Effects of Gamma-Ray Irradiation on Dielectric Surface Breakdown of Polybutylene Naphthalate and
- 格式:pdf
- 大小:362.97 KB
- 文档页数:7
环氧树脂对伽马射线的屏蔽分析及耐辐照效应董梦格;薛向欣;杨合;李哲夫【摘要】Taking the epoxy resin as the research object in thispaper ,shielding property of epoxy resin was analyzed in the energy of0.001‐100 MeV ,and shielding test was carried by 60Co gammaray .Besides ,the irradiation for epoxy resin was treated by 93.5 kGy gamma ray , w hile the density , macro photograph , mechanicalproperty , micro morphology ,temperature resistance and infrared spectra of epoxy resin before and after irradiation were analyzed .The results show that the attenuation of the gamma ray by epoxy resin is mainly related to the photoelectric absorption in the low energy (E<0.01 MeV) ,is mainly related to the incoherent scattering in the intermediate energy (0.01 MeV < E< 10 MeV ) ,is mainly related to the incoherent scattering and pair production in nuclear field in the high energy (10MeV< E<100 MeV) ,and the shiel‐ding property of epoxy resin by 60 Co gamma ray is general .T he irradiation of 93.5 kGy gamma ray results in the aging phenomenon of epoxy resin ,the decrease of density and the highest heat resistant temperature , the increase of mechanical property and the low ness of destruction level ,w hich show s the irradiation resistance of epoxy resin for 93.5 kGy gamma ray .%本文以环氧树脂为研究对象,分析了环氧树脂对能量范围在0.001~100 M eV的伽马射线的屏蔽性能,测试了环氧树脂对60 Co伽马射线的屏蔽性能,并对其进行了总剂量为93.5 kGy的伽马射线辐照处理,对辐照前后环氧树脂的密度、光学照片、力学性能、断面微观形貌、耐热性能和红外光谱进行了分析。
最新pda技术报告:报告最新技术p da pda技术报告清单2016 pda技术报告是什么pda技术报告灭菌决策树篇一:PDA技术报告清单2015PDA技术报告清单(官网2015年更新)https:///ProductCatalog/ProductCategory.aspx?ID=30 1. Validation of Moist Heat Sterilization Processes: Cycle Design, Development, Qualification and Ongoing Control Revised 2007 (Published 1980)湿热灭菌工艺验证:循环设计、研发、确认和持续控制,修订20073. Validation of Dry Heat Processes Used for Depyrogenation and Sterilization Revised 2013 (Published 1981) 01003 43506用于除热源和灭菌的干热工艺验证,修订20134. Design Concepts for the Validation of Water-for-Injection Systems 1983 注射用水系统验证的设计概念,19835. Sterile Pharmaceutical Packaging: Compatibility and Stability 1984无菌制剂包装:相容性和稳定性,19847. Depyrogenation 1985除热源,19859. Review of Commercially Available Particulate Measurement Systems 1988 商业可采购的颗粒物检测系统审核,198810. Parenteral Formulations of Proteins and Peptides: Stability and Stabilizers 1988 蛋白质和多肽注射制剂:稳定性和稳定剂,1988 11.Sterilization of Parenterals by Gamma Radiation 1988静脉注射伽马辐射灭菌,198812. Siliconization of Parenteral Drug Packaging Components 1988 静脉注射剂药品包装组分硅化处理,198813.Fundamentals of an Environmental Monitoring Program Revised 2014 (Published1990)环境监测计划原则,修订20141 / 714. Validation of Column-Based Chromatography Processes for the Purification of Proteins Revised 2008 (Published 1992)蛋白纯化用柱色谱工艺验证,修订200815. Validation of Tangential Flow Filtration in Biopharmaceutical Applications Revised 2009 (Published 1992)生物制药用正切流过滤验证,修订200916. Effect of Gamma Irradiation on Elastomeric Closures 1992人造橡胶塞伽马辐射效应,199217. Current Practices in the Validation of Aseptic Processing -- 1992 1993 无菌工艺验证现行规范,1992,199318. Report on the Validation of Computer-Related Systems 1995 计算机相关系统验证报告,199519.Rapid/Automated ID Methods Survey 1990快速/自动ID方法调查,199020. Report on Survey of Current Industry Gowning Practices 1990 行业现行更衣规范调查报告,199021. Bioburden Recovery Validation 1990生物负载回收率验证,199022. Process Simulation for Aseptically Filled Products Revised 2011 (Published 1996) 无菌灌装药品工艺模拟,修订201123. Industry Survey on Current Sterile Filtration Practices 1996现行无菌过滤实践行业调查,199624. Current Practices in the Validation of Aseptic Processing –1996 1996无菌工艺验证现行规范,199625. Blend Uniformity Analysis: Validation and In-Process Testing 1997混合均一性分析:验证和中控测试,19972 / 726. Sterilizing Filtration of Liquids Revised 2008 (Published 1998)液体无菌过滤,修订200827. Pharmaceutical Package Integrity 1998药品包装完整性,199828. Process Simulation Testing for Sterile Bulk Pharmaceutical Chemicals Revised 2006 (Published 1998)无菌散装药用化学物工艺模拟测试,修订200629. Points to Consider for Cleaning Validation Revised 2012 (Published 1998) 清洁验证的考虑要点,修订201230. Parametric Release of Pharmaceuticals and Medical Device Products Terminally Sterilized by Moist Heat Revised 2012 (Published 1999)最终湿热灭菌的药物和医疗器械参数放行,修订201231. Validation and Qualification of Computerized Laboratory Data Acquisition Systems 1999计算机化实验室数据获取系统验证和确认,199932. Auditing of Suppliers Providing Computer Products and Services for Regulated Pharmaceutical Operations Revised 2004 (Published 1999)提供受法规管理的药物操作用计算机产品和服务的供应商审计,修订200433. Evaluation, Validation and Implementation of Alternative and RapidMicrobiological Methods Revised 2013 (Published 2000)替代性和快速微生物方法的评估、验证和实施,修订201334. Design and Validation of Isolate Systems for the Manufacturing and Testing of Health Care Products 2001保健药品的生产和检测分离系统的设计和验证,200135. A Proposed Training Model for the Microbiological Function in thePharmaceutical Industry 20013 / 7制药行业微生物功能培训模式建议,200136. Current Practices in the Validation of Aseptic Processing –2001 2002 无菌工艺验证的现行规范--2001,200238. Manufacturing Chromatography Systems Post-Approval Changes:(ChromPAC):Chemistry, Manufacturing and Controls Documentation 2006 批准后生产用色谱系统:研发、生产和控制文件,200639. Guidance for Temperature-Controlled Medicinal Products: Maintaining the Quality of Temperature-Sensitive Medicinal Products through the Transportation Environment 2007温度受控药物指南:通过运输环境来维护对温度敏感的药物的质量,200740. Sterilization Filtration of Gases 2005气体的无菌过滤,200541. Virus Filtration 2008病毒过滤,200842. Process Validation of Protein Manufacturing 2005蛋白质生产的工艺验证,200543. Identification and Classification of Nonconformities in Molded and Tubular Glass Containers for Pharmaceutical Manufacturing Revised 2013 (Published 2007) 药物生产用模型制备和管式玻璃容器的识别和分类,修订201344. Quality Risk Management for Aseptic Processes 2008无菌工艺的质量风险管理,200845. Filtration of Liquids Using Cellulose-Based Depth Filters 2008 使用纤维素基础深层过滤器的液体过滤,200846. Last