第1章 煤层气赋存、产出机理-6学时
- 格式:ppt
- 大小:8.63 MB
- 文档页数:41
简述煤层气的赋存及开采机理煤层气是一种以煤层作为富集和储存层的天然气资源。
它与石油和天然气一样,属于化石燃料的一种,具有高热值、清洁环保等特点,被广泛应用于工业、民用和交通等领域。
煤层气的赋存和开采机理涉及到地质学、煤学、岩石力学等多个学科,下面将从煤层气的赋存状态和开采过程两个方面进行简述。
一、煤层气的赋存状态煤层气主要以吸附气和游离气的形式存在于煤层中。
吸附气是指煤层中气体分子与煤质表面发生物理吸附作用形成的气体,它主要存在于孔隙中和煤质表面的微孔中。
游离气是指煤层中气体分子不与煤质发生吸附作用,直接存在于煤体的裂隙中。
煤层中的孔隙主要包括微孔、裂隙和堆积孔隙等,其中微孔是煤层气主要的储存空间。
煤层气的赋存状态与煤质、煤层厚度、地下温度和地下压力等因素密切相关。
二、煤层气的开采过程煤层气的开采过程主要包括勘探、开发、生产和利用四个阶段。
1. 勘探阶段勘探是确定煤层气资源储量和分布的阶段。
通过地质勘探、地球物理勘探和钻探等手段,获取煤层气地质储层参数和地下地质构造信息,以确定适宜的开采地点和开采方式。
2. 开发阶段开发是指利用各种开采技术将地下的煤层气资源转化为可利用的气体。
常见的开发技术包括水平井钻探、压裂和抽采等。
水平井钻探是将钻井技术与井筒完井技术相结合,钻设水平井以提高开采效率。
压裂是指通过注入高压液体将煤层裂缝扩展,以增大气体流动通道。
抽采是通过抽取地下水和降低地下压力,从而促使煤层气向井筒中流动。
3. 生产阶段生产是指煤层气从地下储层中抽采到地面,并进行处理、净化和输送的过程。
煤层气经过地面的分离、除水、脱硫和除尘等工艺处理后,可以供应给工业、民用和交通等领域使用。
4. 利用阶段利用是指将生产的煤层气应用于各个领域。
煤层气可以作为燃料供应给发电厂、工业企业和居民用户使用,也可以作为替代燃料用于交通运输。
煤层气的赋存及开采机理是一个复杂而系统的过程,涉及到多个学科的知识。
通过深入研究煤层气的赋存规律和开采技术,可以有效开发和利用煤层气资源,实现能源的可持续利用。
第一章绪论主要内容:本章主要论述了煤层气开发地质学研究的目的与意义,以及煤层气勘探的开发的现状。
从多个方面分析了我国煤层气的储量、勘探、开发等情况,深入细致的描述了目前我国使用煤层气、利用煤层气的状况,同时也对未来我国煤层气开采的发展和利用做了一定的分析和研究。
第二章煤的物质组成及其基本物理化学性质主要内容:一、煤的物质组成1、煤储层固态物质组成(1)宏观煤岩组成煤是一种有机岩类,包括三种成因类型:①主要来源于高等植物的腐殖煤;②主要由低等生物形成的腐泥煤;③介于前两者之间的腐殖腐泥煤。
宏观煤岩成分是用肉眼可以区分的煤的基本组成的单位,宏观煤岩组成是根据肉眼所观察到的煤的光泽、颜色、硬度、脆度、断口、形态等特征区分的煤岩成分及其组合类型。
(2)显微煤岩组成显微煤岩组成包括有机显微组分和无机显微组分—矿物质。
在光学显微镜下能够识别的煤的基本有机成分,称为有机显微组分,是由植物残体转变而来的显微组分。
无机显微组分指显微镜下观察到的煤中矿物质。
2、煤中的水和气(1)煤中的水煤中的液相是指存在的水。
煤中水存在于煤孔隙—裂隙中,其形态分为液态水、固态水(2)煤中的气煤层中赋存的气态物质就是煤层气,主要化学组分为甲烷、二氧化碳、氮气、重烃气等。
