图2,EF 为平面镜,AB ,BC 分别为入射光线和反射光线,则ABE CBF ∠∠=.请继续以下探究:图1图2 图3 (1)探究反射规律①如图3,ABE ∠α=,105BFC ∠°=,则DCG ∠=______(用含α的代数式表示).②若光线AB CD ∥,判断EF 与FG 的位置关系,并说明理由.(2)模拟应用研究在行驶过程中,后车驾驶员平视前方,且视点D 会高于反射点C (如图4),因此小亮认为反射光线CD 应与水平视线DH 成一定角度.学习小组设计了如图5所示的模拟实验装置,使入射光线AB DH ∥,当CD 与DH 所成夹角为15°时,求BFC ∠的度数.图4 图524.(本题12分)用如图所示的正方形和长方形纸片进行拼图活动.请解决以下问题:(1)若要拼成一个长为32x +,宽为3x +的长方形,则需要A 型纸片______张,B 型纸片______张,C 型纸片______张.(2)现有A 型纸片1张,C 型纸片4张,B 型纸片若干张,恰好拼成一个正方形,求B 型纸片的张数.(3)现有A ,B ,C 三种型号的纸片共12张,恰好能拼成一个长方形(每种纸片都用上),若它的一边长为2x +,则需要三种纸片各多少张?(求出所有可能的情况)J12共同体联盟校2024(初一下)学业质量检测数学参考答案和评分标准一、选择题(本题有10小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10答案 A C B D A D B C D B二、填空题(本题有6题,每小题3分,共18分)11.52y x =− 12.36a b13.40° 14.14 15.13x y =− = 16.1122αβ+或1118022αβ°−−或119022αβ°+− 三、解答题(本题有8小题,共72分)17.(本题6分)(1)329,7;x y y x += =−(2)2512,43 2.x y x y −= +=− 解得:512x y =− = 解得:12x y = =− 18.(本题6分)(1)(2)右,3,219.(本题8分)()()()x y x y x x y +−−−222x y x xy =−−+2y xy =−+当2x =,1y =时,原式121=−+=20.(本题8分)(1)AB CD ∥,理由如下:AE 平分BAC ∠CAE BAE ∠∠∴=CAE AEC ∠∠=BAE AEC ∠∠∴=AB CD ∴∥(2)设F x ∠=,则44BAC F x ∠∠==AE 平分BAC ∠2BAE CAE x ∠∠∴==CD GF ∴∥FED F x ∠∠==AE EF ⊥90AEF ∠°∴=AB CD ∥180BAE AEF FED ∠∠∠∴°++=,即290180x x °°++=30x ∴=°,30FED ∠°∴=(其他方法酌情给分)21.(本题10分)(1)()()22232319+−−×−= (2)ab 是a ,b 的“和方差数”22ab a b ab ∴=+−,即2220a b ab +−=()20a b ∴−=, a b ∴=220a b ∴−=(3)3a b +=()2222981a b a b ab ∴+=+−=−=22143c a b ab ∴=+−=−=−22.(本题10分)解:(1)设A 型车每辆载学生x 人,B 型车每辆载学生y 人, 可得:21003130x y x y += +=解得:3040x y = = ,答:A 型车每辆载学生30人,B 型车每辆载学生40人.(2)设租用A 型a 辆,B 型b 辆,可得:3040350a b +=,3435a b ∴+=因为a ,b 为正整数,所以方程的解为:18a b = = ,55a b = = ,92a b = =方案一:A 型1辆,B 型8辆,费用:100011200810600×+×=元;方案二:A 型5辆,B 型5辆,费用:100051200511000×+×=元;方案三:A 型9辆,B 型2辆,费用:100091200211400×+×=元;所以租用1辆A 型8辆B 型车花费最少,为10600元.(学生用其他方法得出最优方案,酌情给分)23.(本题12分)(1)①75α°−②EF FG ⊥180ABE ABC CBF ∠∠∠++=° ,ABE CBF ∠∠=1802ABC CBF ∠∠∴=°−同理,1802DCB BCF ∠∠=°−AB CD ∥180ABC DCB ∠∠°∴+=即180********CBF BCF ∠∠°°°−+−=90CBF BCF ∠∠°∴+=过点F 作MN BC ∥CBF BFM ∠∠∴=,BCF CFN ∠∠=180BFM CFN BFC ∠∠∠++°=180CBF BCF BFC ∠∠∠∴°++=()18090BFC CBF BCF ∠∠∠°°∴=−+=EF FG ∴⊥(3)延长BC 交DH 于点M180MDC M MCD ∠∠∠°++=180165M MCD MDC ∠∠∠°°∴+=−=MD AB ∥180M MBA ∠∠°∴+=180MCD DCB ∠∠°+=180180360165195DCB CBA MCD M ∠∠∠∠°°°°∴+=−+−=−=()136082.52FCB CBF DCB CBA ∠∠∠∠°°∴+=−−= 18097.5F FCB CBF ∠∠∠°°∴=−−= (其他方法酌情给分)24.(本题12分)(1)要A 型纸片3张,B 型纸片11张,C 型纸片6张.(2)设B 型纸片有b 张则该正方形的面积可表示为24x bx ++, ()2242x bx x ∴++=+解得4b = (其他合理方法也给分)(3)根据题意,这个长方形一边长为2x +,设这边的邻边长为ax b +,则长方形的面积为:()()()2222222x ax b ax bx ax b ax b a x b ++++++++,则有a 张A 纸片,()2b a +张B 纸片,2b 张C 纸片,因为拼成这个长方形恰好用12张纸片,所以()2212a b a b +++=,即4a b +=,因为a 和b 都是正整数,则只有三组正整数解:1a =,3b =;2a =,2b =;3a =,1b =. 所以只有下列三种情形:方案1:A 纸片1张,B 纸片5张,C 纸片6张方案2:A 纸片2张,B 纸片6张,C 纸片4张方案3:A 纸片3张,B 纸片7张,C 纸片2张(其他方法表述合理也给分)。
2022-2023学年度第二学期初一年级期中考试 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1. 在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A. B. C. D.2. 如图,下列各点在阴影区域内的是( )A.B.C.D.3. ,,,,,中,无理数的个数是( )A.个B.个C.个D.个4. 在一次数学活动课上,老师让同学们借助一副三角板画平行线,.下面是小曼同学的作法,老师说:“小曼的作法正确”,请回答:小曼的作图依据是( )(3,2)(−3,2)(3,−2)(−3,−2)π227−3–√343−−−√3 3.14160.3˙1234AB CDA.内错角相等,两直线平行B.两直线平行,内错角相等C.过直线外一点有且只有一条直线与已知直线平行D.同位角相等,两直线平行5. 下列命题:①圆的切线垂直于经过切点的半径;②掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是;③相等的圆心角所对的弧相等;④某种彩票的中奖率为,佳佳买张彩票一定能中奖.其中,正确的命题是( )A.①②B.①②③C.①②④D.①②③④6. 在平面直角坐标系中,对于点,我们把点叫做点的友好点.已知点的友好点为,点的友好点为,点的友好点为…,这样依次得到点,,,…,,若点的坐标为,则点的坐标为( )A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7. 比较大小:________(填“”,“”或“”).8. 已知是一个正整数,是整数,则的最小值为________.9. 如图,,与,分别交于点,,为的平分线.若,,那么的值是________.10. 如图,若菱形的顶点,的坐标分别为,点在轴上,则点的坐标是________.0.511010xOy P(x,y)P'(1−y,x−1)P A 1A 2A 2A 3A 3A 4A 1A 2A 3A n A 1(2,1)A 2019(2,1)(0,1)(0,−1)(2,−1)10−−√3><=n 135n−−−−√n AC//BD AB AC BD A B BC ∠ABD ∠1=(x+15)∘∠2=(2x+70)∘x ABCD A B (3,0),(−2,0)D y C11. 如图,,, ,则________度.12. 将含有角的三角板的直角顶点放置于互相平行的两条直线中的一条上(如图),如果 ,那么_______.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13. 计算:.14. 如图,直线,被直线,所截,,直线分别交和于点,.点在直线上,,求证:.请在下列括号中填上理由:证明;因为(已知),所以(________).又因为 (已知),所以,即,所以________(同位角相等,两直线平行),所以(________).15. 如图,在中, ,,点从点出发沿方向以秒的速度向点匀速运动,同时点从点出发沿方向以秒的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点,运动的时间是秒.过点作于点,连接,.用含的代数式式表示________,________.AB//CD ∠BAP =120∘∠APC =40∘∠PCD =30∘∠1=40∘∠2=∘+×−|−1|(−3)28–√3–√6–√AB CD MN PM AB//CD MN AB CD E F Q PM ∠AEP =∠CFQ ∠EPQ +∠FQP =180∘AB//CD ∠AEM =∠CFM ∠AEP =∠CFQ ∠AEM +∠AEP =∠CFM +∠CFQ ∠MEP =∠MFQ ∠EPQ +∠FQP =180∘Rt △ABC ∠B =90∘,AC =20cm ∠A =60∘D C CA 2cm/A E A AB 1cm/B D E t (0<t ≤10)D DF ⊥BC F DE EF (1)t AD =DF =四边形能够成为菱形吗?如果能,请求出相应的值;如果不能,请说明理由;当为何值时,的面积为,请说明理由;当为何值时,为直角三角形.(请直接写出值)16. 小明和爸爸、妈妈到汉字公园游玩,回到家后,他利用平面直角坐标系画出了公园景区地图,如图所示.可是他忘记了在图中标出原点,轴及轴.只知道长廊的坐标为和农家乐的坐标为,请你帮他画出平面直角坐标系,并写出其他各点的坐标. 17. 已知点是直线上一点,,为从点引出的两条射线,,.如图,求的度数;如图,在的内部作,请直接写出与之间的数量关系________;在的条件下,若为的角平分线,试说明.18. 如图,已知,.求证:.19. 如图,已知点在 的边上.利用三角板根据要求画图:①过点作线段,垂足为点;②过点作直线,垂足为点,交于点;结合所画图形,写出与相等的所有角.20. 通过《实数》一章的学习,我们知道是一个无限不循环小数,因此的小数部分我们不可能全部写出来.聪明的小丽认为的整数部分为,所以减去其整数部分,差就是的小数部分,所以用来表示的小数部分.根据小丽的方法请完成下列问题:的整数部分为________,小数部分为________ ;AEFD t (2)t △DEF c 93–√2m 2(3)t △DEF t x y E (4,−3)B (−5,3)O AB OC OD O ∠BOD =30∘∠COD =∠AOC 87(1)1∠AOC (2)2∠AOD ∠MON =90∘∠AON ∠COM (3)(2)OM ∠BOC ∠AON =∠CON DE//AF ∠CDA =∠DAB ∠1=∠2P ∠AOB OA (1)P PC ⊥OB C P MN ⊥OA P OB D (2)∠CPO 2–√2–√2–√12–√2–√−12–√2–√(1)33−−√−−√8−–√已知的整数部分, 的整数部分为,求的立方根.21. 