Mile: Guidance for Good Distribution Practices for Pharmaceutical Products to the End User 2009最终里程:给最终用户的药物优良销售规范指南,20094 / 747. Preparation of Virus Spikes Used for Virus Clearance Studies 2010用于病毒清除研究的病毒加标样制备,201048. Moist Heat Sterilizer Systems: Design, Commissioning,Operation, Qualification and Maintenance 2010湿热灭菌系统:设计、调试、运行、确认和维护,201049. Points to Consider for Biotechnology Cleaning Validation 2010 生物制品清洁验证考虑要点,201050. Alternative Methods for Mycoplasma Testing 2010支原体测试替代性方法,201051. Biological Indicators for Gas and Vapor-Phase Decontamination Processes: Specification, Manufacture, Control and Use 2010气体和蒸汽相除污染工艺生物指示剂:质量标准、生产、控制和使用,201052. Guidance Good Distribution Practices for the Pharmaceutical Supply Chain 2011 药品供应链优良销售规范指南,201153.Guidance for Industry: Stability Testing to Support Distribution of New Drug Products 2011行业指南:支持新药销售的稳定性测试,201154. Implementation of Quality Risk Management for Pharmaceutical andBiotechnology Manufacturing Operations 2012药品和生物制品生产操作的质量风险管理实施,201254-2. Implementation of Quality Risk Management for Pharmaceutical andBiotechnology Manufacturing Operation: Annex 1: Case Study Examples for Quality Risk Management in Packaging and Labeling 2013药品和生物制品生产操作的质量风险管理实施,附录1:包装和标识中的质量风险管理案例研究,20135 / 7篇二:PDA技术报告目录PDA——Parenteral Drug Association,注射用药物协会(/)PDA技术报告目录/PDA Publications●Technical Methods Bulletin No.1 - Extractables from Elastomeric Closures: Analytical Procedures for Functional Group Characterization/Identification2 - Elastomeric Closures: Evaluation of Significant Performance and Identity Characteristics3 - Glass Containers for Small Volume Parenteral Products: Factors for Selection and Test Methods for Identification●Technical Information Bulletin No.2 - Generic Test Procedures for Elastomeric Closures4 - Aspects of Container/Closure Integrity●Technical Report No.1 Validation of Moist Heat Sterilization Processes: Cycle Design,Development, Qualification and Ongoing Control, Revised 2007 (original Technical Monograph No. 1, Validation of Steam Sterilization Cycles, first published in 1978)Technical Monograph No. 2 - Validation of Aseptic Filling for Solution Drug Product, 1980 (replaced by Technical Report No. 22 and is no longer available.)3 Validation of Dry Heat Processes used for Sterilisation and Depyrogenation, 19814 Design Concepts for the Validation of a Water for Injection System, 19835 Sterile Pharmaceutical Packaging: Compatibility and Stability, 19846 Validation of Aseptic Drug Powder Filling Processes, 1984 (replaced by Technical Report No. 22 and is no longer available.)7 Depyrogenation, 19858 Parametric Release of Parenteral Solutions Sterilized by Moist Heat Sterilization,1987 (Please note: Technical Report No. 8 has been superseded by Technical Report No. 30 and is no longer available.)9 Review of Commercially Available Particulate Measurement Systems, 198810 Parenteral Formulations of Proteins & Peptides: Stabilityand Stabilizers, 198811 Sterilization of Parenterals by Gamma Radiation, 198812 Siliconization of Parenteral Drug Packaging Components, 198813 Fundamentals of a Microbiological Environmental Monitoring Program, 1990 (Revised 2001)14 Validation of Column-Based Chromatography Processes for the Purification of Proteins, Revised 2008 (original name: Industry Perspective on the Validation of Column-Based SeparationProcesses for the Purification of Proteins, first published in 1992) 15 Industry Perspective on Validation of Tangential FlowFiltration in Bio-pharmaceutical Application, 1992 (Revised 2009)16 Effect of Gamma Irradiation on Elastomeric Closures, 199217 Current Practices in the Validation of Aseptic Processing - 1992, 199318 PDA Report on the Validation of Computer Related Systems, 199519 Rapid/Automated ID Methods Survey, 199020 Report on Survey of Current Industry Gowning Practices, 199021 Bioburden Recovery Validation, 199022 Process Simulation Testing for Aseptically Filled Products, 199623 Industry Survey on Current Sterile Filtration Practices, 1996 24 Current Practices in the Validation of Aseptic Processing - 1996,25 Blend Uniformity Analysis: Validation and In-Process Testin, 199726 Sterilizing Filtration of Liquids, 1998 (Revised 2008) 27 Pharmaceutical Package Integrity, 199828 Process Simulation Testing for Sterile Bulk Pharmaceutical Chemicals, 1998 (revised 2006)29 Points to consider for Cleaning Validation, 199830 Parametric Release of Pharmaceuticals Terminally Sterilized by Moist Heat, 199931 Validation & Qualification of Computerized Laboratory Data Acquisition Systems, 199932 Auditing of Suppliers Providing Computer Products and Services for Regulated Pharmaceutical Operations, 1999 (revised 2004)33 Evaluation, Validation & Implementation of NewMicrobiological Testing Methods, 200034 Design and Validation of Isolator Systems for theManufacturing and Testing of Health Care Products, 200135 A Proposed Training Model for the Microbiological Function in the Pharmaceutical Industry, 200136 Current Practices in the Validation of Aseptic Processing - 2001,38 Manufacturing Chromatography Systems Post-Approval Changes: (ChromPAC): Chemistry, Manufacturing and Controls Documentation, 200639 Guidance for Temperature-Controlled Medicinal Products: Maintaining the Quality of Temperature-Sensitive Medicinal Products through the Transportation Environment, revised 2007 (orginal name: Cold Chain Guidance for Medicinal Products: Maintaining the Quality of Temperature-Sensitive MedicinalProducts Through the Transportation Environment, first published in 2005)40 Sterilizing Filtration of Gases, 200541 Virus Filtration, 2005 (revised 2008)42 Process Validation of Protein Manufacturing, 200543 Identification and Classification of Nonconformities in Molded and Tubular Glass Containers for Pharmaceutical Manufacturing, 200744 Quality Risk Management for Aseptic Processes, 200845 Filtration of