二、煤化作用及煤层气的形成1、煤化作用成煤作用是原始煤物质最终转化成煤的全部作用,它分成两个相继的阶段:从成煤原始物质的堆积,经生物化学作用直到泥炭的形成,称为泥炭化作用阶段;当泥炭形成后,由于沉积盆地的沉降,泥炭被埋藏于深处,在温度、压力增高等物理、化学作用下,形成褐煤、、烟煤、无烟煤和变无烟煤的过程,称为煤化作用阶段,包括成岩作用阶段和变质作用阶段。
2、煤化作用特点及煤化程度指标(1)煤化作用特点①增碳化趋势②结构单一化趋势③结构致密化和定向排列趋势(反光性增强)④煤显微组分性质的均一性趋势⑤煤化作用的不可逆性⑥煤化作用发展的阶段性和非线性(2)煤化程度指标煤化程度指标简称煤化指标,又称煤级指标,不同煤化阶段中各种指标变化的显著性各不相同。
1、煤层气:是指赋存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于煤孔隙中或溶解于煤层水中的烃类气体;煤层气爆炸范围为5—15%2、煤层气的主要成分甲烷、二氧化碳、氮气3、煤层气储层是(基质)孔隙、裂隙双重介质结构4、煤层气的赋存状态吸附态(80-90%),游离态(20%-10%)、水溶态(5%以下)。
游离态煤层气以自由气体状态储积在煤的割理和其他裂缝空隙中,在压力的作用下自由运动5、煤层气的产出机理:通过抽排煤储层的承压水,降低煤储层压力,使吸附态甲烷解吸为大量游离态甲烷并运移至井口。
即排水-降压-解析-扩散-渗流煤层气的运移方式:微孔-大孔-微裂纹-裂隙-裂缝6、在煤体的大孔和裂隙中,煤层气流动是以压力梯度为动力,其运移遵循达西定律;而在微孔结构中,煤层气流动是以浓度梯度为动力,运移遵循菲克定律。
7、井底压力:是指煤层气井储层流体流动压力8、压降漏斗:由于排水降压,供水边界到井底洞穴形成压差,其压差形状为漏斗状曲面,该曲面被称为压降漏斗,由于洞穴压力最低,煤层气定向解析,扩散,渗流和运移至洞穴。
排采时间越长,压降漏斗有效半径越大,其影响范围逐渐增加。
9、吸附:煤层气分子由气相赋存到煤体表面的过程。
10、煤中自然形成的裂缝称为割理;割理中的一组连续性较强、延伸较远的称面割理;另一组仅局限于相邻两条面割理之间的、断续分布的称端割理11、达西定律:Q=KA△h/L式中Q为单位时间渗流量,A为过水断面面积,△h为总水头损失(高度差),L 为渗流路径长度,I=h/L为水力坡度,K为渗流系数。
关系式表明,水在单位时间内通过多孔介质的渗流量与渗流路径长度成反比,与过水断面面积和总水头损失成正比。
从水力学已知,通过某一断面的流量Q等于流速v与过水断面A的乘积,即Q=Av。
菲克定律:菲克就提出了:在单位时间内通过垂直于扩散方向的单位截面积的扩散物质流量(称为扩散通量Diffusion flux,用J表示)与该截面处的浓度梯度(Concentration gradient)成正比,也就是说,浓度梯度越大,扩散通量越大12、临界解吸压力:对于未饱和煤层气藏,只有压力下降到含气量吸附等温线上,气体才开始解吸,该压力称为临界解吸压力。