在平面直角坐标系中,已知点.当点在轴的左侧时,求的取值范围;若点到两坐标轴的距离相等,求点的坐标.22.如图,直线,点是,之间(不在直线,上)的一个动点.若与都是锐角,如图甲,写出与,之间的数量关系并说明原因;若把一块三角尺(,)按如图乙方式放置,点,,是三角尺的边与平行线的交点,若,求的度数;将图乙中的三角尺进行适当转动,如图丙,直角顶点始终在两条平行线之间,点在线段上,连接,且有,求与之间的数量关系.23. 如图,在直角坐标系中,已知,,将线段平移至,点在轴正半轴上(不与点重合),连接,,,.写出点的坐标;当的面积是的面积的倍时,求点的坐标;设,,,判断,,之间的数量关系,并说明理由.(2)10−−√a 8−5–√b a +b Q(4−2n,n−1)(1)Q y n (2)Q Q PQ//MN C PQ MN PQ MN (1)∠1∠2∠C ∠1∠2(2)∠A =30∘∠C =90∘D E F ∠AEN =∠A ∠BDF (3)C G CD EG ∠CEG =∠CEM ∠GEN ∠BDF xOy A(6,0)B(8,6)OA CB D x A OC AB CD BD (1)C (2)△ODC △ABD 3D (3)∠OCD =α∠DBA =β∠BDC =θαβθ参考答案与试题解析2022-2023学年度第二学期初一年级期中考试 (数学)试卷一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1.【答案】D【考点】生活中的平移现象【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是.【解答】解:图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.观察图形可知图案通过平移后可以得到.故选.2.【答案】A【考点】点的坐标【解析】先判断出阴影区域在第一象限,且长宽为的矩形,进而判断在阴影区域内的点.【解答】解:观察图形可知:阴影区域在第一象限,是长宽为的正方形,、在第一象限,且,,所以点在阴影区域内,故正确;、在第二象限,故错误;、在第四象限,故错误;、在第三象限,故错误.故选.3.【答案】B【考点】无理数的判定【解析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:,等;开方开不尽的数;以及…,等有这样规律的数.由此即可判定选择项.D D D 44A (3,2)3<42<4(3,2)B (−3,2)C (3,−2)D (−3,−2)A π2π0.1010010001【解答】解:在,,,,,中,无理数是:,共个.故选.4.【答案】A【考点】平行线的判定【解析】本题考查了作图-复杂作图和平行线的判定方法.【解答】解:,(内错角相等,两直线平行),故选.5.【答案】A【考点】命题与定理真命题,假命题【解析】根据切线的性质对①进行判断;根据概率公式对②进行判断;根据圆心角、弧、弦的关系对③进行判断;根据概率的意义对④进行判断.【解答】解:圆的切线垂直于经过切点的半径,所以①正确;掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是,所以②正确;在同圆或等圆中,相等的圆心角所对的弧相等,所以③错误;某种彩票的中奖率为,佳佳买张彩票不一定能中奖,所以④错误.故选.6.【答案】C【考点】规律型:点的坐标【解析】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每个点为一个循环组依次循环是解题的关键,也是π227−3–√343−−−√3 3.14160.3˙π−3–√2B ∵∠ABC =∠DCB =90°∴AB ∥CD A 0.511010A 4本题的难点.【解答】解:观察发现:,,,,,依次类推,每个点为一个循环组依次循环,余,点的坐标与的坐标相同,为.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7.【答案】【考点】实数大小比较算术平方根【解析】根据,再比较即可.【解答】解:∵,∴,故答案为:.8.【答案】【考点】实数的运算【解析】【解答】解:∵,∴的最小值是.故答案为:.9.【答案】【考点】平行线的性质角的计算【解析】(2,1)A 1(0,1)A 2(0,−1)A 3(2,−1)A 4(2,1)A 5(0,1)A 6…∴5∵2019÷4=5043∴A 2019A 3(0,−1)C >3=9–√32=9<10>310−−√>15135=×3×5=×153232n 151520由平行线的性质可得,再由角平分线的定义得出,得出方程即可解答.【解答】解:,∴,∵平分,∴,∵,,∴,.故答案为:.10.【答案】【考点】坐标与图形性质【解析】【解答】解:∵菱形的顶点,的坐标分别为,,点在轴上,∴,∴,∴由勾股定理知:,∴点的坐标是:,故答案为.11.【答案】【考点】平行线的性质【解析】过点作,由平行线的性质结合的度数可求解的度数,根据可得,即可求解的度数.【解答】解:如图,过点作,∴.∵,∴.∵,∠2+∠ABD =180∘∠ABD =2∠1∵AC//BD ∠2+∠ABD =180∘BC ∠ABD ∠ABD =2∠1∠1=(x+15)∘∠2=(2x+70)∘2+=(x+15)∘(2x+70)∘180∘∴x =2020(−5,4)ABCD A B (3,0)(−2,0)D y AB =5AD =5OD ===4A −O D 2A 2−−−−−−−−−−√−5232−−−−−−√C (−5,4)(−5,4)160P PE//AB ∠APC ∠CPE CD//AB CD//PE ∠C P PE//AB ∠A+∠APE =180∘∠A =120∘∠APE =−=180∘120∘60∘∠APC =40∘∴.∵,∴ ,∴,∴.故答案为:.12.【答案】【考点】平行线的判定与性质【解析】作出辅助线,利用平行线的性质即可得出答案.【解答】解:过点作,如图,∵, ,∴,∴,,∵,∴.故答案为:.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13.【答案】解:原式 .【考点】实数的运算【解析】【解答】解:原式 . 14.【答案】两直线平行,同位角相等,,两直线平行,同旁内角互补∠CPE =∠APE−∠APC =−=60∘40∘20∘AB//CD CD//PE ∠C +∠CPE =180∘∠C =−=180∘20∘160∘16020E EF//AB EF//AB AB//CD EF//AB//CD ∠1=∠GEF =40∘∠2=∠HEF ∠GEF +∠HEF =60∘∠2=−=60∘40∘20∘20=9+−(−1)24−−√6–√=9+2−+16–√6–√=10+6–√=9+−(−1)24−−√6–√=9+2−+16–√6–√=10+6–√EP//FQ【考点】平行线的判定与性质【解析】根据平行线的判定与性质证明即可.【解答】证明:因为(已知),所以(两直线平行,同位角相等).又因为 (已知),所以,即,所以(同位角相等,两直线平行),所以(两直线平行,同旁内角互补).故答案为:两直线平行,同位角相等;;两直线平行,同旁内角互补.15.【答案】解:由题可得,在中,,则,∵,又,,∴,∴四边形为平行四边形,∴当时,四边形是菱形,∴,∴.依题意可得,,,又,∴,∴和中,,,∴,∵,∴,∴,,∴当或时,的面积为.当,则四边形中,,∴,∴,∴,∴∴,当,则四边形中,,,∴,∴,∴,∴,当时,点,点重合于点,不存在.∴或.【考点】AB//CD ∠AEM =∠CFM ∠AEP =∠CFQ ∠AEM +∠AEP =∠CFM +∠CFQ ∠MEP =∠MFQ EP//FQ ∠EPQ +∠FQP =180∘EP//FQ (1)AD =20−2t Rt △CDF ∠C =30∘DF =CD =t12DF =AE =t DF ⊥BC AB ⊥BC DF//AB DFEA DF =AD DFEA t =20−2t t =203(2)CD =2t AD =20−2t AE =t ∠C =−∠A =−=90∘90∘60∘30∘AB =AC =×20=101212Rt △CDF Rt △ACB CF ==t D −D C 2F 2−−−−−−−−−−√3–√BC ==10A −A C 2B 2−−−−−−−−−−√3–√BF =10−t 3–√3–√△DFE =DF ⋅BF 12=t(10−t)=123–√3–√93–√2t(10−t)=9=1t 1=9t 2t =1t =9△DFE c 93–√2m 2(3)∠FDE =90∘DFEA DF//AB ∠DEA =∠FDE =90∘∠ADE =−=90∘60∘30∘AD =2AE 20−2t =2tt =5∠DEF =90∘DFEA AD//EF ∴∠ADE =∠DEF ∠AED =−=90∘60∘30∘AE =2AD t =2(20−2t)t =8∠DFE =90∘F E B △DEF t =5t =8一元二次方程的应用——其他问题动点问题动点问题的解决方法三角形的面积平行四边形的判定平行四边形的性质勾股定理含30度角的直角三角形【解析】此题暂无解析【解答】解:由题可得,在中,,则,∵,又,,∴,∴四边形为平行四边形,∴当时,四边形是菱形,∴,∴.依题意可得,,,又,∴,∴和中,,,∴,∵,∴,∴,,∴当或时,的面积为.当,则四边形中,,∴,∴,∴,∴∴,当,则四边形中,,,∴,∴,∴,∴,当时,点,点重合于点,不存在.∴或.16.【答案】(1)AD =20−2t Rt △CDF ∠C =30∘DF =CD =t12DF =AE =t DF ⊥BC AB ⊥BC DF//AB DFEA DF =AD DFEA t =20−2t t =203(2)CD =2t AD =20−2t AE =t ∠C =−∠A =−=90∘90∘60∘30∘AB =AC =×20=101212Rt △CDF Rt △ACB CF ==t D −D C 2F 2−−−−−−−−−−√3–√BC ==10A −A C 2B 2−−−−−−−−−−√3–√BF =10−t 3–√3–√△DFE =DF ⋅BF 12=t(10−t)=123–√3–√93–√2t(10−t)=9=1t 1=9t 2t =1t =9△DFE c 93–√2m 2(3)∠FDE =90∘DFEA DF//AB ∠DEA =∠FDE =90∘∠ADE =−=90∘60∘30∘AD =2AE 20−2t =2tt =5∠DEF =90∘DFEA AD//EF ∴∠ADE =∠DEF ∠AED =−=90∘60∘30∘AE =2AD t =2(20−2t)t =8∠DFE =90∘F E B △DEF t =5t =8解:由题意可知,本题是以点为坐标原点,为轴的正半轴,建立平面直角坐标系,如图所示,则,,的坐标分别为:,,.【考点】位置的确定【解析】此题暂无解析【解答】解:由题意可知,本题是以点为坐标原点,为轴的正半轴,建立平面直角坐标系,如图所示,则,,的坐标分别为:,,.17.【答案】解:由题意可知:,,,∵,,∴,∴.证明:∵,,∴,∵是的角平分线∴,∵,∴,∵,∴,∴.