中国月平均地表反照率的估算及其时空分布
- 格式:pdf
- 大小:492.62 KB
- 文档页数:7
中国地区MODIS地表反照率反演结果的时空分布研究陈爱军;周芬;梁学伟;卞林根;刘玉洁【摘要】In this paper,using MODIS albedo retrieval quality dataMCD43A2,the spatial and temporal distribution characteristics of surface albedo retrieval quality over China during the period of 2003-2015 are statistically analyzed.The results are as follows:(1) There was a clear difference in the spatial distribution of MODIS surface albedo retrieval quality in China.The albedo retrievals with the best quality of full inversion (flagged as 0)were mainly distributed innorthern,northeastern,northwestern,and the Midwestern region of southwestern China.The albedo retrievals with the magnitude inversion (flagged as 3) were mainly distributed in eastern,central,southern,and the mid eastern region of southwestern China.The fill value(flagged as 15) was mainly distributed in some regions of central,southern,eastern and southwestern China.(2) In spring,summer and fall,the areas of only northeastern,northern and northwestern China had more than 60% which could be obtained with high accuracy MODIS surface albedo,so as to meet the climate and land-surface model accuracy requirements.In addition,only 40%-60% of the area of southwestern China and less than 20% of that of eastern,central and southern China could be obtained with high accuracy MODIS surface albedo to meet the climate and land-surface model accuracy requirements throughout the year.(3) The percentage of the magnitude inversion is low,being generally less than 50%,all throughoutChina.Meanwhile,that in eastern and central China is more than 40% in summer and autumn.In central and eastern China in summer and winter,as well as in southern China in spring,summer and winter,the percentage of the fill value is relatively high (above 50%),especially in southern and central China,where the figure reaches up to 80%.%应用2003-2015年MODIS地表反照率反演质量数据MCD43A2,统计分析中国地区MODIS地表反照率反演质量的时空分布特征,结果表明:1)中国地区MODIS地表反照率反演质量在空间分布上具有明显的差异,高质量全反演结果(质量标记0)主要分布在东北、华北、西北地区和西南地区的中西部;当量反演结果(质量标记3)主要分布在华东、华中、华南地区和西南地区的中东部;填充值(质量标记15)主要分布在华中、华南、华东地区及西南地区的部分区域.2)在东北、华北和西北地区,只有春、夏和秋季才有超过60%的区域可能获得高精度MODIS地表反照率;可能获得高精度MODIS地表反照率的区域,在西南地区全年各时段都只有40%~60%,在华东、华中和华南地区全年各时段都不足20%.3)各地当量反演结果的比例一般不足50%,华东和华中地区夏季和秋季当量反演结果的比例超过40%;4)华中和华东地区夏季和冬季,以及华南地区春、夏和冬季,填充值的比例超过50%,华南和华中地区最高甚至超过80%.