第6章 交直交变频电路基础
- 格式:ppt
- 大小:2.25 MB
- 文档页数:25
交-直-交变频电路一、交-直-交变频电路变速调频系统中的电力电子变流器,除了由交-交变频器外,使用最广泛的是交-直-交变频器。
交-直-交变频器先将交流电整流为直流电,再将直流电逆变为交流电,因此这类电路又称为间接交流变流电路。
整流器逆变器AC 输入DC DCAC输出整流器为二极管三相桥式不控整流器或大功率组成的全控整流器;逆变器是大功率晶体管组成的三相桥式电路,其作用正好与整流器相反,它是将恒定的直流电交换为可调电压,可调频率的交流电;滤波器是用电容器或电抗器对整流后的电压或电流进行滤波。
当负载电动机需要频繁、快速制动时,通常要求具有再生反馈电力的能力。
整流电路:采用的是不可控整流,它和电容器之间的直流电压和直流电流极性不变,只能由电源向直流电路输送功率,而不能由直流电路向电源反馈电力。
不能再生反馈的电压型间接交流变流电路逆变电路:能量是可以双向流动的,若负载能量反馈到中间直流电路,而又不能反馈回交流电源,这将导致电容电压升高,称为泵升电压,泵升电压过高会危及整个电路的安全。
不能再生反馈的电压型间接交流变流电路电路中加入一个由电力晶体管V0和能耗电阻R0组成的泵升电压限制电路,当泵升电压超过一定数值时,使V0导通,把从负载反馈的能量消耗在R0上,这种电路可运用于对电动机制动时间有一定要求的调速系统中。
带有泵升电压限制电路的电压型间接交流变流电路利用可控变流器实现再生反馈的电压型间接交流变流电路电路增加了一套变流电路,使其工作于有源逆变状态,可实现电动机的再生制动;当负载回馈能量时,中间直流电压极性不变,而电流反向,通过控制变流器将电能反馈回电网。
三、交-交变频电路与交-直-交变频电路比较变频电路类型比较内容交-交型交-直-交型换能形式一次换能,效率高两次换能,效率较低换流方式电网电压自然换流强迫或负载换流,或自关断器件使用器件数量多,利用率低较少,利用率高调频范围电网频率无限制输入功率因数较低一般相控调压时,低频低压时低;不控整流时(PWM逆变)较高适用场合低速、大功率交流电机拖动系统各种交流电机拖动系统,稳压和不停电电源交-交变频电路与交-直-交变频电路比较四、小结THANK YOU。
交-交变频器和交直交变频器的工作原理理论说明1. 引言1.1 概述交流变频器和交直交变频器作为电力调节装置在现代工业领域具有广泛的应用。
它们通过控制电压和频率来实现对电动机转速的调节,从而满足不同工况下的需求。
本文将深入探讨这两种变频器的工作原理及其理论说明。
1.2 文章结构本文将分为五个部分进行阐述。
第一部分为引言,介绍文章的背景和目标;第二部分将详细阐述交流变频器的工作原理,包括基本原理、输入输出特性以及控制策略;第三部分将重点讲解交直交变频器的工作原理,包括脉宽调制技术、桥式整流器以及逆变器设计;第四部分将通过建立数学模型并进行系统特性分析,展示这些变频器工作原理的模拟与分析过程;最后一部分是结论,总结文章要点并展望这些变频器在未来的研究意义与发展前景。
1.3 目的本文旨在全面了解和揭示交流变频器和交直交变频器的工作原理,并通过数学模型建立与系统特性分析来更好地理解其原理与工作机制。
通过本文的阅读,读者将能够深入了解交流变频器和交直交变频器在工业领域中的应用以及其对电动机的调节控制效果,为相关技术的研究和实践提供有益参考。
这样会清晰重点说明引言部分的内容。
2. 交流变频器的工作原理:2.1 基本原理:交流变频器是一种电力调节设备,用于将固定频率和振幅的交流电转换为可调节频率和振幅的交流电。
其基本原理是通过控制电压和频率来实现对电机转速的调节。
在交流变频器中,主要由三个部分组成:整流器、逆变器和中间直流环节。
整流器将交流电源转换为直流,并通过逆变器将直流电源再次转换为可调节的交流电源。
2.2 输入输出特性:交流变频器通常具有宽输入电压范围和高输出功率因数。
可以接受不同工作条件下的输入,如不同的供应电压、负载波动等,并产生稳定且可调节的输出。