【考点】角的计算角平分线的定义【解析】D (0,0)DA y A C F A(0,4)C(−3,−2)F (5,5)D (0,0)DA y A C F A(0,4)C(−3,−2)F (5,5)(1)∠AOB =180∘∠BOD =30∘∠AOD =∠AOB−∠BOD =150∘∠AOD =∠AOC +∠COD ∠COD =∠AOC 87∠AOC +∠AOC =87150∘∠AOC =70∘∠AON +=∠COM20∘(3)∠AOC =70∘∠AOB =180∘∠BOC =∠AOB−∠AOC =110∘OM ∠BOC ∠COM =∠BOC =1255∘∠MON =90∘∠CON =∠MON −∠COM =35∘∠AOC =70∘∠AON =∠AOC −∠CON =35∘∠AON =∠CON AOC +∠AOC8(1)由题意可知:=,即∴=,即可求解;(2)由图可见:=;(3)是的角平分线,可以求出==,而==,∴=.【解答】解:由题意可知:,,,∵,,∴,∴.解:由题知,,,所以,即.故答案为:.证明:∵,,∴,∵是的角平分线∴,∵,∴,∵,∴,∴.18.【答案】证明:∵,∴.∵,∴,∴.【考点】平行线的性质【解析】此题暂无解析【解答】证明:∵,∴.∵,∴,∴.19.【答案】解:如图所示:直线,点,即为所求;∠AOD ∠AOC +∠COD ∠AOC +∠AOC 87150∘∠AON +20∘∠COM OM ∠BOC ∠CON ∠MON −∠COM 35∘∠AON ∠AOC −∠CON 35∘∠AON ∠CON (1)∠AOB =180∘∠BOD =30∘∠AOD =∠AOB−∠BOD =150∘∠AOD =∠AOC +∠COD ∠COD =∠AOC 87∠AOC +∠AOC =87150∘∠AOC =70∘(2)∠AOM =∠AOC +∠COM =∠AOC +70∘∠AOM =∠AON +∠MON =∠AON +90∘∠AOC +=∠AON +70∘90∘∠AON +=∠COM 20∘∠AON +=∠COM 20∘(3)∠AOC =70∘∠AOB =180∘∠BOC =∠AOB−∠AOC =110∘OM ∠BOC ∠COM =∠BOC =1255∘∠MON =90∘∠CON =∠MON −∠COM =35∘∠AOC =70∘∠AON =∠AOC −∠CON =35∘∠AON =∠CON DE//AF ∠EDA =∠DAF ∠CDA =∠DAB ∠CDA−∠EDA =∠DAB−∠DAF∠1=∠2DE//AF ∠EDA =∠DAF ∠CDA =∠DAB ∠CDA−∠EDA =∠DAB−∠DAF∠1=∠2(1)MN C D∵,,∴,又∵与是对顶角,∴,∴与相等的角有 ,.【考点】作图—复杂作图垂线余角和补角【解析】此题暂无解析【解答】解:如图所示:直线,点,即为所求;∵,,∴,又∵与是对顶角,∴,∴与相等的角有 ,.20.【答案】,∵,∴,∴的整数部分.∵,∴的整数部分,∴,∴的立方根为.【考点】估算无理数的大小立方根的应用(2)∠PDO +∠O =∠DPO =90∘∠CPO +∠O =∠PCO =90∘∠CPO =∠PDO ∠BDM ∠PDO ∠BDM =∠CPO ∠CPO ∠PDO ∠BDM (1)MN C D (2)∠PDO +∠O =∠DPO =90∘∠CPO +∠O =∠PCO =90∘∠CPO =∠PDO ∠BDM ∠PDO ∠BDM =∠CPO ∠CPO ∠PDO ∠BDM 5−533−−√(2)9<10<163<<410−−√10−−√a =32<<35–√8−5–√b =5a +b =88=28–√3【解析】此题暂无解析【解答】解:∵,∴,即的整数部分为,小数部分为.故答案为:; .∵,∴,∴的整数部分.∵,∴的整数部分,∴,∴的立方根为.21.【答案】解:根据题意得,,即,解得.若点到两坐标距离相等,∴,∴,即或,解得或,∴或.【考点】点的坐标【解析】无无【解答】解:根据题意得,,即,解得.若点到两坐标距离相等,∴,∴,即或,解得或,∴或.22.【答案】解:.理由如下:如图,过作,∵,(1)25<33<365<<633−−√33−−√5−533−−√5−533−−√(2)9<10<163<<410−−√10−−√a =32<<35–√8−5–√b =5a +b =88=28–√3(1)4−2n <02n >4n >2(2)Q |4−2n|=|n−1|4−2n =±(n−1)4−2n =n−14−2n =−n+1n =53n =3Q(,)2323Q(−2,2)(1)4−2n <02n >4n >2(2)Q |4−2n|=|n−1|4−2n =±(n−1)4−2n =n−14−2n =−n+1n =53n =3Q(,)2323Q(−2,2)(1)∠C =∠1+∠2C CD//PQ PQ//MN∴,∴,,∴,即.∵,∴,由可得,,∴,∴.设,则,由可得,,∴,∴,∴.即.【考点】平行线的判定与性质平行线的性质角的计算【解析】无无无【解答】解:.理由如下:如图,过作,∵,∴,∴,,∴,即.∵,∴,由可得,,∴,∴.设,则,由可得,,∴,∴,∴.即.23.【答案】解:如图,PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF (1)∠C =∠1+∠2C CD//PQ PQ//MN PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF (1)1∵,,∴,,∴;设,当的面积是的面积的倍时,若点在线段上,∵,∴,∴,∴;若点在线段延长线上,∵,∴,∴,∴.∴的坐标为或;如图,过点作,由平移的性质知.∴.∴,.若点在线段上,,即;若点在线段延长线上,,即.故数量关系为或.【考点】几何变换综合题坐标与图形性质【解析】(1)由点的坐标的特点,确定出,,得出;(2)分点在线段和在延长线两种情况进行计算;(3)分点在线段上时,和在延长线两种情况进行计算;【解答】解:如图,A(6,0)B(8,6)FC =AE =8−6=2OF =BE =6C(2,6)(2)D(x,0)△ODC △ABD 3D OA OD =3AD ×6x =3××6(6−x)1212x =92D(,0)92D OA OD =3AD ×6x =3××6(x−6)1212x =9D(9,0)D (,0)92(9,0)(3)2D DE//OC OC//AB OC//AB//DE ∠OCD =∠CDE ∠EDB =∠DBA D OA ∠CDB =∠CDE+∠EDB =∠OCD+∠DBAα+β=θD OA ∠CDB =∠CDE−∠EDB =∠OCD−∠DBAα−β=θα+β=θα−β=θFC =2OF =6C(2,6)D OA OA D OA α+β=θOA α−β=θ(1)1∵,,∴,,∴;设,当的面积是的面积的倍时,若点在线段上,∵,∴,∴,∴;若点在线段延长线上,∵,∴,∴,∴.∴的坐标为或;如图,过点作,由平移的性质知.∴.∴,.若点在线段上,,即;若点在线段延长线上,,即.故数量关系为或.A(6,0)B(8,6)FC =AE =8−6=2OF =BE =6C(2,6)(2)D(x,0)△ODC △ABD 3D OA OD=3AD ×6x =3××6(6−x)1212x =92D(,0)92D OA OD =3AD×6x =3××6(x−6)1212x =9D(9,0)D (,0)92(9,0)(3)2D DE//OC OC//AB OC//AB//DE ∠OCD =∠CDE ∠EDB =∠DBA D OA ∠CDB =∠CDE+∠EDB =∠OCD+∠DBA α+β=θD OA ∠CDB =∠CDE−∠EDB =∠OCD−∠DBA α−β=θα+β=θα−β=θ。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10题,每小题3分,共30分)1.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有 A. 1个B. 2个C. 3个D. 4个2.下列各式中,正确的是( ) A.2(3)3-=-B. 233-=-C.2(3)3±=±D.23=3±3.立方根等于它本身的有( ) A. 0,1B. -1,0,1C. 0,D. 14.选择下列语句正确的是( )A. -164的算术平方根是-18B. -164的算术平方根是18C. 164的算术平方根是18D. 164的算术平方根是-185.已知点A(m,n )在第二象限,则点B(|m|,﹣n )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.下列命题是真命题的有( )个 ①对顶角相等;②一个角的补角大于这个角;③互为邻补角的两个角的平分线互相垂直; ④若两个实数的和是正数,则这两个实数都是正数. A. 1个B. 2个C. 3个D. 4个7.如图,已知a ∥b,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A. 120°B. 110°C. 100°D. 70°8.已知实数x,y 满足(x-2)2y 1+=0,则点P(x,y)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( ) A. (﹣1,1)B. (﹣1,﹣2)C. (﹣1,2)D. (1,2)10.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A. 20B. 30C. 40D. 60二、填空题(共5题,每小题3分,共15分)11.将命题“同角余角相等”,改写成“如果…,那么…”的形式_____. 12.16的算术平方根是 _____.13.32-的相反数是______,绝对值是______,14.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.15.若第四象限内的点P(x ,y)满足|x|=3,y 2=4,则点P 的坐标是________.三、解答题(共9题,共85分)16.计算:(1)2322162763-+÷;(22(2)21(21)--17.求下列各式中未知数x 的值: (1)x²-75=6;(2)(2x-1)³=-8 18.把下列各数分别填入相应的集合中.359π,3.14,3270, 5.12345-,3-(1)有理数集合:{ …}; (2)无理数集合:{ …}; (3)正实数集合:{ …};(4)整数集合:{ …}.19.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30o ,∠EAD 、∠DAC 、∠C 的度数.20.已知2a+1的平方根是±3,b+8的算术平方根是4,求:b-a 的平方根.21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,ABC 的顶点都在格点上,建立平面直角坐标系,(1)点A 的坐标为______,点C 的坐标为______;(2)将ABC 先向右平移2个单位长度,再向下平移3个单位长度,请画出平移后111A B C △,并分别写出点A 1、B 1、C 1的坐标; (3)求111A B C △面积.22.已知平面直角坐标系中有一点()M 2m 3,m 1-+. (1)点M 到y 轴距离为1时,M 的坐标? (2)点()N 5,1-且MN//x 轴时,M 的坐标?23.如图,∠1=∠ABC,∠2=∠3,FG ⊥AC 于F ,判断BE 与AC 有怎样的位置关系,并说明理由.24.(1)请在横线上填写合适的内容,完成下面的证明:如图①如果AB∥CD,求证:∠APC=∠A+∠C.证明:过P作PM∥AB.所以∠A=∠APM,()因为PM∥AB,AB∥CD(已知)所以∠C=()因为∠APC=∠APM+∠CPM所以∠APC=∠A+∠C(等量代换)(2)如图②,AB∥CD,根据上面推理方法,直接写出∠A+∠P+∠Q+∠C=.(3)如图③,AB∥CD,若∠ABP=x,∠BPQ=y,∠PQC=z,∠QCD=m,则m=(用x、y、z表示)答案与解析一、选择题(共10题,每小题3分,共30分)1.下列各数中,13.14159 0.131131113 7π⋅⋅⋅--,,,无理数的个数有 A. 1个 B. 2个C. 3个D. 4个[答案]B [解析]试题分析:无限不循环小数为无理数,由此可得出无理数的个数,因此,由定义可知无理数有:0.131131113…,﹣π,共两个.