改善汽车空气动力性能的措施浅析(精)

  • 格式:docx
  • 大小:100.56 KB
  • 文档页数:5

下载文档原格式

  / 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•毛毳学号:110010156改善汽车空气动力学性能的措施浅析

汽车具有良好的空气动力学性能有利于提高汽车的动力性、燃油经济性,有利于改善汽车的操纵性和行驶的稳定性,进而提高汽车的安全性,有利于改善乘座舒适性。随着汽车设计制造技术的进步和对汽车性能的要求越来越高,汽车的空气动力学性能已成为汽车车身设计所必须考虑的重要内容。

车前部的影响

车头造型对空气动力学性能的影响因素很多,车头边角、车头形状、车头高度、发动机罩与前风窗造型、前凸起唇及前保险杠的形状与位置、进气口大小、格栅形状等。

车头边角主要是车头上缘边角和横向两侧边角,对于非流线形车头,存在一定程度的尖锐边角会产生有利于减少气动阻力的车头负压区;车头横向边角倒圆角,也有利于产生减小气动阻力的车头负压区, 圆角与阻力的关系r

/b=O.045就可以保持空气流动的连续;整体弧面车头比车头边角倒圆气动阻力小。车头头缘位置较低的下凸型车头气动阻力系数最小;但不是越低越好,因为低到一定程度后,车头阻力系数不再变化,车头头缘的最大离地间隙越小,则引起的气动升力越小,甚至可以产生负升力。增加下缘凸起唇后,气动阻力变小,减小的程度与唇的位置有关。

发动机罩与前风窗的设计可以改变再附着点的位置,从而影响气动特性(如图1)。发动机罩的纵向曲率越小(目前大多数采用的纵向曲率为0.02

/m),气动阻力越小;发动机罩的横向曲率也有利于减

小气动阻力。发动机罩有适当的斜度(与水平面的夹角)对降低气动阻力有利,但如果斜度进一步加大对降阻效果不明显。风窗玻璃纵向曲率越大越好,但不宜过大,否则导致视觉失真、刮雨器的刮扫效果变

差;前风窗玻璃的横向曲率也有利于减小气动阻力;前风窗玻璃的斜度(与垂直面的夹角)小于30。时,降阻效果不明显,但过大的斜度, 使视觉效果和舒适性降低;前风窗斜度等于48。时,发动机罩与前风窗凹处会出现一个明显的压力降,因而造型时应避免这个角度;前风挡玻璃的倾斜角度(与垂直面的夹角)越大,气动升力系数略有增加。发动机罩与前风窗的夹角与结合部位的细部结构对气流也有重要的影响。

汽车前端形状的对汽车的空气动力学性能也有重要的影响。前凸且高

不仅会产生较大的空气阻力而且还将会在车头上部形成较大的局部负升力区。具有较大倾斜角度的车头可以达到减小气动升力乃至产生负升力的效果。

110010156

图1气泡区分离点与再附着点的位置

汽车客舱的影响

前立柱上的凹槽、小台面和细棱角处理不当,将导致较大的气动阻力和较严重的气动噪声和侧窗污染,应设计成圆滑过渡的外形。英国的White 1967年根据试验结果对气动阻力影响最关键的车身外形参数进行分级,对实际有重大指导作用;轿车侧壁略有外鼓,将增加

动阻力,但有利于降低气动阻力系数;但外鼓系数(外鼓尺寸与跨度之比)应避免在0. 02〜0. 04范围内。顶盖有适当的干扰系数有利于减小气动阻力,综合气动阻力系数、气动阻力、工艺、刚度、强度等方面的因素,顶盖的干扰系数(上鼓尺寸与跨度之比)应在0.06以下。

对阶背式轿车而言,客舱长度与轴距之比由0. 93增至1. 17,会较大程度地减小气动升力系数。但发动机罩的长度与轴距之比对气动升力系数影响不大。

汽车尾部的影响

车身尾部造型对气动阻力的影响主要因素有:后风窗的斜度与三

维曲率、尾部造型式样、车尾高度、尾部横向收缩。后风窗斜度(后风窗弦线与水平线的夹角)对气动阻力影响较大(如图2),对斜背式轿车,斜度等于300。时,阻力系数最大;斜度小于30。时,阻力系数较小;后挡风玻璃的倾斜角一般控制在25。之内为宜;后风窗与车顶的夹角介于28。〜32。

时,车尾将介于稳定和不稳定的边缘。

典型的尾部造型有斜背式、阶背式、方(平)背式;由于具体后部造型与气流状态的复杂性,一般很难确切的断言尾部造型式样的优劣,但从理论上说, 小斜背(角度小于30。)具有较小的气动阻力系数。流线型车尾的汽车存在最佳车尾高度,此状态下,气动阻力系数最小,此高度需要根据具体车型以及结构要求而定。后车体的横向收缩,可以减小截面面

积,一定程度的后车体的横向收缩对降低气动阻力系数有益,但过多的收缩会引起气动阻力系数的增加,收缩程度按具体车型而定。车尾最大离地间隙越大,车尾底部的流线越不明显,则气动升力越小,甚至可以产生负升力。长尾车可能产生较大的横摆力矩,而切尾的快背式汽车横摆力矩并不大,可以通过加尾翼减小横摆力矩,改善汽车操纵稳定性。

图2后风窗顷角对气阻系数的影响

汽车底部的影响

般随车身底部离地高度的增加气动阻力系数有所减小,但高度

过小,将增加气动升力,影响操作稳定性及制动性;另外离地高度的确定还要考虑汽车的通过性与汽车重心高度。车身底部纵倾角对气动阻力影响较大,纵倾角越大,气动阻力系数越大,故底板应尽量具有负的纵倾角,将汽车底板做成前低后高的形状对减小气动升力有用。

车身底板适度的纵向曲率可以降低平均压力(见图3),相应地减小气

动升力;车身底板的适度的横向曲率可以减小气动阻力,但是太大可能引起底部横向气流与侧面气流相干扰。合适的后部离去角,也可能减小空气阻力。

图3纵向曲率对气阻系数的影响

扰流器的影响 扰流器通过对流场的干涉,调整汽车表面压强分布,以达到减小气动 力阻力和气动升力的目的。前扰流器(车底前部)的适当高度、位置和 扰流器的大小对减小气动阻力和气动升力至关重要;目前多采用将前

保险杠位置下移并加装车头下缘凸起唇以起到前扰流器的作用。 后扰 流器(车尾上部)的形状尺寸和安装位置对减小气动阻力和气动升力 也是非常重要;但后扰流器对于气流到达扰流器之前就已分离的后背 无效。有的把天线外形设计成扰流器,装在后风窗顶部。在赛车上设 计有前、后负升力翼以抵消部分升力从而改善汽车转向轮的附着性 能。

轮的影响

车身主体与车轮之间存在着很大的相互干涉,车轮的特性参数 (被轮 腔所覆盖的车轮高度h 与车轮直径D 的比值)h /D 对气动力的影响(如 图

4) , h /DVO. 75时,h /D 越大,则气动阻力系数和气动升力系数 7

无穷大 h/L

0.02

0.2

10

15