其中,输入特性包括输入相位角、输入功率因数等;输出特性包括额定输出功率、容量因数、效率等。
这些特性决定了交流变频器在工业应用中的适用性以及对于不同负载情况下的响应能力。
交直交变频器电路原理图分析导语:交-交变频器也叫周波变换器,是把电网固定频率的交流电,经过功率半导体电路直接转变为频率可调的交流电的过程。
交-交变频器也叫周波变换器,是把电网固定频率的交流电,经过功率半导体电路直接转变为频率可调的交流电的过程。
它不同于普通的变频器,没有交流整流到直流再逆变成交流的环节,是交-交变换的结构,这种技术一般用在大型功率装置上变频器(Variable-frequencyDrive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。
变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。
变频器靠内部IGBT 的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。
随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
交直交变频器电路原理图解析交直交变频器的工作原理是借助微电子器件、电力电子器件和控制技术,先将工频电源经过二极管整流成直流电,再由电力电子器件把直流电逆变为频率可调的交流电源。
交直交变频器工作原理图如下所示:由图可知,变频器由主电路(包括整流器、中间直流环节、逆变器)和控制回路组成。
各部分的功能如下:1.整流器它的作用是把三相(或单相)交流电源整流成直流电。
在SPWM变频器中,大多采用全波整流电路。
大多数中、小容量的变频器中,整流器件采用不可控的整流二极管或者二极管模块。
2.逆变器它的作用与整流器相反,是将直流电逆变为电压和频率可变的交流电,以实现交流电机变频调速。
逆变电路由开关器件构成,大多采用桥式电路,常称逆变桥。
在SPWM变频器中,开关器件接受控制电路中SPWM调制信号的控制,将直流电逆变成三相交流电。
3.控制电路这部分电路由运算电路、检测电路、驱动电路、保护电路等组成,一般均采用大规模集成电路。
第六章交流—交流(AC—AC)变换AC—AC变换是一种可以改变电压大小、频率、相数的交流—交流电力变换技术。
只改变电压大小或仅对电路实现通断控制而不改变频率的电路,称为交流调压电路和交流调功电路、或交流无触点开关。
从一种频率交流变换成另一种频率交流的电路则称为交—交变频器,它有别于交—直—交二次变换的间接变频,是一种直接变频电路。
为了解决相控式晶闸管型交—交变频器输入、输出波形差、谐波严重的弊病,在基于双向自关断功率开关的基础上目前正在研究一种所谓的矩阵式变换器,它是一种具有十分优良输入、输出特性的特殊形式交—交变频器。
本章将分节介绍交流调压(交流调功或交流无触点开关)、交—交变频及矩阵式变换器的相关内容。
6.1 交流调压电路交流调压电路采用两单向晶闸管反并联(图6-1(a))或双向晶闸(图6-1(b)),实现对交流电正、负半周的对称控制,达到方便地调节输出交流电压大小的目的,或实现交流电路的通、断控制。
因此交流调压电路可用于异步电动机的调压调速、恒流软起动,交流负载的功率调节,灯光调节,供电系统无功调节,用作交流无触点开关、固态继电器等,应用领域十分广泛。
图6-1 交流调压电路交流调压电路一般有三种控制方式,其原理如图6-2所示。
图6-2 交流调压电路控制方式(1)通断控制通断控制是在交流电压过零时刻导通或关断晶闸管,使负载电路与交流电源接通几个周波,然后再断开几个周波,通过改变导通周波数与关断周波数的比值,实现调节交流电压大小的目的。
通断控制时输出电压波形基本正弦,无低次谐波,但由于输出电压时有时无,电压调节不连续,会分解出分数次谐波。
如用于异步电机调压调速,会因电机经常处于重合闸过程而出现大电流冲击,因此很少采用。
一般用于电炉调温等交流功率调节的场合。