故选B . 2.下列各式中,正确的是( )A.3=-B. 3=-C.3=±D.3±[答案]B [解析] [分析]如果一个非负数x 的平方等于a ,那么x 是a 的算术平方根,根据此定义即可求出结果.[详解]解:A 3= ,故本选项错误;B 、3=-,故本选项正确;C 3= ,故本选项错误;D 3= ,故本选项错误; 故选B .[点睛]本题考查算术平方根的定义,主要考查学生的理解能力和计算能力. 3.立方根等于它本身的有( ) A. 0,1 B. -1,0,1C. 0,D. 1[答案]B [解析] [分析]根据立方根性质可知,立方根等于它本身的实数0、1或-1. [详解]解:∵立方根等于它本身的实数0、1或-1. 故选B .[点睛]本题考查立方根:如果一个数x 的立方等于a ,那么这个数x 就称为a 的立方根,例如:x 3=a ,x 就是a 的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0. 4.选择下列语句正确的是( )A. -164的算术平方根是-18B. -164的算术平方根是18C. 164的算术平方根是18D. 164的算术平方根是-18[答案]C [解析][详解]解:选项A,164-没有算术平方根,选项A 、B 错误;选项C,164的算术平方根是18,选项C 正确,选项D 错误, 故选C.5.已知点A(m,n )在第二象限,则点B(|m|,﹣n )在( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限[答案]D [解析] [分析]点在第二象限的条件是:横坐标是负数,纵坐标是正数,即可确定出m 、n 的正负,从而确定|m|,-n 的正负,即可得解.[详解]解:∵点A (,)m n 在第二象限, ∴m <0,n >0, ∴|m|>0,-n <0,∴点B (,)m n -在第四象限. 故选D .[点睛]本题考查了各象限内点的坐标的符号特征以及解不等式,熟记各象限内点的坐标的符号是解题的关键.6.下列命题是真命题的有( )个 ①对顶角相等;②一个角的补角大于这个角;③互为邻补角的两个角的平分线互相垂直; ④若两个实数的和是正数,则这两个实数都是正数.A. 1个B. 2个C. 3个D. 4个[答案]B [解析] 分析]根据对顶角的性质、补角的定义、邻补角的定义与垂直的定义、有理数的加法逐个判断即可. [详解]对顶角相等,则命题①是真命题当这个角是钝角时,它的补角小于这个角,则命题②是假命题如图,AOC ∠和BOC ∠互为邻补角,,OD OE 是,AOC BOC ∠∠的角平分线AOC ∠和BOC ∠互为邻补角 180AOC BOC ∴∠+∠=︒,OD OE 是,AOC BOC ∠∠的角平分线11,22COD AOC COE BOC ∴∠=∠∠=∠111()90222DOE COD COE AOC BOC AOC BOC ∴∠=∠+∠=∠+∠=∠+∠=︒即OD OE ⊥,则命题③是真命题若两个实数的和是正数,则这两个实数不一定都是正数 反例:121-+=,但实数是负数 则命题④是假命题 综上,真命题的有2个 故选:B .[点睛]本题考查了对顶角的性质、补角的定义、邻补角的定义与垂直的定义、有理数的加法,熟记各定义与性质是解题关键.7.如图,已知a ∥b,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A. 120°B. 110°C. 100°D. 70°[答案]B [解析][分析]先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数. [详解]如图,∵∠1=70°, ∴∠3=180°﹣∠1=180°﹣70°=110°, ∵a ∥b,∴∠2=∠3=110°, 故选B .[点睛]本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.8.已知实数x,y 满足(x-2)2y 1+=0,则点P(x,y)所在的象限是( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限[答案]D [解析] [分析]根据非负数的性质得到x ﹣2=0,y +1=0,则可确定点 P (x ,y )的坐标为(2,﹣1),然后根据象限内点的坐标特点即可得到答案.[详解]∵(x ﹣2)21y ++=0,∴x ﹣2=0,y +1=0,∴x =2,y =﹣1,∴点 P (x ,y )的坐标为(2,﹣1),在第四象限. 故选D .[点睛]本题考查了点的坐标及非负数的性质.熟记象限点的坐标特征是解答本题的关键.9.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( ) A. (﹣1,1) B. (﹣1,﹣2)C. (﹣1,2)D. (1,2)[答案]A[解析]试题分析:已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.考点:坐标与图形变化-平移.10.如图,已知∠1=∠2,∠3=30°,则∠B的度数是( )A. 20B. 30C. 40D. 60[答案]B[解析][分析]根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.[详解]因为∠1=∠2,所以AB∥CE所以∠B=∠3=30故选B[点睛]熟练运用平行线的判定和性质.二、填空题(共5题,每小题3分,共15分)11.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.[答案]如果两个角是同一个角的余角,那么这两个角相等[解析]分析]根据“如果”后面接的部分是题设,“那么”后面解的部分是结论,即可解决问题.[详解]命题“同角余角相等”,可以改写成:如果两个角是同一个角的余角,那么这两个角相等.故答案为:如果两个角是同一个角的余角,那么这两个角相等.[点睛]本题考查命题与定理,解题的关键是掌握“如果”后面接的部分是题设,“那么”后面解的部分是结论.12.16的算术平方根是 _____. [答案]2 [解析][详解]∵16=4,的算术平方根是2, ∴16的算术平方根是2.[点睛]这里需注意:16算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错. 13.32-的相反数是______,绝对值是______, [答案] (1). 23- (2). 32-[解析][详解]32-的相反数是(32)3223--=-+=-.32-是一个正实数,正实数的绝对值等于它本身32-. 故答案为23-,32-.14.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.[答案]65 [解析] [分析]根据两直线平行内错角相等,以及折叠关系列出方程求解则可. [详解]解:如图,由题意可知, AB∥CD ,∴∠1+∠2=130°, 由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.[点睛]本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.15.若第四象限内的点P(x ,y)满足|x|=3,y 2=4,则点P 的坐标是________.[答案](3,-2)[解析]试题分析:∵|x|=3,y 2=4,∴x=±3,y=±2,∵点P(x,y)在第四象限,∴x >0,y <0,∴x=3,y=﹣2,∴P 点坐标为(3,﹣2).故答案是(3,﹣2).考点:点的坐标.三、解答题(共9题,共85分)16.计算:(1)2322162763-+÷;(22(2)21(21)-- [答案](1)6;(2)2.[解析][分析](1)先分别计算有理数的乘方运算、算术平方根、立方根、有理数的除法,再计算有理数的乘法、加减法即可得;(2)先分别计算有理数的乘方运算、绝对值运算、去括号,再计算算术平方根,然后计算二次根式的加减法即可得.[详解](1)原式443362=-+-+⨯39=-+6=;(2)原式1)1=-211=+-2=.[点睛]本题考查了有理数的乘方运算、算术平方根、立方根、二次根式的加减法等知识点,熟记各运算法则是解题关键.17.求下列各式中未知数x 的值:(1)x²-75=6;(2)(2x-1)³=-8 [答案](1)9x =±;(2)12x =-. [解析][分析](1)利用平方根的性质解方程即可;(2)利用立方根的性质解方程即可.[详解](1)2756x -=2675x =+281x =9x =±;(2)3(21)8x -=- 212x -=-221x =-+21x =-12x =-. [点睛]本题考查了利用平方根和立方根的性质解方程,掌握平方根和立方根的性质是解题关键. 18.把下列各数分别填入相应的集合中.35π,3.14,0, 5.12345-,3-(1)有理数集合:{ …};(2)无理数集合:{ …};(3)正实数集合:{ …};(4)整数集合:{ …}.[答案](1)33,9,3.14,2705,-;(2) 5.123453,,π--;(3)3,9,,3.145π;(4)39,27,0-. [解析][分析](1)根据有理数的定义即可得;(2)根据无理数的定义即可得;(3)根据正实数的定义即可得;(4)根据整数的定义即可得.[详解]93=,3273-=-(1)有理数集合:3273,9,3.14,5,0,⎧⎫-⎨⎬⎩⎭(2)无理数集合:{}5.12345,3,,π-- (3)正实数集合:3,9,,3.14,5π⎧⎫⎨⎬⎩⎭ (4)整数集合:{}3927,,,0- 故答案为:(1)33,9,3.14,2705,-;(2) 5.123453,,π--;(3)3,9,,3.145π;(4)39,27,0-. [点睛]本题考查了有理数、无理数、正实数以及整数的定义,掌握实数的概念与分类是解题关键. 19.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30o ,∠EAD 、∠DAC 、∠C 的度数.[答案]30EAD DAC C ∠=∠=∠=︒[解析][分析]根据角平分线、平行线的性质即可得到结果.[详解]解:∵AD ∥BC (已知),∴∠EAD=∠B=30°(两直线平行,同位角相等).∵AD 平分∠EAC (已知),∴∠DAC=∠EAD=30°(角平分线的定义).∴∠C=∠DAC=30°(两直线平行,内错角相等).[点睛]此题主要考查学生对平行线的性质及角平分线的定义的理解及运用能力.20.已知2a+1的平方根是±3,b+8的算术平方根是4,求:b-a 的平方根.[答案]±2.[解析][分析]先根据平方根和算术平方根的性质分别求出a 、b 的值,再代入求解可得b a -的值,然后根据平方根的性质即可得.[详解]由题意得:2221398416a b ⎧+==⎨+==⎩解得48a b =⎧⎨=⎩则844b a -=-=因为4的平方根为2±所以b a -的平方根为2±.[点睛]本题考查了平方根和算术平方根的性质,熟练掌握平方根和算术平方根的性质是解题关键. 21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,ABC 的顶点都在格点上,建立平面直角坐标系,(1)点A 的坐标为______,点C 的坐标为______;(2)将ABC 先向右平移2个单位长度,再向下平移3个单位长度,请画出平移后的111A B C △,并分别写出点A 1、B 1、C 1的坐标;(3)求111A B C △的面积.[答案](1)(2,5)-,(3,3);(2)图见解析,111(0,2),(3,5),(5,0)A B C --;(3)20.5.