第四章 食品加热新技术
- 格式:ppt
- 大小:4.08 MB
- 文档页数:38
现代食品加工新技术第一章食品粉碎、造粒技术(22分)★1、超微粉碎(超细粉碎):原料粒度5~10mm,成品粒度在10µm以下。
★2、粉碎度:粉碎前后的粒度比称为粉碎比或粉碎度(一般粉碎设备的粉碎比为3~30,超微粉碎的粉碎比可达到300~1000以上)。
★3、气流式超微粉碎基本原理:利用空气、蒸汽或其它气体通过一定压力的喷嘴喷射产生高度的湍流和能量转换流,物料颗粒在这高能气流作用下悬浮输送着,相互之间发生剧烈的冲击、碰撞和磨擦作用,加上高速喷射气流对颗粒的剪切冲击作用,使得物料颗粒间得到充足的研磨而粉碎成超微粒子,同时进行均匀混合。
由于粉碎的物料大多熔点较低或者不耐热,故通常同时使用空气。
被压缩的空气在粉碎室中膨胀,产生的冷却效应与粉碎时产生的热效应相互抵消。
4、气流式超微粉碎的特点:①粉碎比大②粉碎设备结构紧凑、磨损小且维修容易,但动力消耗大③成品粒度较均匀④对热敏性物料的超微粉碎有利⑤易实现多单元联合操作⑥易实现无菌操作,卫生条件好。
★5、气流式超微粉碎的分类:环形喷射式、圆盘式、对喷式、超音速式6、气流式超微粉碎机:进料速率低,物料在粉碎室内停留时间长,循环次数增加,粉碎细度提高;但颗粒间碰撞概率相应降低,使粉碎粒度下降。
★7、高频振动式超微粉碎原理:利用球形或棒形研磨介质作高频振动时产生的冲击摩擦和剪切等作用力,来实现对物料颗粒的超微粉碎,并同时起到混合分散作用。
8、振动磨内研磨介质对物料产生的粉碎作用力来自三个方面:高频振动、循环运动(公转)和自转运动。
9、磨介:为提高粉碎效率,应尽量先用大直径的磨介。
如较粗粉碎时可采用棒状,而超微粉碎时使用球状。
一般说来,磨介尺寸越小,则粉碎成品的粒度也越小。
★10、磨介充填率:是指球棒磨机内研磨介质所占的截面积与筒体截面积的百分比值。
物料充填率增加时,单位时间内新生的总表面在一定范围内仍是增加的。
干法粉碎时,充填率不宜太高,通常在28%~35%范围内。
食品加工中的新技术和新工艺近年来,随着科技的不断发展和改进,食品加工技术和工艺也在不断地创新和提升。
新技术和新工艺的出现,不仅改变了食品加工的传统方式,还为消费者带来了更加安全、健康、美味的食品。
本文将探讨在食品加工领域中出现的新技术和新工艺,以及它们对于食品品质、安全和可持续发展的意义。
一、高压处理技术高压处理技术是一项新型的物理杀菌技术。
它以高压力为媒介,使细胞膜和细胞内部结构发生改变,从而破坏微生物的生长和繁殖,达到杀菌的目的。
相比传统的热处理和化学杀菌方法,高压处理技术不会破坏食品的营养成分和口感,同时能够有选择性地杀灭细菌,保证了食品的品质和安全。
高压处理技术的应用范围非常广泛。
例如,蛋制品、肉类、乳制品、果汁等各类食品都可以通过高压处理来达到杀菌的效果。
同时,高压处理技术还可以用于保鲜、去除臭味等方面的应用,对于食品的加工和贮藏也有着重要意义。
二、超声波处理技术超声波处理技术是利用高频率的机械振动,通过产生压缩和膨胀的交替作用来改变被处理物质的物理和化学性质。
这种技术被广泛应用于食品加工中,可以用于食品的混合、液化、发酵等方面。
在糖果制造中,超声波处理技术可以帮助破碎晶体,改善品质。
在蛋黄酱和乳酸菌饮料的制作中,超声波处理技术可以促进乳酸菌的生长和蛋黄酱的均匀分散。
此外,超声波处理技术还可以用于催化反应、分离等方面,对于提高食品加工的效率和质量也有着积极作用。
三、等离子处理技术等离子处理技术是指利用等离子体中产生的高能粒子来对食品进行处理和改良的一种技术。
这种技术相比传统的热处理、辐射处理等方法,具有更高的处理效率和更少的副作用,同时能够保持食品的营养成分和口感。
等离子处理技术可以用于果蔬、肉类、乳制品、海鲜等各类食品的加工和处理。
例如,在果蔬加工中,等离子处理技术可以减少果蔬的水分损失和腐烂,延长保质期。
在肉制品加工中,等离子处理技术可以改善肉制品的色泽和口感,同时杀死食源性微生物。