Liquids Using Cellulose-Based Depth Filters, 200846 Last Mile: Guidance for Good Distribution Practices for Pharmaceutical Products to the End User, 201047 Preparation of Virus Spikes Used for Virus Clearance Studies,48 Moist Heat Sterilizer Systems: Design, Commissioning, Operation, Qualification and Maintenance, 2010PDA的技术报告目录/刊物技术方法第1号-萃取物从弹性封路措施:分析程序功能群表征/鉴定2 弹性封路措施:对重要的性能和身份特征评价3 小容量注射用玻璃容器:选择和试验方法因素的识别技术信息通报1 蒸汽灭菌周期验证2 对弹性封通用测试程序3 验证流程,干热灭菌和除热源使用4 为一个注射水系统验证设计概念5 无菌医药包装:兼容性和稳定性67 除热源8 肠外参数解湿热灭菌消毒释放1987年(注意:技术报告已被第8号第30号技术报告取代,不再可用)9 审查颗粒测量系统投放市场10注射制剂的蛋白质及肽:稳定性和稳定剂11由伽马辐射肠道灭菌12肠外药品包装成分渗Si13一个微生物环境监测方案基础14行业对基于列的分离工艺验证的角度来看,用于蛋白质的分离纯化15关于切向流过滤验证产业视角在生物医药中应用16γ-辐射对弹性封17当前实践中的无菌工艺验证?1992年18掌上报告计算机相关系统验证19快速/自动调查ID方法20对当前行业调查报告gowning 实践21生物负载恢复验证22无菌填充过程的仿真测试产品23关于当前产业调查无菌过滤实验24当前实践中的无菌工艺验证1996年25混合均匀度分析:验证和流程测试26液体过滤杀菌27医药软件包的完整性28过程无菌原料药化工仿真测试29点考虑清洗验证30药品参数放行末由湿热灭菌31计算机实验室验证及数据采集系统的鉴定32中医药部分提供受规管电脑产品及服务供应商审核33评估,验证和测试新方法的实施微生物34设计及制造及保健品的隔振系统验证测试35微生物的作用,为拟议的培训模式在制药行业36现行做法是无菌生产过程的验证2001373839对药品冷链指导:维护交通环境,通过对温度敏感的药品产品质量40气体过滤杀菌41病毒过滤42蛋白质制造工艺验证43识别及铸模,管状玻璃容器不符合药品生产的分类44质量风险管理过程的无菌45利用纤维素为基层的深层过滤液体2008年过滤篇三:PDA技术报告NO.26(2008版)(中文)液体的除菌过滤PDA第26份技术报告(2008年修订本)制药科学与技术的PDA期刊增刊2008年第62卷,第S-5号1.0引言除菌过滤是从液体流中去除微生物*而对产品质量没有负面影响的过程。
食品中丙烯酰胺减量措施研究进展王 萌,王 蓓(江苏旅游职业学院,江苏扬州 225000)摘 要:丙烯酰胺是一种食品在高温加工条件下产生的有害物质。
本文简要介绍了丙烯酰胺的发现历史,阐述了丙烯酰胺的形成机制,并对近年来食品中丙烯酰胺减量措施研究进展进行综述,以期为食物中有害物质控制以及产品品质提升提供理论依据。
关键词:丙烯酰胺;形成机制;减量措施Research Progress on Measures to Reduce Acrylamide in FoodWANG Meng, WANG Bei(Jiangsu College of Tourism, Yangzhou 225000, China)Abstract: Acrylamide is a harmful substance produced in food under high temperature processing conditions. This paper briefly introduces the discovery history of acrylamide, describes the formation mechanism of acrylamide, and summarizes the research progress of acrylamide reduction measures in food in recent years, with a view to providing theoretical basis for the control of hazardous substances in food as well as the improvement of product quality.Keywords: acrylamide; formation mechanism; reduction measures随着生活水平的不断提高,人们对食物的评价不再停留在种类多样,而是更注重其风味多样以及营养与健康。
材料科学与工程学院刘勇工学博士副教授\硕士生导师+86-451-86413920转8109liuy@主要研究方向固体润滑材料及其空间摩擦学行为、润滑油脂及其空间环境润滑行为、空间原子氧模拟技术、表面改性材料及其空间环境效应社会兼职主要学术成果1.Y.Liu,D.Z.Yang,W.L.Wu,S.Q.Yang.Dry Sliding Wear Behavior of Ti-6Al-4V Alloy in Air.Journal of Harbin Institute of Technology(New Series).2002,19(1):67∼712.刘勇,杨德庄,何世禹,武万良.Ti-6Al-4V合金在真空中的干滑动磨损行为.金属学报.2003,9(7):711∼7143.刘勇,杨德庄,何世禹,武万良.Ti-6Al-4V合金表面的热氧化/真空扩散处理.中国有色金属学报.2003,13(1):177∼1804.Liu Yong,Yang De-Zhuang,He Shi-Yu,Wu parisons of dry sliding wear of the Ti-6Al-4V alloy under condition of air and vacuum.Transactions of Nonferrous Metals Society of China.2003,13(5):1137∼11405.Y.L iu,D.Z.Yang,S.Y.He,W.L.Wu.Microstructure developed in surface layer of Ti-6Al-4V alloy after sliding wear in vacuum.Materials Characterization.2003.50:275∼2796.Yong Liu,Zhuyu Ye,Dezhuang Yang,Shiyu He.Effect of temperature on friction and wear of titanium alloy in vacuum.7th International Conference on“Protection of Materials and Structures from Space Environment”,Toronto-Canada,May10-13,2004,72∼747.刘勇,杨德庄,何世禹,武万良.TC4合金的磨损率及磨损表面层的显微组织变化.稀有金属材料与工程.2005,34(1):128∼1318.刘勇,叶铸玉,杨德庄,何世禹.TC4合金在真空低温下的摩擦磨损行为.哈尔滨工业大学学报.2006.38:335∼3399.刘勇,罗崇泰,叶铸玉,杨剑群,杨德庄.MoS2/石墨溅射涂层在真空中不同载荷下的摩擦磨损行为研究.润滑与密封.2007.32(11): 131∼13210.Yong Liu,Chongtai Luo,Zhuyu Ye,Jianqun Yang,and Dezhuang Yang.Study on Tribological Properties of MoS2+Graphite Sputtering Composite Coating under Various Environment Pressures.9th International Conference on“Protection of Materials and Structures from Space Environment”,Toronto-Canada,May22-24,2007,11.Yong Liu,Zhongtai Luo,Zhuyu Ye,Xingdong Yuan,Dezhuang Yang.Study on Friction and Wear Properties in Vacuum forγ-Ray Irradiated PTFE Coatings.9th International Conference on“Protection of Materials and Structures from Space Environment”,Toronto-Canada,May22-24,2007,12.Yong Liu,Zhuyu Ye,Dezhuang Yang,Shiyu He.Thermal Oxidized Coating on Surface of Titanium Alloy for Improvement of Tribological Properties in Vacuum.第五届摩擦学国际会议CIST2008.13.Yong Liu,Zhuyu Ye,Xingdong Yuan,Dezhuang Yang.Study on Friction and Wear Properties in Vacuum forγ-Ray Irradiated PTFE Coatings.第五届摩擦学国际会议CIST2008.14.孙荣禄,刘勇,杨德庄,钛合金表面激光熔覆NiCrBSi-TiC复合涂层的组织和摩擦磨损性能.中国激光.2003.30(7):659∼66215.孙荣禄,刘勇,杨德庄.TC4合金及其表面TiC p/Ni基合金及光荣浮沉的摩擦磨损性能.摩擦学学报.2003.23(6):457∼46216.W.L.Wu,Y.Liu,D.Z.Yang,W.R.Huang.Microstructure of TiC dendrites reinforced titanium matrix composite layer by laser cladding. Journal of Materials Science Letters.2003.22(16):1169∼117117.杨剑群,刘勇,杨德庄,袁兴栋,叶铸玉.MoS2/Graphite涂层真空环境下摩擦学行为研究.哈尔滨工业大学学报.2006.38:358∼360.18.袁兴栋,刘勇,杨德庄,杨剑群,叶铸玉.聚四氟乙烯涂层真空中的摩擦磨损性能研究.哈尔滨工业大学学报.2006.38:363∼366.19.Yu Gao,Song He,Dezhuang Yang,Yong Liu,Zhi-jun Li.Effect of vacuum thermo-cycling on physical properties of unidirectionalM40J/POSITES PART B-ENGINEERING.2005,36:351∼35820.Gao Yu,Sheng-ling,Yang Dezhuang,Liu Yong,Li Zhi-jun.A study on damage effect of vacuum thermo-cycling on M40J-Epoxy composites. Journal of Reinforced plastics and Composites.2005,24(16):1705∼171121.WANG Gang,MA Xinxin,TANG Guangze,LIU Y ong,YANG Dezhuang,and HE Shiyu.Effect of sliding velocity in vacuum on tribological behavior of nitrided2Cr13steel.Rare metals(s)20071422.Jianqun Yang,Yong Liu,Ye Zhuyu,Yang dezhuang,He Shiyu.Wear Behavior of Plasma-nitrided2Cr13Martensitic Stainless Steel under Air and Vacuum.第五届摩擦学国际会议CIST2008.23.Jianqun Yang,Yong Liu,Ye Zhuyu,Yang dezhuang,He Shiyu.Effect of Gamma Irradiation on Friction and Wear Behavior of MoS2/graphite coatings in Vacuum.第五届摩擦学国际会议CIST2008.24.Xinxin Ma,Gang Wang,Guangze Tang,Yong Liu,Shiyu He and Dezhuang Yang.Tribological Behaviors at High Load of MoS2Films in Vacuum.第五届摩擦学国际会议CIST2008.25.高禹,董尚利,杨德庄,刘勇,李志君.在120keV质子辐照下环氧树脂的质损效应.高分子材料科学与工程.2008.(9)24:72∼7526.Jianqun Yang,Yong Liu,Zhuyu Ye,Dezhuang Yang,Shiyu He,Microstructure and tribological characteristics of nitrided layer on martensitic stainless steel in air and vacuum,Surf.Coat.&Tech.2009,204:705∼712。