[解析][分析](1)直接根据点A 、C 在平面直角坐标系中的位置即可得;(2)先根据点坐标的平移变化规律得出点111,,A B C 的坐标,再描点、顺次连接即可得;(3)如图(见解析),利用大长方形的面积减去三个直角三角形的面积即可得.[详解](1)由点A 、C 在平面直角坐标系中的位置得:点A 的坐标为(2,5)A -,点C 的坐标为(3,3)C 故答案为:(2,5)-,(3,3);(2)由点B 在平面直角坐标系中的位置得:点B 的坐标为(5,2)B --由点坐标的平移变化规律得:111(22,53),(52,23),(32,33)A B C -+--+--+-即111(0,2),(3,5),(5,0)A B C --再描点、顺次连接即可得到111A B C △,如图所示:(3)由点111,,A B C 的坐标得:1111117,8,3,5,2,5DB FB DA EA EC FC ======则1111111111D A B C DEFB A B B C A C F E S S S S S =---11111111111222DB FB DB DA FB FC EA EC =⋅-⋅-⋅-⋅ 11178738552222=⨯-⨯⨯-⨯⨯-⨯⨯ 20.5=即111A B C △的面积为20.5.[点睛]本题考查了平移作图、点坐标等知识点,掌握平移作图的方法是解题关键.22.已知平面直角坐标系中有一点()M 2m 3,m 1-+.(1)点M 到y 轴的距离为1时,M 的坐标?(2)点()N 5,1-且MN//x 轴时,M 的坐标?[答案](1) (﹣1,2)或(1,3)(2) (﹣7,﹣1)[解析]分析:(1)根据题意可知2m -3的绝对值等于1,从而可以得到m 的值,进而得到件M 的坐标;(2)根据题意可知点M 的纵坐标等于点N 的纵坐标,从而可以得到m 的值,进而得到件M 的坐标. 详解:((1)∵点M (2m -3,m +1),点M 到y 轴的距离为1,∴|2m -3|=1,解得:m = 1或m =2,当m =1时,点M 的坐标为(﹣1,2),当m =2时,点M 的坐标为(1,3);综上所述:点M 的坐标为(﹣1,2)或(1,3);(2)∵点M (2m -3,m +1),点N (5,﹣1)且MN ∥x 轴,∴m +1=﹣1,解得:m =﹣2,故点M 的坐标为(﹣7,﹣1).点睛:本题考查了点的坐标,解题的关键是明确题意,求出m 的值.23.如图,∠1=∠ABC,∠2=∠3,FG⊥AC于F,判断BE与AC有怎样的位置关系,并说明理由.[答案]BE⊥AC,理由见解析[解析]试题分析:首先根据∠1=∠ABC,判定DE∥BC,又有∠2=∠EBC,而∠2=∠3,得∠3=∠EBC,再判定FG∥BE,从而得到BE与AC的位置关系.试题解析:∵FG⊥AC∴∠GFC=90°∵∠1=∠ABC,∴DE∥BC,∴∠2=∠EBC,而∠2=∠3,∴∠3=∠EBC,∴FG∥BE,∴∠BEC=∠GFC=90°∴BE⊥AC考点:1.平行线的判定与性质;2.垂线.24.(1)请在横线上填写合适的内容,完成下面的证明:如图①如果AB∥CD,求证:∠APC=∠A+∠C.证明:过P作PM∥AB.所以∠A=∠APM,()因为PM∥AB,AB∥CD(已知)所以∠C=()因为∠APC=∠APM+∠CPM所以∠APC=∠A+∠C(等量代换)(2)如图②,AB∥CD,根据上面的推理方法,直接写出∠A+∠P+∠Q+∠C=.(3)如图③,AB∥CD,若∠ABP=x,∠BPQ=y,∠PQC=z,∠QCD=m,则m=(用x、y、z表示)[答案](1)见解析;(2)540°;(3)x﹣y+z.[解析][分析](1)根据平行线的性质可得;(2)过点P作PM∥AB,过点Q作QN∥CD,将∠A、∠P、∠Q、∠C划分为6个3对同旁内角,由平行线的性质可得;(3)延长PQ交CD于点E,延长QP交AB于点F,可得∠BFP=∠CEQ,根据三角形外角定理知∠BFP=∠BPQ-∠B、∠CEQ=∠PQC-∠C,整理后即可得.[详解](1)过P作PM∥AB,所以∠A=∠APM,(两直线平行,内错角相等)因为PM∥AB,AB∥CD (已知)所以PM∥CD,所以∠C=∠CPM,(两直线平行,内错角相等)因为∠APC=∠APM+∠CPM所以∠APC=∠A+∠C(等量代换),故答案两直线平行,内错角相等;∠CPM;两直线平行,内错角相等.(2)如图②,过点P作PM∥AB,过点Q作QN∥CD,∴∠A+∠APM=180°,∠C+∠CQN=180°,又∵AB∥CD,∴PM∥QN,∴∠MPQ+∠NQP=180°,则∠A+∠APQ+∠CQP+∠C=∠A+∠APM+∠MPQ+∠NQP+∠CQN+∠C=540°,故答案为540°.(3)如图③,延长PQ交CD于点E,延长QP交AB于点F,∵AB∥CD,∴∠BFP=∠CEQ,又∵∠BPQ=∠BFP+∠B,∠PQC=∠CEQ+∠C,即∠BFP=∠BPQ﹣∠B,∠CEQ=∠PQC﹣∠C,∴∠BPQ﹣∠B=∠PQC﹣∠C,即y﹣x=z﹣m,∴m=x﹣y+z,故答案为x﹣y+z.[点睛]本题主要考查平行线的性质,作出合适的辅助线将待求角恰当分割是解题的关键.。
重庆八中2023-2024学年度(下)半期考试初一年级数学试题A 卷(100分)一、选择题(本大题共10小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应选项的代号除黑.1.的倒数是( )A. B. C. 2 D. 【答案】C【解析】【分析】本题主要考查了倒数,根据倒数得定义求解即可.【详解】解:的倒数是2,故选:C .2. 下列运算正确的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了单项式乘以单项式,同底数幂的乘法,根据以上运算法则进行计算即可求解.【详解】解:A. ,故该选项不正确,不符合题意;B. ,故该选项不正确,不符合题意;C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选:C .3. 已知球的表面积与它的半径之间的关系式是,其中随的变化而变化,则在这个公式中变量是( )A. , B. , C. D. ,,【答案】B【解析】121212-2-12325a b ab-⋅=428a a a ⋅=224326b b b ⋅=222222a b ab a b ⋅=326a b ab -⋅=426a a a ⋅=224326b b b ⋅=322322a b ab a b ⋅=()2cm S ()cm R 24S Rπ=S R πR S R S S πR【分析】此题主要考查了常量和变量,关键是掌握定义.根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可直接得到答案.【详解】解:中,常量是4,,变量是、,故选:B .4. 已知一个三角形的两边长分别为4cm ,7cm ,则它的第三边的长可能是( )A. 3cmB. 8cmC. 11cmD. 12cm【答案】B【解析】【分析】本题考查三角形的三边关系,熟练掌握三角形两边之和大于第三边,角形的两边差小于第三边是解题的关键.根据三角形两边之和大于第三边,角形的两边差小于第三边,结合选项求解即可.【详解】解:设三角形的第三条边为,,三角形的第三条边长可能是,故选:B .5. 如图是雨伞在开合过程中某时刻的截面图,伞骨,点D ,E 分别是,的中点,,是连接弹簧和伞骨的支架,且,已知弹簧M 在向上滑动的过程中,总有,其判定依据是( )A.B. C. D. 【答案】C【解析】【分析】根据全等三角形判定的“”定理即可证得.【详解】解:∵,点D ,E 分别是,的中点,∴,在和中,24S R π=πS R cm x 311x << ∴8cm AB AC =AB AC DM EM =DM EM ADM AEM △△≌ASA AAS SSS SASSSS ADM AEM △△≌AB AC =AB AC AD AE =ADM △AEM △,∴,故选:C .【点睛】此题主要考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题关键.6. 如图是将一个小长方体铁块固定一个大长方体容器的底部的截面图,现均匀地向这个容器中注水,最后把容器注满,在注水的过程中大长方体水面的高度随时间变化的函数图像大致是( )A. B.C. D.【答案】B【解析】【分析】本题考查了函数的图像,解题的关键数形结合,容器下面一段横截面积小,水位上升快,上面一段横截面积大,水位上升慢,即图像为两段线段,先陡后平.【详解】解:在注水过程中,容器下面一段横截面积小,水位上升快,上面一段横截面积大,水位上升慢,即图像为两段线段,先陡后平,故选:B .7. 若关于的二次三项式是一个完全平方式,那么的值是( )A. B. C. D. 或【答案】D AD AE AM AM DM EM =⎧⎪=⎨⎪=⎩()SSS ADM AEM ≌ h t x ()2216x k x +-+k 6-66±106-【解析】【分析】本题主要考查了完全平方公式,熟练掌握完全平方式是解题的关键.根据和都是一个完全平方式解答即可.【详解】解:和它们都是完全平方式,或,解得:或,故选:D .8. 某校社团课28名学生制作长方体礼品盒,每人每小时可做60个侧面或90个底面,一个礼品盒要一个侧面和两个底面组成,为了使每小时制作的成品刚好配套,应该分配多少名学生做侧面,多少名学生做底面设分配x 名学生做侧面,则可列方程为( )A. B. C.D. 【答案】D【解析】【分析】本题考查了一元一次方程的应用,设分配x 名学生做侧面,根据配套问题, 一个礼品盒要一个侧面和两个底面组成,列出方程,即可求解.【详解】解:设分配x 名学生做侧面,则可列方程为故选:D .9. 如果关于x 的多项式的结果不含项,则m 的值为( )A. 0B. 4C.D. 1【答案】C【解析】【分析】本题主要考查了多项式乘法中的无关型问题,根据多项式乘以多项式的计算法则求出的结果,再根据不含项,即含项的系数为0进行求解即可.【详解】解:2816x x ++2816x x -+ ()224816x x x +=++()226481x x x =-+-∴k -=2828k -=-10k =6k=-()6029028x x =⨯-()609028x x =-()906028x x =-()2609028x x ⨯=-()2609028x x ⨯=-()()2144x x mx +-+2x 14()()2144x x mx +-+2x 2x ()()2144x x mx +-+3224444x mx x x mx =-++-+,∵关于x 的多项式的结果不含项,∴,∴,故选:C .10. 如图,在和中,再添两个条件不能使和全等的是( )A. ,B. ,C. ,D. ,【答案】B【解析】【分析】本题考查了三角形全等的判定方法,根据全等三角形的判定方法分别进行判定即可.【详解】解:A 、∵,∴,又∵,∴,故A 选项不符合题意;B 、 ∵,,,不能根据判定两三角形全等,故B 选项符合题意;C 、∵,,又,∴,故C 选项不符合题意;D 、 ∵,∴,又∵,,∴,故D 选项不符合题意;故选:B .()()3241444x m x m x =--+-+()()2144x x mx +-+2x ()410m --=14m =ABC BDE ABC BDE AB BD =AE DC=AB BD =DE AC =BE BC =E C∠=∠EAF CDF ∠=∠DE AC=AB BD =AE DC=BE BC =B B ∠=∠ABC DBE ≌△△()SAS AB BD =DE AC =B B ∠=∠SSA BE BC =E C ∠=∠B B ∠=∠ABC DBE ≌△△()ASA EAF CDF ∠=∠BAC BDE ∠=∠DE AC =B B ∠=∠()AAS ABC DBE ≌二、填空题(本大题共4小题,每小题4分,共16分)请将每小题的答案直接填写在答题卡中对应的横线上.11. 