【期刊名称】《大气科学学报》【年(卷),期】2018(041)002【总页数】8页(P267-274)【关键词】地表反照率;MODIS;反演质量;时空分布【作者】陈爱军;周芬;梁学伟;卞林根;刘玉洁【作者单位】南京信息工程大学气象灾害教育部重点实验室,江苏南京210044;南京信息工程大学大气物理学院,江苏南京210044;南京信息工程大学气象灾害教育部重点实验室,江苏南京210044;南京信息工程大学大气物理学院,江苏南京210044;浙江省绍兴市嵊州市气象台,浙江绍兴,312000;安徽省气象台,安徽合肥230031;中国气象科学研究院,北京100081;国家卫星气象中心,北京100081【正文语种】中文地表反照率是地表对太阳辐射的反射辐射与入射辐射之比,对地表辐射能量收支、地—气相互作用及全球气候变化有着重要影响,是气候和陆面过程模式中的一个重要参数(Dickinson,1995;Sellers et al.,1995)。
关于地表反照率遥感反演的几个问题
王介民;高峰
【期刊名称】《遥感技术与应用》
【年(卷),期】2004(19)5
【摘要】分析了地表反照率对陆面辐射能收支以及区域和全球气候的影响,强调了地表反照率是遥感反演陆面参数时的第一重要参数,地表反照率或多波段遥感中不同谱段的地表反射率的准确反演常常是准确估算其它陆面参数如植被和土地利用/土地覆盖等状况的先决条件。
在对当前关于反照率的概念及容易混淆的术语进行阐述和说明的基础上,简述了遥感反演地表反照率的步骤和主要难点的解决方法,进而对常用陆面过程模式计算地表反照率的过程作了分析,并将其结果与MODIS有关产品进行了比较,强调了遥感与陆面过程模式和气候模式的结合。
【总页数】6页(P295-300)
【关键词】地表反照率;二向反射分布函数;地面能量收支;陆面过程模式;遥感
【作者】王介民;高峰
【作者单位】中国科学院寒区旱区环境与工程研究所
【正文语种】中文
【中图分类】TP79
【相关文献】
1.3种反演算法的地表反照率遥感产品对比分析 [J], 齐文栋;刘强;洪友堂
2.利用遥感数据反演长江三角洲瞬时地表反照率的研究 [J], 查书平;丁裕国;董艳;
汪权方
3.基于能量的地表反照率遥感反演方法研究 [J], 梁文广;赵英时
4.利用NOAA-AVHRR遥感资料反演长江三角洲地表反照率的试验 [J], 金莲姬;刘晶淼;李雁领;丁裕国
5.中国地表月平均反照率的遥感反演 [J], 徐兴奎;刘素红
因版权原因,仅展示原文概要,查看原文内容请购买。
中国地表月平均反照率的遥感反演
徐兴奎;刘素红
【期刊名称】《气象学报》
【年(卷),期】2002(060)002
【摘要】地表特征和下垫面物理性质在时空分布上的差异,造成地表能量分布的不均,地球表面的半球反射在气候领域是一个非常重要的参数,它在地-气能量交换中决定着能量在地-气之间的分配比率.反照率随地表覆盖类型的变化具有很大的差异,而这往往是形成区域小气候差异的原因.文中通过统计和双向反射模型,应用
NOAA14-AVHRR数据并结合地理信息系统,反演计算了1997年中国月平均反照率的分布,并对结果做了分析检验.
【总页数】6页(P215-220)
【作者】徐兴奎;刘素红
【作者单位】中国科学院遥感应用研究所,北京,100101;中国科学院大气物理研究所,北京,100029;中国科学院遥感应用研究所,北京,100101
【正文语种】中文
【中图分类】P4
【相关文献】
1.长江三角洲地区地表月平均反照率的卫星遥感研究 [J], 徐兴奎
2.基于能量的地表反照率遥感反演方法研究 [J], 梁文广;赵英时
3.关于地表反照率遥感反演的几个问题 [J], 王介民;高峰
4.青藏高原地表月平均反照率的遥感反演 [J], 徐兴奎;林朝晖
5.利用NOAA/AVHRR数据估算福建省月平均地表反照率 [J], 杨满根;陈志彪因版权原因,仅展示原文概要,查看原文内容请购买。
1961—2014年我国地表温度时空分布特征作者:高操邢丽珠赵晓涵李成来源:《安徽农业科学》2019年第20期摘要基于1961—2014我国地区535个站点的逐日温度观测数据,采用线性趋势估计和MK检验对我国地表平均温度、最低和最高温度的时空变化情况进行分析。
结果表明, 1961—2014年,我国的地表平均温度、最高温度、最低温度在年和季尺度上均表现为显著上升(P<0.01)趋势;温度变化率冬季最高,夏季最低;其中最低温度变化率较高,最高温度变化率较低。
温度突变年份在20世纪80年代左右,显著增温年份在20世纪末左右;空间分布上,我国大部分地区的平均温度、最高温度和最低温度均增加,与温度变化率变化趋势一致,均是从西北到东南地区递减;极端高温天数整体呈上升趋势,极端低温天数整体呈下降趋势。
关键词地表温度;气候变暖;趋势系数;MK检验;极端温度中图分类号P467文献标识码A文章编号0517-6611(2019)20-0061-07doi:10.3969/j.issn.0517-6611.2019.20.017开放科学(资源服务)标识码(OSID):Temporal and Spatial Distribution Characteristics of Temperature in China from 1961 to 2014 GAO Cao1,XING Lizhu2,ZHAO Xiaohan2 et al(1.Limited Company of State Power Environmental Protection Research Institute,Nanjing,Jiangsu 210031;2.Collaborative Innovation Center