A Novel Model for Implementation of GammaRadiation Effects in GaAs HBTs Jincan Zhang,Yuming Zhang,Senior Member,IEEE,Hongliang Lu,Member,IEEE,Yimen Zhang,Senior Member,IEEE,and Min LiuAbstract—For predicting the effects of gamma radiation on gal-lium–arsenide(GaAs)heterojunction bipolar transistors(HBTs), a novel model is presented in this paper,considering the radiation effects.Based on the analysis of radiation-induced degradation in forward base current and cutoff frequency,three semiempirical models to describe the variation of three sensitive model parame-ters are used for simulating the radiation effects within the frame-work of a simplified vertical bipolar inter-company model.Its va-lidity was demonstrated by analysis of the experimental results of GaAs HBTs before and after gamma radiation.Index Terms—Cutoff frequency,forward base current,gamma radiation effects,heterojunction bipolar transistor(HBT),semi-conductor device modeling,vertical bipolar inter-company (VBIC).I.I NTRODUCTIONG ALLIUM–ARSENIDE(GaAs)heterojunction bipolartransistors(HBTs),due to their superior performance, are widely used in space radiation environments,and the recent boost of wireless and other high-end communications continue to draw more and more attention to its reliable long-term per-formance under radiation.Earlier studies on radiation effects on GaAs HBT have shown that GaAs HBTs are very attractive candidates for applications in space-based communication sys-tems[1],[2].In this case,many integrated circuits(ICs)have been designed with a GaAs HBT process[3]–[5].However, to improve the radiation hardness of HBT ICs,designers need electrical models taking account for the degradation induced by radiation.However,most of the radiation studies on GaAs HBTs re-ported thus far have mainly focused on the radiation induced changes from the experimental results with the measured elec-trical characteristics of the devices(e.g.,excess base current, cutoff frequency,etc.)[1],[2],[6],[7].To our knowledge,there is not much published information on modeling the electrical characteristics of HBTs subjected to high-energy radiations[8]. The work of modeling the effects of gamma radiation on the dc characteristics of GaAs HBTs has been studied in our pre-vious work[9].However,the complexity of the radiation-in-Manuscript received May03,2012;revised September16,2012;accepted September20,2012.This work was supported by the National Basic Research Program of China under Grant2010CB327505,the Advance Research Project of China under Grant51308030306,and the Advance Research Foundation of China under Grant9140A08030511DZ111.The authors are with the Microelectronics Institute,Xidian University,Xi’an, Shaanxi710071,China(e-mail:zjc850126@).Digital Object Identifier10.1109/TMTT.2012.2221137duced degradation processes makes it difficult to develop a de-tailed physical model of the device after radiation.An alter-native semiempirical approach is to develop an improved ver-tical bipolar inter-company(VBIC)model to describe electrical characteristics of the device before and after irradiation.One can use the extracted model parameters to describe the degra-dation of sensitive model parameters as a function of radiation dose,and then assemble the device model.We believe that such an approach is very useful to predict the degradation effects of devices.There were reports for simulating radiation-induced degradation of dc characteristics in bipolar transistors of silicon based on the semiempirical approach[10],[11].However,very little progress has been made in modeling the degradation of ac characteristics as a function of radiation dose in bipolar transis-tors based on the semiempirical approach,which is now studied in this work.In this paper,a novel model for implementation of gamma ra-diation effects in GaAs HBTs is developed.This paper is orga-nized as follows.The novel model based on a simplified VBIC model is presented in Section II.To validate the validity of the model,the experimental results of GaAs HBTs under gamma radiation are shown in Section III.The modeled results are com-pared with the measured results in Section IV and conclusions are presented in Section V.II.M ODELThe VBIC model was defined by a group of representa-tives from IC and computer-aided design(CAD)industries to overcome the shortcomings of the Spice Gummel Poon(SGP) model.The equivalent network of VBIC is given in[12].There are several improvements comparing with the SGP model, such as temperature-dependence modeling,quasi-saturation modeling,and decoupling of base and collector currents. However,special characteristics of HBTs make it possible to consider a simplified VBIC model,as shown in Fig.1.In this simplified VBIC model,the following assumptions are consid-ered.1)There is no parasitic pnp transistor in npn HBTs[13];there-fore,the parameters to describe the parasitic transistor can be eliminated.2)The extrinsic base–emitter current and chargecan be neglected compared to the intrinsic base–emitter current and charge,respectively.3)Since de-embedding the parasitic parameters has beendone,base–collector small-signal capacitance and base–emitter small-signal capacitance can be ig-nored.0018-9480/$31.00©2012IEEEFig.1.Simplified VBIC model.4)In HBTs,both early voltages and knee currents for the for-ward and reverse operations can be considered to be infi-nite[14],therefore the normalized base charge tends to be1.The validity of the model to describe HBTs characteristics has been verified in our earlier work[15].Unfortunately,the simplified VBIC model also has not taken account of the par-ticular effects of radiation on the electrical behavior of devices. However,HBTs are significantly degraded when exposed