国家统计局最新数据显示,2024年一季度我国国内生产总值(GDP )为亿元.数用科学记数法可以表示为______.【答案】【解析】【分析】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.科学记数法的表现形式为的形式,其中,为整数,确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同,当原数绝对值大于等于时,是正整数,当原数绝对值小于时是负整数;由此进行求解即可得到答案.【详解】解:,故答案为:.12. 已知,,则______.【答案】【解析】【分析】本题考查同底数幂除法,同底数幂的除法法则:底数不变,指数相减.根据同底数幂的除法法则求解.【详解】解:∵,,∴.故答案为:.13. 如图所示的网格是正方形网格,点,,,均落在格点上,则的度数为______.【答案】【解析】的28499728499752.8499710⨯10n a ⨯110a ≤<n n a n 10n 1n =⨯52.824994997810752.8499710⨯56m =53n =5m n -=256m =53n =5632m n -=÷=2A B C D DCB ACB ∠+∠90︒【分析】本题网格型问题,考查了三角形全等的性质和判定,本题构建全等三角形是关键.证明,得,根据同角的余角相等可得结论.【详解】解:,,,,,,故答案为:.14. 已知一个长方形的周长为,长与宽的平方和为,则该长方形的面积为______.【答案】####【解析】【分析】本题考查了完全平方公式的应用,解题的关键是熟练掌握完全平方公式.设长方形的长、宽分别为、,则,,根据完全平方公式即可求解.【详解】解:设长方形的长、宽分别为、,则,,,,即,解得;,该长方形的面积为,故答案为:.三、解答题(15题共16分每小题4分,16题8分,17题10分,18题10分,共44分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.15. 计算:()SAS DCE ACB ≌DCE ACB ∠=∠ 3AB DE ==5BC EC ==90E ABC ∠=∠=︒∴()SAS DCE ACB ≌∴DCE ACB ∠=∠∴90DCB ACB DCB DCE BCE ∠+∠=∠+∠=∠=︒90︒12251121525.5a b 2225a b +=()212a b +=a b 2225a b +=()212a b +=∴6a b +=∴()a b a b ab +=++=222226ab +=25236112ab =∴112112(1)(2)(3) (4)【答案】(1)(2)(3)(4)【解析】【分析】本题考查了有理数的混合运算,整式的混合运算,解题的关键是熟练的掌握整式的混合运算法则.(1)根据有理数的混合运算法则计算即可;(2)根据平方差公式简算即可;(3)根据整式的乘法法则计算即可;(4)根据积的乘方,平方差和完全平方公式即可求解.【小问1详解】解:小问2详解】【小问3详解】【()2031220263π-⎛⎫++- ⎪⎝⎭2202620252027-⨯()2223a b a b-()()22m n m n -+0132362a b a b -42242m m n n -+()2031220263π-⎛⎫++- ⎪⎝⎭819=+-0=2202620252027-⨯()()220262026120261=--⨯+()22202620261=--1=()2223a b a b -【小问4详解】16. 先化简,再求值:,其中.【答案】,【解析】【分析】本题考查了整式的化简,代数式求值,绝对值的非负性.解题的关键在于对知识的熟练掌握与正确的运算.先利用平方差公式和完全平方公式计算,然后合并同类项,然后计算除法,利用非负数的性质求得a 、b 的值,最后代入数值求解即可.【详解】解:原式∵,且,∴,∴,∴,将,代入上式得222232a b a a b b =⋅-⋅32362a b a b =-()()22m n m n -+()()2m n m n ⎡⎤=-+⎣⎦()222m n =-42242m m n n -=+()()()()223363a b a b a b b ⎡⎤+--+÷-⎣⎦()2120a b +++=533a b +233-()()()()223363a b a b a b b ⎡⎤=+--+÷-⎣⎦()()()2222673623a ab b a ab b b ⎡⎤=+--++÷-⎣⎦()()2593ab b b =--÷-533a b =+()2120a b +++=10a +≥()220b +≥10a +=()220b +=10a +=20b +=1a =-2b =-1a =-2b =-原式.17. 如图,在中,,,过点C 作,连接.(1)基本尺规作图:作,交线段于点F (保留作图痕迹);(2)求证:.解:∵∴___①___(___②___)∵∴在和中∴∴(___④___)【答案】(1)见解析 (2)①;②两直线平行,同帝内角互补;③;④全等三角形的对应边相等【解析】【分析】(1)根据运用作相等角的作图方法画图即可;(2)根据平行线的性质可推出①及②,再根据全等三角形的判定定理和性质可得③④.【小问1详解】()()51323=⨯-+⨯-563=--233=-ABC AB AC =90BAC ∠=︒CE AB ∥AE ABF EAC ∠=∠AC BF AE =CE AB∥90BAC ∠=︒18090ACE BAC BAF∠=︒-∠=︒=∠BAF △ACE △()______BA ACBAF ACE ⎧⎪=⎨⎪∠=∠⎩③()ASA BAF ACE ≌BF AE =180BAC ACE ∠+∠=︒ABF EAC ∠=∠解:如图:即为所求【小问2详解】解:∵∴(两直线平行,同帝内角互补)∵∴在和中∴∴(全等三角形的对应边相等)18. 在中,D 是的中点,;(1)证明:;(2)若,平分,求的度数.【答案】(1)证明见解析(2)【解析】【分析】本题考查了全等三角形的性质与判定,平行线的性质,角平分线的定义,(1)根据平行线的性质可得,,结合,证明,根据全等三角形的性质,即可得证;BAF ∠CE AB∥180BAC ACE ∠+∠=︒90BAC ∠=︒18090ACE BAC BAF∠=︒-∠=︒=∠BAF △ACE △ABF EACBA ACBAF ACE∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BAF ACE ≌BF AE =ABC BC AC BF ∥DE DF ==110BAC ∠︒DB ABF ∠C ∠35︒C FBD ∠=∠F CED ∠=∠CD BD =()AAS CDE BDF ≌(2)根据平行线的性质得出,进而根据平分,即可求解.【小问1详解】证明:∵∴,∵D 是中点∴在和中∴∴【小问2详解】解:∵∴,∵∴∵平分∴B 卷(50分)四、选择题(本大题共2小题,每小题4分,共8分)请将每小题的答案填涂在答题卡中对应的位置.19. 定义新运算:,例如:,若,,,则,的大小关系为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了整式的混合运算,解答的关键是熟练掌握相应的运算法则.先根据新定义的运算求出的值,再比较即可.【详解】解:18070ABF BAC ∠=-∠=︒︒DB ABF ∠AC BF∥C FBD ∠=∠F CED∠=∠BC CD BD=CDE BDF V CED F C FBDCD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS CDE BDF ≌DE DF=AC BF∥C FBD ∠=∠180BAC ABF ∠+∠=︒=110BAC ∠︒18070ABF BAC ∠=-∠=︒︒DB ABF ∠1352C FBD ABF ∠=∠=∠=︒()*a b a a b =+()1*21122=⨯+=1n >*A m mn =*B mn m =A B A B>A B <A B ≤A B ≥A B -()22*A m mn m m mn m m n ==+=+,故选:C .20. (多选)如图,的两条角平分线、相交于点D ,且,过点A 作交的延长线于点M .则下列结论中正确的有( )A. 若,则B.C.D. 【答案】ACD【解析】【分析】本题考查了角平分线的定义,三角形内角和定理,三角形的外角性质.根据角平分线的定义,三角形内角和定理,三角形的外角性质即可求解.【详解】解:A.∵∴∵是的平分线,是的平分线,∴∴又∴()222*B mn m mn mn m m n m n==+=+∴()222221A B m m n m n -=-=- 1n >∴210n -< 20m ≥∴()2210A B m n -=-≤∴A B ≤ABC CF AE 90BAC ∠=︒AM AE ⊥CF =60B ∠︒BFD AEC∠=∠AC AF EC =+2180ADC B ∠-∠=︒12M B ∠=∠90,60BAC B ∠=︒∠=︒30ACB ∠=︒CF ACB ∠AE BAC ∠1115,4522BCF ACB BAE BAC ∠=∠=︒∠=∠=︒6045105AEC B BAE ∠=∠+∠=︒+︒=︒180B BFC BCF ∠+∠+∠=︒1801801560105BFC BCF B ∠=︒-∠-∠=︒-︒-︒=︒∴故选项A 正确;B.无法找出三者关系,故选项B 错误;C.∵是的平分线,是的平分线,∴∴∴∴,故选项C 正确;D.∵∴∵∴,故D 正确;故选:ACD五、填空题(本大题共3小题,每小题4分,共12分)请将每小题的答案直接填写在答题卡中对应的横线上.21. 关于的一元一次方程的解为整数,则所有整数的和为______.【答案】【解析】【分析】此题考查了一元一次方程的解,方程去分母,去括号,移项合并,把的系数化为1,表示出方程的解,由方程的解为整数,确定出整数的值即可.【详解】解:BFC AEC ∠=∠AC AF EC 、、CF ACB ∠AE BAC ∠11,22DAC BAC DCA BCA ∠=∠∠=∠()111222DAC DCA BAC BCA BAC BCA ∠+∠=∠+∠=∠+∠()()11801802ADC DAC DCA BAC BCA ∠=︒-∠+∠=︒-∠+∠()11801802B =︒-︒-∠1902B =︒+∠2180ADC B ∠-∠=︒AM AE⊥90ADC M∠=︒+∠1902ADC B ∠=︒+∠12M B ∠=∠x 132kx x -+=k 8x k 132kx x -+=kx x-+=162kx x -=-25()k x -=-25x k =--52解为整数,或或或,则所有整数的和为,故答案为:.22. 若,,则______.【答案】3【解析】【分析】本题主要考查了完全平方公式的应用、非负数的性质、乘方等知识点,根据题意推出,求得a 、c 的值成为解题的关键.由可得,再代入可得,根据非负数的性质可得,最后代入即可解答.【详解】解:∵,∴,∴,∴,即,∴.故答案为3.23. 在中,于E ,于D ,交于F ,平分交延长线于M ,连接,.若,,,则______.∴3k =7k =3k =-1k =k ++-=3713886a b -=22100ab c c +-+=c a =()()22310a c -+-=6a b -=6b a =-22100ab c c +-+=()()22310a c -+-=3,1a c ==c a 6a b -=6b a =-()262100a a c c -+-+=2262100a a c c -+-+=2269210a a c c -++-+=()()22310a c -+-=3010a c -=-=,31a c ==,133c a ==ABC CE AB ⊥AD BC ⊥CE AD EM BEC ∠AD BM CM 180DFC ABM ∠+∠=︒52BE AE =5AEF S =△EMC S =【答案】【解析】【分析】本题考查了全等三角形的判定和性质,根据题意证明,,,得出,.