(2)相位控制与可控整流的移相触发控制相似,在交流的正半周时触发导通正向晶闸管、负半周时触发导通反向晶闸管,且保持两晶闸的移相角相同,以保证向负载输出正、负半周对称的交流电压波形。
交直交变频器主电路结构的工作原理交直交变频器是一种电力电子变流设备,用于将固定频率的交流电转换为可调频率的交流电。
其主电路结构包括整流器、中间直流环节和逆变器三部分。
下面将详细介绍交直交变频器的工作原理。
整流器是交直交变频器的第一部分。
其作用是将输入的交流电转换为直流电。
整流器通常采用可控硅器件,如二极管和可控整流器,通过控制可控硅的导通角来实现对输入交流电的整流。
整流器的输出电压为固定的直流电压,其大小取决于控制可控硅的导通角度以及输入交流电的大小。
接下来是中间直流环节,它用于将整流器输出的直流电进行滤波和稳压。
中间直流环节通常由电容器和电感器组成,通过它们的相互作用将整流器输出的脉动直流电转换为平滑的直流电,并保持输出电压的稳定。
中间直流环节的作用是为逆变器提供稳定的直流电源。
最后是逆变器,它将中间直流环节输出的直流电转换为可调频率的交流电。
逆变器通常采用可控硅或晶闸管等器件,通过控制这些器件的导通和关断来实现对输出交流电的调节。
逆变器的输出电压和频率可以根据需要进行调整,从而实现对电机的速度和转矩的控制。
除了主电路结构外,交直交变频器还包括控制电路和保护电路。
控制电路用于对整个变频器进行控制,包括对整流器和逆变器的开关角度进行控制,从而实现对输出电压和频率的调节。
保护电路用于监测变频器的工作状态,一旦发生异常情况(如过电流、过压、过温等),保护电路会及时关闭整流器和逆变器,以保护变频器和被控制设备的安全运行。
总结起来,交直交变频器的主电路结构包括整流器、中间直流环节和逆变器三部分。
通过整流器将输入的交流电转换为直流电,再经过中间直流环节进行滤波和稳压,最后由逆变器将直流电转换为可调频率的交流电。
控制电路和保护电路则用于对整个变频器进行控制和保护。
交直交变频器的工作原理既复杂又精确,但它的应用广泛,可以实现对电机的精确控制,提高能源利用率,降低能耗,具有重要的经济和环境意义。
交直交变频器主电路结构的工作原理交直交变频器是一种用于调节电机转速的电力调节装置,主要由整流器、滤波器、逆变器和控制电路组成。
其工作原理是将交流电源输入整流器,将交流电转换为直流电后通过滤波器,然后由逆变器将直流电转换为频率可调的交流电,最后通过控制电路实现对电机转速的精确控制。
交直交变频器的主电路结构如下图所示:整流器—滤波器—逆变器—电机整流器的作用是将交流电源输入,将交流电转换为直流电。
整流器通常采用可控硅整流器,通过控制可控硅的导通和截止来实现对交流电的整流。
整流后的直流电经过滤波器进行滤波,去除直流电中的脉动成分,使输出的直流电平稳。
接下来,滤波器的作用是对整流后的直流电进行滤波,消除直流电中的脉动成分,使输出的直流电平稳。
滤波器通常由电容和电感组成,通过电容的充电和放电以及电感的储能和释能来实现对直流电的滤波。
然后,逆变器的作用是将滤波后的直流电转换为频率可调的交流电。
逆变器通常采用可控硅逆变器或者智能功率模块逆变器,通过控制逆变器的开关管的导通和截止来实现对直流电的逆变。
逆变器可以根据控制信号的不同,输出不同频率的交流电,从而实现对电机转速的调节。
控制电路的作用是对整个交直交变频器进行控制和保护。
控制电路通常由微处理器或者专用的控制芯片组成,通过接收外部的控制信号和反馈信号,实时监测电机的转速和工作状态,并根据设定的转速要求,调节逆变器的输出频率,从而实现对电机转速的精确控制。
同时,控制电路还具有过载保护、过压保护、欠压保护等功能,以确保电机和变频器的安全运行。
交直交变频器通过整流器、滤波器、逆变器和控制电路的协同工作,实现了对电机转速的精确调节。
其主电路结构清晰明了,每个部分都发挥着重要的作用。
通过合理的控制和保护机制,交直交变频器可以在不同负载和工况下,实现电机转速的稳定调节和高效运行,广泛应用于工业生产和生活领域中。