to ra-diation.Forward base current and cutoff frequency are mainly affected.A.Forward Base CurrentIn the measurement of forward-mode Gummel plot,the base current is measured when isfixed at zero while the base–emitter junction is in forward bias.The presence of the relatively large valence band discontinuity at the base–emitter heterointerface leads to effective suppression of the hole current injected from the base region into the emitter.Thus,the base current is mostly determined by the recombination of:1)in the bulk and along the periphery of the base–emitter space-charge region(BE-SCR)and2)in the bulk and at the surface of the neutral base region(NBR).In the simplified VBIC model,the total forward base current for low-level injection where voltage drop across parasitic re-sistances can be neglected is followed by(1) where is the thermal voltage.As can be seen from (1),the base current includes a component,formed by the NBR recombination modeled with saturation current and ideality factor,and a component,caused by the BE-SCR recombination modeled with saturation currentand ideality factor.Radiation-induced degradation in the forward base current of HBTs is attributed to excess carrier recombination including ra-diation-induced traps in the BE-SCR[9],whereas excess base current defined as the difference between the post-radi-ation and pre-radiation base current can be experimentally ex-tracted by the variations of and with radiation dose. In this case,(1)will be improved as(2),in which radiation-in-duced excess saturation current and excess ideal factor are included.(2)B.Cutoff FrequencyPhysically,can be expressed as(3)(4)(5) where is the base–emitter junction capacitor charge time,is the base–collector junction capacitor charge time,is the base transit time,and is the base–collector space-charge region delay time.It has been shown that capacitance and resistance are slightly or even not degraded under radiation for HBTs in our previous works[16],Therefore,the degradation of is mainly caused by the increase of the transit time,which is just the sum of the variations of and in the compact model[17].In the simplified VBIC model,the transit time is modeled as(6) where is the forward transit time,is the variation of with basewidth modulation,is the coefficient of bias dependence,is the coefficient of dependence on, is the coefficient of dependence on,and is the forward collector current.Inserting a parameter related to the variation of due to radiation effect,the equation of the transit time can be im-proved as(7) where radiation-induced excess forward transit time is used to predict the increase of,in turn to describe the degra-dation of.III.E XPERIMENTSIn order to determine the regulations of,,and with radiation dose,and verify the validity of the presented model,the following radiation experiment has been performed.ZHANG et al.:NOVEL MODEL FOR IMPLEMENTATION OF GAMMA RADIATION EFFECTS IN GaAs HBTs3Fig.2.Radiation-induced degradation of base current for different total dose levels.The devices applied in the experiment are GaAs HBTs with a single fabrication batch from the WIN Semiconductors Corpo-ration,Tao Yuan Shien,Taiwan(type Q1H201B1).The width and length of each emitter mesa for Q1H201B1are1and20 m,respectively.Radiation of devices,without bias,was im-plemented in a“Gamma-Cell”with a Co source providing a dose rate of about50rd(Si)/s rd Si rd GaAs, and radiation time of5.5,16.5,38.5,and55h,equivalent to a gamma total dose of1,3,7,and10Mrd(Si),respectively.In order to get enough accurate test data,there were four test sam-ples under every radiation total dose mentioned above.Before the experiment,the samples were carefully selected to ensure the differences of performances among the16tested HBTs to be less than3%and the spread of the measured data for the four devices at each radiation to be within0.1%.All of samples were measured at room temperature K before and after radiation.On-chip forward dc Gummel characteristic measure-ments were made with an HP4142Semiconductor Analyzer. Scattering parameters(-parameters)were measured using an HP8510C vector network analyzer from100MHz to40GHz, and in a wide bias current range based on circuit applications.A.Forward Base CurrentFig.2shows the plot of measured versus with the base–collector junction shorted for different total dose radiation, while the collector current remains approximately unchanged. As can be seen from thisfigure,at low current levels,the curve shows significant change after radiation.In the high current regime,almost has no change.The increase rate of base current,defined as the ratio of excess base current to pre-radiation base current,is plotted with incremental dose values,as shown in Fig.3.The increase rate increases with the total dose,and reaches620%at V after a gamma total dose of10Mrd(Si).However,as can be seen from Fig.3,the increase rate of base current versus decreases.In the regime of V,the increase rate becomes close to0.Fig.4shows the effect of the total dose on the excess base current for different total dose levels.The results presented are limited in the low injection current region where the excess base current remains significant compared with thevalue of the total base current.The excess basecurrent is approximately linear throughout the biasrange with a slope of the idea factor Fig.3.Increase rate of forward base current.Fig.4.Radiation-induced excess base current.Fig.5.versus collector current for different total dose levels..These results indicate that radiation-induced recombi-nation mechanism in the BE-SCR is more dominant in the ex-cess base current.Thus,it is reasonable that only the and parameters associated with the BE-SCR are improved in the novel model,as shown in(2).There are two possible recombination mechanisms in the BE-SCR to be consistent with the measured base