煤层气开采对地下水的影响分析及防治措施——以山西晋城为例刘爱萍【摘要】煤层气作为一种新兴能源产业,在带动晋城地区经济发展方面作出了重要贡献.晋城地区煤层气资源丰富,集中在沁水县潘庄、樊庄、郑庄、柿庄一带,具有资源埋藏浅、可采性好、甲烷纯度高等特点,开采价值极高.然而煤层气的开采存在着很多与区域社会不和谐的因素,对地下水环境的影响方面尤为突出.通过对晋城地区煤层气分布特点,煤层气赋存、产出机理以及煤层气开发工程研究,结合当地煤层气勘探开发现状,对水环境可能或已经造成的影响进行了分析,并提出了防治措施.【期刊名称】《中国水利》【年(卷),期】2013(000)001【总页数】4页(P31-34)【关键词】煤层气;地下水;影响;防治措施;晋城【作者】刘爱萍【作者单位】山西省晋城市水利局,048000,晋城【正文语种】中文【中图分类】P618.11;P641.8一、研究区地质构造、含煤地层及水文地质条件1.构造特征山西省晋城地区煤层气开采区位于沁水盆地南部,盆地周缘地壳抬升,煤层出露,构造明显比盆地内复杂,其主体构造为一轴向NNE的沁水复式向斜,南北翘起端呈箕状斜坡,东西两翼基本对称。
研究区地处沁水复式向斜的翘起端,东部和西部边缘构造复杂,晋获断裂等边界断裂规模较大,对沁水盆地的演化具有控制作用(见图1)。
其地层总趋势是由东南向西北倾斜,地层倾角一般在10°以内,局部地区受构造影响可达到20°以上。
2.含煤地层及煤层晋城地区主要含煤地层为石炭系上统太原组和二叠系下统山西组。
共含煤21层,厚度6.75~16.50 m,平均12.21 m,含煤系数9.53%。
其中,3号和15号煤层为全区稳定可采煤层,也是煤层气勘探开发的主要目标煤层。
(1)太原组太原组厚度64~133 m,平均厚度在90 m左右。
由深灰色-灰色灰岩、泥岩、粉砂岩、砂岩和煤层组成,以K2、K3、K5及K6四层灰岩较稳定。
含煤7~16层,含煤系数7.52%,其中15号煤层为全区可采煤层,9号煤层为大部可采煤层。
煤层气煤层气(Coalbed Methane)储层参数,主要包括煤的等温吸附特性参数、煤层气含量、渗透率、储层压力、原地应力,以及有关煤岩煤质特征的镜质组反射率、显微组分、水分、灰分和挥发分等,相应的测试分析技术有:煤的高压等温吸附试验(容量法)、煤层气含量测定、煤层气试井和煤岩煤质分析等。
煤的高压容量法等温吸附实验,是煤层气资源可采性评价和指导煤层气井排采生产的关键技术参数,等温吸附数据测定准确性,直接关系到煤层气开发项目的成败和煤层气产业的发展。
许多研究表明,煤是具有巨大内表面积的多孔介质,象其它吸附剂如硅胶、活性碳一样,具有吸附气体的能力。
煤层气以物理吸附方式储存在煤中,主要证据有:甲烷的吸附热比气化热低2—3倍(Moffat &Weale,1955;Y ang &Saunders,1985),氮气和氢气的吸附也与甲烷一样,这表明煤对气体的吸附是无选择性的;大量试验也证明,煤对气体吸附是可逆的(Daines,1968;Maver 等,1990)。
结合国内外资料,推荐吸附样粒度为60—80目。
煤的平衡水分—当煤样在温度30℃、相对湿度96%条件下,煤中孔隙达到水分平衡时的含水量。
测试平衡水平的主要目的是:恢复储层条件下煤的含水情况,为煤的吸附实验做准备。
煤层气含量—指单位重量煤中所含的标准状态下(温度20℃、压力101.33kpa)气体的体积,单位是cm3/g或m3/t。
它是煤层气资源评价和开发过程中计算煤层气资源量和储量、预测煤层气井产量的重要煤储层参数之一。
煤层气含量的测定方法大体上可分为两类:直接法(解吸法)和间接法(包括等温吸附曲线法和单位体积密度测井法)。
在直接法中,保压取心解吸法是精确获得原地煤层气含量最好的方法。
直接法的基本原理煤心煤样的煤层气总量由三部分气体量构成:一是损失气(lost gas),二是实测气(measured gas),三是残余气(residual gas)。