食品加工中的新技术与新产品研发一、背景介绍食品行业一直是人们生活中不可或缺的一部分,而食品加工则是其中不可或缺的环节。
随着科学技术的不断发展,食品加工中出现了越来越多的新技术,新产品也层出不穷。
这些新技术和新产品不仅方便了人们的生活,同时也提高了食品的品质和安全性。
本文就针对食品加工中的新技术和新产品,进行分析和探讨。
二、新技术1. 超高压灭菌技术超高压灭菌技术是一种以高压为作用条件的灭菌技术。
它的工作原理是利用高压使得细菌中的细胞壁和细胞膜破裂,从而达到杀灭细菌的目的。
这种新技术具有灭菌效果高、不改变食品的营养成分和口感等优点。
目前,这种技术广泛应用于饮品、果汁、肉制品、调味品等食品加工行业。
2. 微波膨化技术微波膨化技术是一种将食品样品置于微波辐射强度较高的炉腔内进行加热和膨化的新技术。
目前,这种技术已广泛应用于食品、面粉、小麦制品、花生、豆类和米类等食品中。
这种新技术的出现不仅缩短了食品加工生产线上的加工时间,同时还提高了食品的质量。
3. 超滤技术超滤技术是一种膜技术。
它主要通过膜选择性的筛选作用来实现分离、纯化和浓缩等多种目的。
在食品加工中,超滤技术常常用于分离和浓缩蛋白质、乳清和果汁中的成分等。
三、新产品1. 富锌米富锌米是经过富锌处理的优质稻米。
该产品在保持稻米原有口感和营养成分的同时,还可提供人体所需的锌元素。
目前,富锌米已成为一种备受欢迎的新型米类产品。
2. 无糖面包无糖面包是以低聚糖和高温杀菌、无糖甜味剂等代替糖分加工而成的一种健康型面包。
当前,大众对于健康饮食的关注越来越高,因此无糖面包也成为了一个备受欢迎的新产品。
3. 孜然鸡味膨化食品孜然鸡味膨化食品是由鸡味膨化水稻和孜然佐料粉等原材料加工而成的一种食品。
该产品不仅口感酥脆可口,而且还具有健康、时尚、方便等特点。
目前,孜然鸡味膨化食品已成为一个备受年轻人青睐的新型休闲食品。
四、结语食品加工中的新技术和新产品的出现不仅提高了食品的品质和安全性,同时也满足了大众对于健康、方便、美味等不同需求。
食品微波加热技术(一)微波加热的原理微波加热意味着微波与食品物料直接作用,将微波的电磁能转变为热能的过程。
在微波加热过程中,水是引起食品物料加热的主要成分。
当将食品放在电磁场中时,其中带电荷的小分子就有呈方向性排列的趋势,当电场方向变化时就会引起水分子的转动。
当频率足够高时,水分子发生高速运动、往复振动、彼此间频繁碰撞、摩擦,一方面使微波能转变为热能,以热的形式在物料内表现出来,导致物料在短时间内升温,另一方面,将引起蛋白质变性。
(二)微波加热的特点传统加热是将热量从外部传人物料内部,由表及里需要一定时间,物料的传热性能越差,加热速度越慢,受热不均匀,且耗能高。
微波加热技术克服了常规加热先加热环境介质,再传导至物料的缺点,既不需要传热介质,也不利用对流,食品与微波相互作用而瞬时穿透式加热,称为内部加热法。
微波加热具有如下特点:1.加热速度快微波加热不需要热传导,微波可以穿透食品物料内部,加热速度快,时间短,仅需传统加热方法的1/10~1/100的时间。
2.低温灭菌,保持营养微波加热是通过热效应与非热效应(生物效应)共同作用灭菌,因而与常规加热灭菌比较,具有低温、短时灭菌的特点,不仅安全可靠,且能保持食品营养成分不被流失和破坏,有利于保持产品的原有品质,营养素及色、香、味损失较少,有利于对维生素c、氨基酸的保持。
实验表明:晒干的鲜菜其叶绿素、维生素等营养成分仅剩3%,阴干可保持17%,热风快速干燥可保持40%,微波干燥则能保留60%~90%,微波升华干燥则可保留新鲜时的97%。
3.加热均匀性好由于微波加热是内部加热,因此不论食品物料的形状如何,都能均匀渗透微波产生热量,具有自动平衡的性能,均匀性大大改善,可避免外焦内生、外干内湿现象。
4.加热易于瞬时控制微波加热可以立即发热和升温,易于控制,热惯性小,易于自动化控制。