current ide-ality factor[18].One is trap-assisted tunneling due to gamma radiation induced traps.The second possible mecha-nism is the recombination from a nonuniform distribution of Shockley–Read–Hall centers within the BE-SCR.B.Cutoff FrequencyThe cutoff frequency was extracted using-parameters measurements in the common-emitter configuration by extrap-olating.Fig.5shows measured versus collector current for different total dose levels.In general,relatively obvious degradation is observed for the GaAs HBT after10-Mrd(Si)ra-diation.4IEEE TRANSACTIONS ON MICROWA VE THEORY ANDTECHNIQUESing fly-backing fly-back measurement.The emitter series resistance was measured with the fly-back technique in which the emitter is grounded and current is forced into the base.The open circuit collector voltage was measured.The emitter resistance is taken as the slope of the linear segment of the curve.Fig.6shows the comparison of from fly-back measurement curves before and after 10-Mrd(Si)radiation.As can be seen from this figure,there is almost no change in .In the simpli fied VBIC model,includes the extrinsic col-lector resistance and intrinsic collector resistance .Fig.7shows from fly-back measurement curves to be similar to measurement.The value of is equal to the slope of the linear segment of the curve,and has no change after radiation.can be determined by optimizing the fitting to quasi-saturation region data of common-emitter char-acteristics.It can then be obtained that there is almost no change in .The possible reason for almost unchanged and after radiation is that the doped concentration in HBT devices is high,which makes radiation induced a little reduction of carrier con-centration causing no obvious increment in and .Fig.8shows the comparison of the capacitances for the GaAs HBT.The curves nearly coincide,suggesting that even after 10-Mrd(Si)total dose gamma radiation,the capacitances almost do not change.According to the measured results,it can be concluded that the degradation of is only due to the change of ,which validates the correctness of the discussion in Section II-B.IV .A NALYSIS AND D ISCUSSIONTo predict the electrical behavior of ICs for a given radiation total dose,designers usually need an ef ficient evaluation oftheFig.8.Capacitances (and )for GaAs HBT.TABLE I V ALUES OF,,,AND P ARAMETERS FOR P RE -R ADIATIONAND P OST -R ADIATION OF D IFFERENT R ADIATION L EVELSradiation parameters embedded in sensitive device model pa-rameters to determine the degradation of these parameters with dose.Such an approach permits an easy implementation for ra-diation-induced degradation in the electrical simulator,such as the Advanced Design System (ADS),by means of symbolically de fined device (SDD),which is an equation-based module to en-able designer to quickly and easily de fine custom and nonlinear components.Furthermore,this approach,which allows reason-able computation time,is generally preferred for the applica-tions of complex physics with large numbers of parameters.A.Forward Base CurrentTo extract the forward Gummel base current parameters,theand parameters can be determined from the inter-cept and the slope of the plot in the region of low .The values of and are then easily obtained by fitting the curve in the high injection region.The obtained ,,,and parameter values are listed in Table I for pre-radiation and post-radiation of different radiation levels.The extracted curves for and versus total dose are plotted in Fig.9(a)and (b),respectively.A saturation effect is exhibited for high total doses.The objective functions for fitting and are shown in (8)and (9),respec-tively,where Dose represents the gamma radiation total dose [in Mrd(Si)]and ,,,,,and are fitting parametersDose (8)Dose(9)As can be seen from Fig.9(a)and (b),the fitting curves of the first four dose levels (first four modeled)nearly coincide with that of all the five dose levels (modeled).The values of and at Dose Mrd(Si)obtained from the first four modeled,modeled,and measured are shown in Table II.ThereZHANG et al.:NOVEL MODEL FOR IMPLEMENTATION OF GAMMA RADIATION EFFECTS IN GaAs HBTs5(a)(b)Fig.9.(a)Comparison of the measured and modeled.(b)Comparisonof the measured and modeled.TABLE IIVALUES OFANDP ARAMETERS AT DoseMrd(Si)parison of the measured and first four modeled excess base cur-rent for 10-Mrd(Si)gamma radiation.are little deviations between the measured values and the firstfour modeled values.The error between the measured excess base current and the excess base current based on first four modeled is less than 5%for the fifth total dose 10Mrd(Si),as depicted in Fig.10.Thus,it can be concluded that the novel model should be able to pre-dict accurately the radiation-induced degradation in excess base current even after more than 10-Mrd(Si)gammaradiation.The measured and modeled forward base current for dif-ferent total doses is drawn in Fig.11.The modeled results parison of the measured and modeled forward base current for different total dose levels.TABLE IIIV ALUES OF,,,,AND P ARAMETER FOR P RE -R ADIATION AND P OST -R ADIATION OF D IFFERENT R ADIATION L EVELSmatch the measured data reasonably well (the error within 2%)up to V.The difference between the measured and modeled increases up to 3%for the high injection current region because our model does not account for the degradation of the NBR.However,this mismatch is still not bad.B.Cutoff FrequencyIn order to extract the transit time parameters,the forward transit time is obtained from the intercept of against the curve.The ,,,and param-eters of the transit time are further estimated by optimization.Table III presents the extracted ,,,,and parameter values for pre-radiation and post-radiation of dif-ferent radiation levels.It seems that parameters do not change much between pre-radiation and post-radiation.Since the most susceptible transistor