进而根据得出,,根据得出,根据,即可求解.【详解】解:∵,∴,∵平分∴,又∵∴,∴∵于E ,于D ,∴,,∴又∵∴∵,,∴,.∵,253BEM EFM △≌△AEF CEB ≌BE EF =AE EC =5AEF S =△5AE =103BEM EFM S S ==△△23FFM FMC S EF S FC ==△△352MFC EFM S S ==△△EMC EFM FMC S S S =+△△△180DFC ABM ∠+∠=︒180DFC DFE ∠+∠=︒MFE MBE ∠=∠EM BEC∠BME FME ∠=∠ME ME=BEM EFM △≌△()SAS EB EF=CE AB ⊥AD BC ⊥EAF ABC ECB ABC ∠+∠=∠+∠90AEF CEB ∠=∠=︒EAF ECB∠=∠EB EF=()AAS AEF CEB ≌BEM EFM △≌△AEF CEB ≌BE EF =AE EC =52BE AE =∴.∴.∴.∴,.∴.∵,∴.∵,∴,∴.故答案为:.六、解答题(24题10分,25题10分,26题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.24. 已知甲、乙两地相距10千米,小诚从乙地出发,匀速骑行至甲地,在甲地休息一段时间后,便以原速度的匀速返回乙地.小诚从乙地出发10分钟后,小勤从甲地出发至乙地,小勤先匀速步行至两地中点,再从中点匀速慢跑至乙地,最后两人同时到达乙地.在运动过程中,小诚和小勤距甲地的距离y (千米)与小勤出发的时间x (小时)的关系如图所示,请结合图象信息解答下列问题:(1)小勤出发时,小诚骑行路程为______千米,小勤出发______小时后步行至甲、乙中点,小诚从乙地25BE AE EF ==1125225AEF S AE EF AE AE =⋅=⋅=△5AE =2BE EF ==5AE EC ==523FC EC EF =-=-=52AEM AEF FFM BEM BEM S AE S S S BE S +===△△△△△103BEM EFM S S ==△△23FFM FMC S EF S FC ==△△352MFC EFM S S ==△△1025533EMC EFM FMC S S S =+=+=△△△25345到甲地的骑行速度为______千米/小时,小勤的步行速度为______千米/小时;(2)写出小勤距甲地的距离y (千米)和x (小时)的关系式;(3)小勤出发多少小时后,两人在小勤未到达甲、乙中点前相距500米.【答案】(1);1;;(2) (3)或【解析】【分析】本题考查了根据函数图象获取信息,一元一次方程的应用;(1)根据函数图象小诚骑行路程为 千米,小勤先匀速步行至两地中点,再从中点匀速慢跑至乙地,小诚从乙地出发10分钟后,小勤从甲地出发至乙地,可得小诚的速度,小勤1小时步行千米,可得小勤的步行速度,即可求解;(2)根据(1)的分析,根据路程等于速度乘以时间,分段写出关系式,即可求解;(3)设小勤出发t 小时后,两人在小勤未到达甲、乙中点前相距米.分量种情况讨论,结合题意列出一元一次方程,即可求解.【小问1详解】解:小勤出发时,小诚骑行路程为 千米,小勤先匀速步行至两地中点,再从中点匀速慢跑至乙地,根据函数图象可得,小勤出发小时后步行至甲、乙中点,小诚从乙地出发10分钟后,小勤从甲地出发至乙地,千米/小时,小勤1小时步行千米,则千米/小时;∴小诚从乙地到甲地的骑行速度为千米/小时,小勤的步行速度为千米/小时;故答案为:;1;;.【小问2详解】解:小诚从乙地出发,匀速骑行至甲地,在甲地休息一段时间后,便以原速度的匀速返回乙地.由(1)可得返回的速度为千米/小时,2.5155()501116116x x y x x ⎧≤≤⎪=⎨⎛⎫-<≤ ⎪⎪⎝⎭⎩720252.55500107.5 2.5-= 2.51107.5151060-=5551=1552.515545415125⨯=则所用时间为/小时,∵两人同时到达乙地.∴所用时间为∴当时,;当时,小勤的速度为:千米/小时,∴∴【小问3详解】设小勤出发t 小时后,两人在小勤未到达甲、乙中点前相距米.或解得:或答:小诚出发或小时后,两人在小勤未到达甲、乙中点前相距米.25. 我国南宋时期有一位杰出的数学家杨辉,如图所示的图表是他在《详解九章算术》中记载的“杨辉三角”.第一行第二行 各项系数和为第三行 各项系数和为第四行 各项系数和为……………………此图揭示了(n 为非负整数)的展开式的项数及各项系数的有关规律,请根据上述规律,解决以下问题:(1)多项式展开式共有______项,第二项的系数为______,各项系数和为______;105126=511166+=01x ≤≤5y x =1116x <≤510266÷÷=()56161y x x =+-=-()501116116x x y x x ⎧≤≤⎪=⎨⎛⎫-<≤ ⎪⎪⎝⎭⎩5002.5150.5510t t +++= 2.5150.5510t t +-+=720t =25t =720255001()01a b +=11()1a b a b +=+112+=121()2222a b a ab b +=++1214++=1331()3322333a b a a b ab b +=+++13318+++=()n a b +()7a b +(2)如图,在“杨辉三角”中,选取部分数1,3,6,……,记,,……请完成下列问题:①计算;②计算;③请直接写出的值.【答案】(1)8,7,128(2)①357;②;③4051【解析】【分析】本题考查数字变化类,多项式的乘法;(1)根据“杨辉三角”中第三行中的数据,将展开后,各项的系数和所呈现的规律进行计算即可.(2)①根据规律得出,进而将代入进行计算即可求解;②将已知式子裂项为,即可求解;③根据进行计算即可求解.【小问1详解】根据“杨辉三角”可知,第2行,展开后,各项系数和为,第3行,展开后,各项的系数和为,第4行,展开后,各项的系数和为,的11a =23a =36a =326a a +1250111a a a ++⋅⋅⋅+20262024a a -10051()n a b +()12n n n a +=3,26n =125011122212235051a a a ++⋅⋅⋅+=++⋅⋅⋅+⨯⨯⨯()()2026202412026202612024202412a a -=⨯+-⨯+⎡⎤⎣⎦1()a b +122()a b +212142++==3()a b +3133182+++==第5行,展开后,各项系数和为,第6行,展开后,各项的系数和为,第7行,展开后,各项的系数依次为、、、、、、,各项的系数和为第8行, 展开后,各项的系数依次为、、、、、、、各项的系数和为展开后,各项的系数和为,∴多项式展开式共有项,第二项的系数为,各项系数和为128;故答案为:8,7,128.【小问2详解】①由题意得:、、∴∴②由题意得:、、∴∴的4()a b +414641162++++==5()a b +515101051322+++++==6()a b +161520156161615201561642++++++==()7a b +17213535217171721353521711282+++++++==()n a b +2n ()7a b +8711a =2123a =+=31236a =++=()1122n n n a n +=++⋅⋅⋅+=()()32633126261635135722a a ⨯+⨯++=+=+=11a =2123a =+=31236a =++=()1122n n n a n +=++⋅⋅⋅+=125011122212235051a a a ++⋅⋅⋅+=++⋅⋅⋅+⨯⨯⨯111212235051⎛⎫=++⋅⋅⋅+ ⎪⨯⨯⨯⎝⎭111111212235051⎛⎫=-+-+⋅⋅⋅+- ⎪⎝⎭12151⎛⎫=- ⎪⎝⎭③26. 已知,,.(1)如图1,求证:;(2)如图2,若,点,分别在,上,连接,过点作于点,过点作交的延长线于点,连接,求证:;(3)如图3,若,延长和相交于点,过点作于点,若,,求的长.【答案】(1)证明见解析(2)证明见解析(3)【解析】【分析】(1)根据题意证明,根据全等三角形性质即可解答;(2)过点作于点,延长交于点,证明,得到,,再证明得到,即可求解;(3)过点作于点,证明得到,,,推出,再证明,得到,,推出的50251=⨯10051=()()2026202412026202612024202412a a -=⨯+-⨯+⎡⎤⎣⎦()22120262026202420242=+--()120262024222=+⨯+⎡⎤⎣⎦4051=AB AC =AD AE =BAC DAE ∠=∠BD CE =90BAC ∠=︒D E AB AC BE D DH BE ⊥H A AF BC ∥HD F BF BF DF BE +=90BAC ∠=︒BD EC F A AQ BD ⊥Q 2.4FC =7.6BF =BQ 2.6BQ =BAD CAE ≌△△A AM DE ⊥M AM BE N AEN ADF ≌ EN DF =AN AF =BAN BAF ≌ BN BF =A AG EF ⊥G ABD ACE △△≌BD CE =ABD ACE ∠=∠ABD ACE S S = AQ AG =AQB AGC ≌ BQ CG =BAQ CAG ∠=∠,可证明四边形为正方形,得到,设,则,根据列方程,即可求解.【小问1详解】证明:,,,,,,;【小问2详解】如图2,过点作于点,延长交于点,,,,,,,,,,,,,,∵,即,在和中,90QAG ∠=︒AGFQ FG FQ =BQ CG x ==2.4FQ FG CF CG x ==+=+BF BQ FQ =+ BAC DAE ∠=∠∴BAD DAC CAE DAC ∠+∠=∠+∠∴BAD CAE ∠=∠ AB AC =AD AE =∴()SAS BAD CAE ≌∴BD CE =A AM DE ⊥M AM BE N 90BAC ∠=︒AB AC =∴45ABC ACB ∠=∠=︒ 90BAC DAE ∠=∠=︒AD AE =AM DE ⊥∴45DAN EAN ∠=∠=︒ AF BC ∥∴45DAF ABC ∠=∠=︒∴45EAN DAF ∠=∠=︒ 90DHB BAE ∠=∠=︒DBH EBA ∠=∠∴BDH BEA ∠=∠BDH ADF∠=∠∴ADF BEA ∠=∠ADF AEN ∠=∠AEN △ADF △,,,,在和中,,,,,,,,即;【小问3详解】如图3,过点作于点,,,,在和中,,,,,,,EAN DAF AE ADAEN ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AEN ADF ≌∴EN DF =AN AF =BAN BAF △45AN AF BAN BAF AB AB =⎧⎪∠=∠=︒⎨⎪=⎩∴()SAS BAN BAF ≌∴BN BF = BE BN EN =+BN BF =EN DF =∴BE BF DF =+BF DF BE +=A AG EF ⊥G 90BAD DAC ∠+∠=︒90CAE DAC ∠+∠=︒∴BAD EAC ∠=∠ABD △ACE △AB AC BAD EAC AD AE =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABD ACE ≌∴BD CE =ABD ACE ∠=∠ABD ACE S S = ∴1122BD AQ CE AG =,在和中,,,,,,,即,,,四边形为矩形,,四边形为正方形,,设,则,,,,.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,正方形的判定与性质,平行线的性质,解题的关键是灵活运用这些知识.∴AQ AG =AQB AGC AQ AG AB AC =⎧⎨=⎩∴()HL AQB AGC ≌∴BQ CG =BAQ CAG ∠=∠ 90BAQ QAC ∠+∠=︒∴90CAG QAC ∠+∠=︒90QAG ∠=︒ AQ BF ⊥AG EF ⊥∴AGFQ AQ AG =∴AGFQ ∴FG FQ =BQ CG x == 2.4FQ FG CF CG x ==+=+ BF BQ FQ =+∴7.6 2.4x x =++∴ 2.6x =∴ 2.6BQ =。