5.节能高效微波加热时,被加热物体一般放在金属制造的加热室内,加热室对微波来说是个封闭的空腔,微波不能外泄;外部散热损失少,只能被加热物体吸收,没有额外的热能损耗,因此加热效率高,节能节电,一般可节省30%~50%。
第四章食品低温处理和保藏一、冷藏和冻藏的温度范围及常用温度:冷藏是在高于食品物料的冻结点的温度下进行保藏,其温度范围:-2—15℃,常用温度是4—8℃。
冻藏是指食品物料在冻结的状态下进行的贮藏,其温度范围:-2—-30℃,常用温度是-18℃。
二、食品的冷却方法及其特点。
常用的冷却方法有:1)强制空气冷却法:采用空气作为冷却介质来冷却食品物料。
一般采用鼓风机使冷却室内空气形成循环并使温度保持均匀。
空气流速一般控制在1.5—5.0米每秒,其特点是冷空气的温度、相对湿度和流速根据食品的种类确定,一般不使食品冻结。
2)真空冷却法:使被冷却的食品物料处于真空状态,并保持冷却环境的压力低于食品物料的水蒸汽压,造成食品物料中的水分蒸发,利用水的蒸发潜热降低食品的温度。
真空冷却法适用于表面积大,通过水分蒸发就能迅速降温的食品物料。
3)水冷却法:将干净水或盐水经过机械制冷或机械制冷与冰制冷结合制程冷却水,然后用此冷却水通过浸泡或喷淋的方式冷却食物。
因水的热容量比空气大得多,传热效率高,速度快,温度均匀,且可延长保藏期。
4)冰块冷却法:采用冰来冷却食物,利用冰融化时吸热作用来降低食品物料的温度。
常用于鱼虾的冷却,由于冰融化时吸热大因此冷却用冰量不多。
冰块愈小冷却速度愈快。
其缺点是温度不均匀,且冰融成的水到处流动不易管理,现在主要作为其他冷却方法的补充。
三、如何确定冷藏的条件?冷藏温度、空气的相对湿度和空气的流速是冷藏的重要条件因素。
在实际应用中,这三者的具体条件是随着食品种类的不同、贮藏期的长短以及食品是否包装而确定的①贮藏温度,不仅指冷库内空气的温度,更重要的是指食品物料本身的温度。
对于水果、蔬菜、带壳蛋一般以接近冰点为佳。
但热带和亚热带果蔬有各自的最低贮藏温度。
温度过低易出现低温伤害。
②空气湿度过高,易使低温食品的表面产生冷凝水,可能因此引起果蔬霉烂或肉禽发粘长霉;相对湿度过低则水分蒸发快,造成食品表面干缩,带壳蛋气室增大,重量减轻。
微波加热技术在食品加工中的应用微波加热技术是一种应用微波能量实现材料加热的技术,它是一种高效、快速、节能的加热方式。
与传统加热方式相比,微波加热技术具有很多优势,如加热快速、温度均匀、能源节约等等。
在食品加工领域中,微波加热技术也被广泛应用,下面我们来看一下微波加热技术在食品加工中的具体应用。
一、微波加热技术在膳食面包制造中的应用膳食面包是指含有膳食纤维、维生素、矿物质等营养成分的面包,是一种非常健康的食品。
为了制造出口感好、口感丰富的膳食面包,需要通过微波加热技术对面包进行加热。
与传统烘焙方式相比,微波加热技术具有加热均匀、高效快速、微波能传递性强等优点,能够保证膳食面包的口感和健康营养成分的保留。
二、微波加热技术在冷冻食品加热中的应用冷冻食品加热一直是一个难题,传统热加工方式会导致冷冻食品变形、品质变差等问题。
而微波加热技术能够将食品内部和外部同时进行加热,达到快速解冻,同时保持食品的形状和品质,解决了传统热加工方式难以解决的问题。
三、微波加热技术在大豆制品加工中的应用大豆制品是我们经常食用的食品,包括豆浆、豆腐等等。
我们都知道,制作豆腐过程中需要将豆浆加热至80℃以上进行凝固,而传统加热方式需要长时间的加热,耗费大量的能源。
而微波加热技术能够在短时间内将豆浆加热至80℃以上,快速凝固成豆腐,节省了大量的时间和能源。
四、微波加热技术在肉制品加工中的应用肉制品中的脂肪、蛋白质等成分对传统加热方式的传热具有阻碍作用,导致加热效率低。
而微波加热技术具有快速、高效的加热特点,能够解决传统加热方式的问题,在肉制品的加热、烘烤等方面得到了广泛应用。
总之,微波加热技术在食品加工中的应用范围十分广泛,且具有快速、高效、节能等优点。
我们相信,在未来的食品加工领域中,微波加热技术将发挥越来越重要的作用,成为食品加工领域中重要的技术创新方向之一。