materials to be sensitive to the total dose effect are insulators,the SiN insulator instead of oxides in the GaAs HBTs does not show serious degradation to the total dose effect.To describe the decrease of ,the following objective func-tion is used to describe excess forward transit time :Dose(10)where ,,and are fitting parameters.The measured and modeled versus total dose is pre-sented in Fig.12.The fitting curve based on the first four dose levels almost entirely coincides with that based on all five dose levels,suggesting that the novel model should be able to predict the degradation of cutoff frequency under more than 10-Mrd(Si)gamma radiation.The cutoff frequency versus is illustrated in Fig.13for different total dose levels with a maximum error less than 1%in the all-bias range.6IEEE TRANSACTIONS ON MICROWA VE THEORY ANDTECHNIQUESparison of the measured and modeled.parison of the measured and modeled cutoff frequency for dif-ferent total dose levels.V .C ONCLUSIONA novel model to include total dose effects for HBTs has been presented in this paper.To predict the behavior of ICs in space-like environments,semiempirical models for radiation parameters as a function of radiation total dose have been pro-posed.By incorporating the radiation parameters into sensitive model parameters,a novel model based on a simpli fied VBIC model has been implemented to simulate accurately the radia-tion-induced degradation in forward base current and cutoff fre-quency at least 10-Mrd(Si)gamma total dose.Our analysis also shows that the model can possibly predict the electrical charac-teristics of HBTs even more than 10-Mrd(Si)gamma radiation;however,further experimental study is required to prove the de-duction.R EFERENCES[1]S.M.Zhang,G.F.Niu,J.D.Cressler,S.J.Mathew,U.Gogineni,S.D.Clark,P.Zampardi,and R.L.Pierson,“A comparison of the effects of gamma radiation on SiGe HBT and GaAs HBT technologies,”IEEE Trans.Nucl.Sci.,vol.47,no.6,pp.2521–2527,Dec.2000.[2]S.Vuppala,C.S.Li,P.Zwicknagl,and S.Subramanian,“Neutron,proton and electron radiation effects in InGaP/GaAs single hetero-junc-tion bipolar transistors,”IEEE Trans.Nucl.Sci.,vol.50,no.6,pp.1846–1851,Dec.2003.[3]U.Karthaus,D.Sukumaran,S.Tontisirin,S.Ahles,A.Elmaghraby,L.Schmidt,and H.Wagner,“Fully integrated 39dBm,3-stage doherty PA MMIC in a low-voltage GaAs HBT technology,”IEEE Microw.Wireless Compon.Lett.,vol.22,no.2,pp.94–96,Feb.2012.[4]N.G.Constantin,P.J.Zampardi,and M.N.El-Gamal,“Automatichardware recon figuration for current reduction at low power in RFIC PAs,”IEEE Trans.Microw.Theory Techn.,vol.59,no.6,pp.1560–1570,Jun.2011.[5]K.Yamamoto,H.Kurusu,S.Suzuki,and M.Miyashita,“High-direc-tivity enhancement with passive and active bypass circuit techniques for GaAs MMIC microstrip directional couplers,”IEEE Trans.Mi-crow.Theory Techn.,vol.59,no.12,pp.3095–3107,Dec.2011.[6]E.P.Wilcox,S.D.Phillips,P.Cheng,T.Thrivikraman,A.Madan,J.D.Cressler,G.Vizkelethy,P.W.Marshall,C.Marshall,J.A.Babcock,K.Kruckmeyer,R.Eddy,G.Cestra,and B.Y.Zhang,“Single event transient hardness of a new complementary npn pnp SiGe HBT technology on thick-film SOI,”IEEE Trans.Sci.,57,no.6,pp.3293–3297,Dec.2010.[7]S.Díez,M.Lozano,G.Pellegrini,F.Campabadal,I.Mandic,D.Knoll,B.Heinemann,and M.Ullán,“Proton radiation damage on SiGe:C HBTs and additivity of ionization and displacement effects,”IEEE Trans.Nucl.Sci.,vol.56,no.4,pp.1931–1936,Aug.2009.[8]M.V.Uffelen,S.Geboers,P.Leroux,and F.Berghmans,“Spice mod-elling of a discrete COTS SiGe HBT for digital applications up to MGy dose levels,”IEEE Trans.Nucl.Sci.,vol.53,no.4,pp.1945–1949,Aug.2006.[9]J.C.Zhang,Y.M.Zhang,H.L.Lu,Y.M.Zhang,and S.Yang,“Themodel parameter extraction and simulation for the effects of gamma ir-radiation on the DC characteristics of InGaP/GaAs single heterojunc-tion bipolar transistors,”Microelectron.Reliab.,Art.ID MR-D-11-00657,to be published.[10]X.Montagner,R.Briand,P.Fouillat,R.D.Schrimpf,A.Touboul,K.F.Galloway,M.C.Calvet,and P.Calve1,“Dose-rate and irradiation temperature dependence of BJT spice model rad-parameters,”IEEE Trans.Nucl.Sci.,vol.45,no.3,pp.1431–1437,Jun.1998.[11]X.Montagner,P.Fouillat,R.Briand,R.D.Schrimpf,A.Touboul,K.F.Galloway,M.C.Calvet,and P.Calvel,“Implementation of total dose effects in the bipolar junction transistor Gummel–Poon model,”IEEE Trans.Nucl.Sci.,vol.44,no.6,pp.1922–1929,Dec.1997.[12]C.C.McAndrew,J.A.Seitchik,D.F.Bowers,M.Dunn,M.Foisy,I.Getreu,M.McSwain,S.Moinian,J.Parker,D.J.Rouston,M.Schroter,P.van Wijnen,and L.F.Wagner,“VBIC95:The vertical bipolarinter-company model,”IEEE J.Solid-State Circuits ,vol.31,no.10,pp.1476–1483,Oct.1996.[13]S.V.Cherepko and J.C.M.Hwang,“VBIC model applicability andextraction procedure for InGaP/GaAs HBT,”in –Paci fic Mi-crow.Conf.,2001,pp.716–721.[14]W.Liu,“Switching characteristics and spice models,”in Handbook ofIII–V Heterojunction Bipolar Transistors .New York:Wiley,1998,pp.1088–1090.[15]J.C.Zhang,Y.M.Zhang,H.L.Lu,Y.M.Zhang,S.Yang,and P.Yuan,“A simpli fied VBIC model and SDD implementation for InP DHBT,”in IEEE Int.Electron Devices and Solid-State Circuits Conf.,Tianjin,China,2011,pp.1–2.[16]S.Yang,H.L.Lu,Y.M.Zhang,Y.M.Zhang,J.C.Zhang,and H.P.Zhang,“The effects of gamma irradiation on GaAs HBT,”in IEEE Int.Electron Devices and Solid-State Circuits Conf.,Tianjin,China,2011,pp.1–2.[17]J.Ge,Z.Jin,Y.B.Su,W.Cheng,X.T.Wang,G.P.Chen,and X.Y.Liu,“A physics-based charge-control model for InP DHBT including current-blocking effect,”Chinese Phys.Lett.,vol.26,no.7,pp.1–4,2009.[18]G.A.Schrantz et al.,“Neutron radiation effects on AlGaAs/GaAs het-erojunction bipolar transistors,”IEEE Trans.Nucl.Sci.,vol.35,no.6,pp.1657–1661,Dec.1988.Jincan Zhang,photograph and biography not available at time of publication.Yuming Zhang (M’01–SM’05),photograph and biography not available at time of publication.Hongliang Lu (M’07),photograph and biography not available at time of pub-lication.Yimen Zhang (SM’91),photograph and biography not available at time of pub-lication.Min Liu,photograph and biography not available at time of publication.。