on Forecast and Evaluation of MeteorologicalDisasters/Jiangsu Key Laboratory of Agricultural Meteorology,Nanjing University of Information Science & Technology,Nanjing,Jiangsu210044 )AbstractBased on the daily temperature observation data of 535 stations in China from 1961 to 2014,linear trend estimation and MK test were used to analyze the spatial and temporal variations of mean,minimum and maximum surface temperatures in China.Results showed that China’s average surface temperature,maximum temperature and minimum temperature showed significant upward trends (P<0.01)from 1961 to 2014 on both annual and seasonal scales.Temporally,the rate of temperature change was the highest in winter and the lowest in summer.The minimum temperature change rate was higher and the maximum temperature change rate was lower.The year with abrupt temperature change was around 1980s,and the year with significant temperature increase was around the end of 20th century.Spatially,the average temperature,maximum temperature and minimum temperature in most regions of China all increased,which was consistent with the change trend of temperature change rate and decreased from northwest to southeast.The number of days with extremely high temperature showed an overall upward trend,while the number of days with extremely low temperature showed an overall downward trend.Key wordsSurface temperature;Climate change;Trend coefficient;MK test;Extreme temperature根据联合国政府间气候变化专门委员会(IPCC)公布的第五次气候评估报告,1880—2012年全球地表平均温度约升高0.85 ℃。
1960-2013年中国地表潜在蒸散发时空变化及其对气象因子的敏感性赵亚迪;刘永和;李建林;刘秀【摘要】基于中国107个气象站点的常规观测资料,采用Penman-Monteith公式计算了1960-2013年的逐日潜在蒸散发(ET0),分析了中国5大区域的ET0对最高温度、最低温度、2m风速、日照时长、平均气压、相对湿度和地表温度的敏感性及其分区特征.结果表明:(1)模拟的从1960-2013年平均ET0和与蒸发皿蒸散发量之间的比值为0.55,各逐站点的ET0与蒸发皿蒸散发的相关系数为0.84~0.98(剔除观测值为0的情况的样本)之间和0.42~0.81(未剔除观测值为0的情况的样本).(2)本研究中模拟的ET0以6.75 mm/10 a的速度呈现出下降的趋势.敏感性分析表明,在1960-2013年间的全国范围内,最高气温和最低气温分别上升0.68℃和1.54℃,相应地导致ET0增加12.81 mm和14.13 mm;风速减小0.51 m/s,日照时长减少0.61 h,相对湿度减小2.84%,将分别导致蒸散量减少48.08 mm,21.5 mm,204.49 mm,这能很好的解释“蒸发悖论”问题.(3)对中国不同地理分区的ET0,在东北区域、华北区域、和西北区域,蒸散量最敏感的气象因子是相对湿度,其次是风速;在西南区域和华中、华东区域,蒸散量最敏感的气象因子是相对湿度,其次是日照时长.【期刊名称】《沙漠与绿洲气象》【年(卷),期】2018(012)003【总页数】9页(P1-9)【关键词】Penman-Monteith;潜在蒸散发;Sen斜率【作者】赵亚迪;刘永和;李建林;刘秀【作者单位】河南理工大学资源与环境学院,河南焦作454000;河南理工大学资源与环境学院,河南焦作454000;河南理工大学资源与环境学院,河南焦作454000;河南理工大学资源与环境学院,河南焦作454000【正文语种】中文【中图分类】S161.4;P467潜在蒸散发是指充分供水条件下的区域蒸散发能力。