7下数学试题一、细心选一选(本题有10个小题, 每小题3分, 满分30分 ,下面每小题给出的四个选项中, 只有一个是正确的.) 1. 下列图形中能够说明12∠>∠的是( )A. B. C. D. 2. 下列命题中的真命题是( )A .邻补角互补B .两点之间,直线最短C .同位角相等D .同旁内角互补3. 如右图所示 ,小手盖住的点的坐标可能为( )A .(5,2)B .(4,-3)C .(-3,-4)D .(-5, 2)4.不能成为某个多边形的内角和的是( )A .360°B .540°C .720°D .1180° 5.下列说法错误的是( )A .三角形的中线、角平分线、高线都是线段 B. 三角形按角分类可分为锐角三角形和钝角三角形 C.三角形中的每个内角的度数不可能都小于600D. 任意三角形的内角和都是180°6.一辆汽车在笔直的公路上行驶,两次拐弯后,在原来的反方向上平行行驶,那么汽车两次拐弯的角度是( ) A .第一次右拐60°,第二次左拐120° B .第一次左拐70°,第二次右拐70°C .第一次左拐65°,第二次左拐115°D .第一次右拐50°,第二次右拐50° 7.如右图所示,PO ⊥RO ,OQ ⊥PR ,则表示点到直线(或线段)的距离,共有( )线段的长度A. 2条B.3条C.4条D.5条 8. 由123=-yx ,用含x 的式子表示y 的结果是( ) A. 322-=x y B. 3132-=x y C. 232-=x y D. 322xy -=9. 如图所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点 (3,-2)上,则○炮位于点( )A.(-1,1)B.(-2,1)C.(-1,2)D.(-2,2)10. 用一条长为15㎝的细绳围成一个等腰三角形,如果它的三边都为整数,满足条件的不同的等腰三角形有( )个A .3B .4C .5D .6 二、耐心填一填(本题有8个小题,每小题2分, 满分16分)11.如下图所示,AB ‖CD,点E 在CB 的延长线上,若∠ABE=600,则∠ECD 的度数为 .12.已知△ABC 的三个内角的度数比为3:4:5,则这个三角形的最大内角的度数为 .13.平面直角坐标系中,点A 与点B 的横坐标相等且不为0,则直线AB 与y 轴的关系是: . 14.平面直角坐标系中,长为4的线段CD 在y 轴的正半轴上,且点C 的坐标为(0,3),则点D 的坐标为 . 15在①正方形、②正六边形、③正七边形、④正八边形中,选一种能铺满地面的正多边形是_____(只填代号). 16. 如图,小亮从A 点出发前进10m ,向右转150,再前进10m ,又向右转150,这样一直走下去,他第一次回到出发点A 时,一共走了___________m 。
17. 一个角的两边分别平行于另一个角的两边,且一个角的度数比另一个角的度数的2倍少180,则这两个角的度数分别为 .18. 某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如 右图所示,则购买地毯至少需要__ ___元.三、用心答一答(本大题有7小题, 共74分,解答要求写出文字说明, 证明过程或计算步骤) 19.(扩展)解方程组:(第①小题4分,第②小题5分)①⎩⎨⎧-=--=124y x x y ②⎩⎨⎧=-=+115332y x y x (用加减消元法)20. 如图EF ∥AD ,∠1=∠2,∠BAC=70 o,求∠AGD.(每填一处1分,计9分) 解: ∵EF ∥AD (已知)∴∠2= ( )又∵∠1=∠2(已知)∴∠1=∠3 ( )∴AB ∥ ( )∴∠BAC+ =180 o()∵∠BAC=70 o(已知)21. 如图,直角坐标系中,△ABC 的顶点都在网格点上,其中,C 点坐标为(1 ,2),(1)将△ABC 先向右平移1个单位长度,再向上平移1个单位长度,得到△A 'B 'C ',在图中画出△A 'B 'C '.(6分)(2)求出△A 'B 'C '的面积.(5分)22.(10分)初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。
问一共多少名学生、多少辆汽车?23. 如图所示,AD 为△ABC 的中线,BE 为△ABD 的中线. (1)∠ABE=15°,∠BAD=40°,求∠BED 的度数;(2分) (2)在△BED 中作BD 边上的高;(2分)(3)若△ABC 的面积为40,BD=5,则△BDE 中BD 边上的高为多少?(6分)24. 已 知:如图所示,∠ABF=∠DCE ,∠E=∠F试说明:DC ∥AB (11分)(提示:考虑添加适当的辅助线) y O A BC x25.如图①所示,点O 是△ABC 的内角∠ABC ,∠ACB 平分线的交点;如图②所示,点O 是△ABC 的内角∠ABC 和外角∠ACE 的平分线的交点;如图③所示,点O 是△ABC 的外角∠EBC 和外角∠BCF 的平分线的交点① ②③ (1)请找出每个图形中∠O 与∠A 的关系(6分) ① ② ③(2)请选择你所发现的②、③中的一个结论加以证明,并求出当∠A=600时,∠O 的度数.(8分)26.(12分)已知:在如图①至图③中,△ABC 的面积为a ,解答下面各题:(1)如图1,延长△ABC 的边BC 到点D ,使CD=BC ,连接DA .若△ACD 的面积为S 1,则S 1=_________(用含a 的代数式表示);(2)如图2,延长△ABC 的边BC 到点D ,延长边C A 到点E ,使CD=BC ,AE=CA ,连接DE .若△DEC 的面积为S 2,则S 2=_________(用含a 的代数式表示);(3)在图2的基础上延长AB 到点F ,使BF=AB ;连接FD ,FE ,得到△DEF (如图3).若阴影部分的面积为S 3,求S 3的大小(用含a 的代数式表示);(4)像上面那样,将△ABC 各边均顺次延长一倍,连接所得端点,得到△DEF (如图3),此时我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的多少倍?27.(12分)如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上的一个点,PE ⊥AD 交直线BC 于点E .(1)若∠B=30°,∠ACB=70°,则∠ADC=_________,∠E=_________; (2)若∠B=58°,∠ACB=102°,则∠ADC=_________,∠E=_________; A BCOO A BC E F初一级下中段质量检测数学答案题号 1-10 11-18 19 20 21 22 23 24 25 总分 得分一、单选题题号 1 2 3 4 5 6 7 8 9 10 答案CADDBCDCBB二、填空题 题号11 12 13 14 15 16 17 18答案1200750平行(0,7)①②240180,180 或660,1140672注:第15、17题填对一种情况得1分,有错误不得分。
其它小题的细节(有无单位)不扣分。
19. (1)⎩⎨⎧-=--=124y x x y (2)⎩⎨⎧=-=+115332y x y x解:把方程①代入方程②,得 解:①×5+② 得 2613=x ……2分 1)4(2-=--x x ……1分 2=x ……3分 33=x 把2=x 代入① 得 1-=y ……4分 1=x ……2分把1=x 代入①,得3=y ……3分∴方程组得解为:⎩⎨⎧==31y x ……4分 ∴方程组得解为:⎩⎨⎧-==12y x ……5分(先消x 的请参照给分)①① ② ②22.解:设一共有x 名学生,y 辆汽车依题意,得 ……………1分(注意单位) ⎩⎨⎧-=+=)1(601545y x y x ……………5分(列对方程,设这一步才给分) 解得:⎩⎨⎧==5240y x ………………9分(求错一个值不得分)答:一共有240名学生,5辆汽车.(前面做对,答这一步才有效)……………10分 (如果列一元一次方程求解全对得9分) 20.解: ∵EF ∥AD (已知) ∴∠2= ∠3 (两直线平行,同位角相等)又∵∠1=∠2(已知) ∴∠1=∠3 (等量代换)∴AB ∥ DG (内错角相等,两直线平行) ∴∠BAC+ ∠AGD =180 o (两直线平行,同旁内角互补) ∵∠BAC=70 o (已知) ∴∠AGD=1800- ∠BAC =1800-700=1100 (或只填1100)(等式性质或等量代换均不扣分) (每处1分)21. (1) 解:如图所示有所交待1分 画对图形,标上顶点5分 不标全顶点扣1分,画错一个顶点不得5分,算全错。
△A 'B 'C '即为所求. (2 ) 24211321132143,,,⨯⨯-⨯⨯-⨯⨯-⨯=∆C B A S=12-3-4 只要有过程得3分,结果2分。
=523.解:(1)∵ ∠ABE=15°,∠BAD=40°(已知)又∵∠BED=∠ABE+∠BAD (三角形的一个外角等于和它不相邻的两个内角之和)∴∠BED=150+400=550 ……………2分(不写理由不扣分)(2)如图所示,线段EF 即为所求………………3分 (画图准确1分,不标垂直符号不得这一分)(3)∵线段AD 为△ABC 的中线∴ABC ABD S S ∆∆=21……………………… 5分 同理可得 ABD BDE S S ∆∆=21…………………6分∴ABC BDE S S ∆∆=41…………………7分∴404121⨯=∙∙=∆EF BD S BDE …………9分EF=4 ………… 10分24. 方法一 证明: 连接BC …………………………1分∵ ∠E=∠F (已知)∴EC ∥BF (内错角相等,两直线平行)……4分 ∴∠3=∠1(两直线平行,内错角相等)……6分 ∵∠4=∠2(已知)∴∠3+∠4=∠1+∠2(等式的性质) 即 ∠DCB=∠ABC ………9分 ∴DC ∥AB (内错角相等,两直线平行) ……11分方法二 证明:延长DC ,BF 交于点H ………………1分 ∵∠1=∠2(已知)∴EC ∥BF (内错角相等,两直线平行)……4分 ∴∠3=∠H (两直线平行,同位角相等)……6分 ∵∠3=∠4(已知)∴∠H=∠4(等量代换) ………9分 ∴DC ∥AB (内错角相等,两直线平行) ……11分如果延长CE ,AB 交于点H 参照方法二给分25. ABCOO ABCEF① ② ③解:(1)① ∠O=900+21∠A ……………………2分②∠0=21∠A ……………………4分 ③ ∠O=900-21∠A ……………………6分 (2)选择②加以证明证明:∵CD 平分∠ACE (已知)∴∠ACE=2∠4(角平分线定义) ………8分 ∵∠ACE=∠A+∠1+∠2∠4=∠2+∠O (三角形的一个外角等于和它不相邻的两个内角之和)∴∠A+∠1+∠2=2∠2+2∠O (等量代换) ……10分 ∵BD 平分∠ABC (已知)∴∠1=∠2(三角形内角平分线定义)∴∠0=21∠A (等式的性质) ……11分 当∠A=600时,∠0=21∠A=06021 =300 ……14分选择③加以证明证明:∵∠1+∠2=∠6+∠A∠3+∠4=∠5+∠A (三角形的一个外角等于和它不相邻的两个内角之和) ∴∠1+∠2+∠3+∠4=∠6+∠A+∠5+∠A (等式的性质) ………8分 ∵OB 平分∠EBC ,OC 平分∠BCF (已知)。