Effects of Gamma Irradiation on The Structure and MechanicalProperties of Wild Silkworms and Bombyx Mori Silk Fibroin Films Siyong Xiong1,2, Yamei Xu1,Yuhong Jiao1,Lu Wang1, Mingzhong Li1,a1National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren’ai Road, Industrial Park, Suzhou 215123, China2Suzhou Institute of Scientific & Technical Information, No. 979 Renming Road, Suzhou 215002,Chinaa mzli@Keywords: Silk Fibroin; Film; Structure; Mechanical Properties;Gamma IrradiationAbstract: The structure and mechanical properties of A. yamamai, A. perny and B. mori silk fibroin films irradiated by gamma ray with various doses of 0, 25, 50, 100 and 200 kGy, respectively were determined by XRD, FT-IR, DSC and Instron 3365 equipment. Results showed that the aggregation structure and molecular conformation of A. yamamai, A. perny and B. mori silk fibroin films irradiated by gamma ray with those doses mentioned above were not significantly changed. However, with the increase of radiation intensity, the thermal stability of silk fibroin films declined slightly, and the breaking strength and extensibility reduced significantly, due to the breakdown of parts of secondary bonds and covalent bonds. These results suggested that, when these silk fibroin materials were sterilized by gamma irradiation, smaller radiation doses should be used, otherwise irreversible damages on these materials would be caused.IntroductionSilk fibroin produced from cultivated silkworms or wild silkworms has been famous for the outstanding mechanical properties, and silk fibroin materials had been studied for new biomedical applications due to its excellent biocompatibility, slow degradability and permeability to oxygen.Regenerated silk fibroin film is one of the important form of silk fibroin materials and it has been shown to support stem cell adhesion, proliferation and differentiation in vitro and promote tissue repair in vivo[1-4]. However, biomedical materials had to be sterilized for clinical application and there were various methods for sterilization[5-8]. Gamma radiation is one of the common sterilization methods, it is necessary to explore the effects of gamma radiation on the structure and properties of silk fibroin films, which could provide theoretical basis for medical applications in the future. Researchers had studied the changes in the fine structure of Bombyx mori (B. mori) silk fibroin fibers irradiated by gamma ray[9]. However, there were few papers studied about the changes in structure and properties of Antheraea yamamai (A. yamamai), Antheraea perny (A. perny) and B. mori silk fibroin films irradiated by gamma ray.In this paper, we mainly focused on the effects of gamma radiation on the structure and mechanical properties of A. yamamai, A. perny silk fibroin films. The changes in the structure and mechanical properties of B. mori silk fibroin films irradiated by gamma ray were taken as controls.Materials and methodsPreparation of regenerated A. yamamai, A. perny and B. mori silk fibroin solutionThe A. yamamai cocoons were treated three times with 0.35 wt % Na2CO3 solution at 98~100°C for 30 min to remove sericin. Degummed A. yamamai silk fibers were dissolved in the melting Calcium Nitrate solutions for 1 h at 90°C and the liquor ratio was 1:20. Then the mixed solution was dialyzed in the flowing distilled water for 96h. The A. yamamai silk fibroin solution withconcentration of about 3.0 wt % was obtained. The preparation of A. perny silk fibroin solution wasaqueous Natrium Carbonicum solutions (0.25 wt %), the liquor ratio (1:10), and the dissolving time (5 hours).According to the literature[10], the B. mori silks were treated three times with 0.05 wt % Na2CO3 solution at 98~100°C for 30 min to remove sericin, respectively. The pure silk fibroin fibers were dissolved in the triadic solvent CaCl2·CH3CH2OH·H2O (mole ratio=1:2:8) for 1 h at 78±2°C through stirring and the liquor ratio was 1:10. The prepared solution was purified by dialyzed for 96h. The regenerated B. mori silk fibroin solution with concentration of about 3.0 wt % was obtained. Preparation of silk fibroin films and gamma irradiationThe silk fibroin films were prepared by casting the same volume of silk fibroin solution (40mL) on a polyethylene dish and air-dried at 20°C. Then A. yamamai, A. perny and B. mori silk fibroin films were obtained. Each type of silk fibroin films was divided into five portion irradiated by gamma ray with 0, 25, 50, 100, 200kGy at room temperature, respectively. The irradiations were carried out by a 6.4×104 Curie 60Co irradiation facility located at Soochow University, China.MeasurementsXRD was performed by a Rigaku D/Max-3C diffractometer with Cu-Kα radiation (λ= 0.15418 nm). The X-ray source was operated at 40 kV and 40 mA. Diffraction intensity was measured in reflection mode at scanning rate of 2°/min for 2θ=5~45°.FT-IR spectra were obtained by a Nicolet Avatar-IR360 in the spectral region of 400~1800 cm-1.The DSC measurements were carried out under Nitrogen by a Perkin-Elmer Diamond DSC/TG instrument at a heating rate of 15 °C/min.The mechanical properties of silk fibroin films (15 mm × 2 mm) were determined on Instron 3365 equipment under relative humidity of 65% at 20 °C. The crosshead speed was 10mm/min. Results and discussionXRD(1)(2)Figure 1 XRD curves of silk fibroin films irradiated by gamma ray with various doses: (1) A. yamamai silk fibroin films;(2) B. mori silk fibroin films; a—silk fibroin films without gamma irradiation; b, c, d, e—silk fibroin films irradiated with25, 50, 100 and 200 kGy, respectively.In Figure 1(1), there are some apparent diffraction peaks around 11.8º and 22.0º in XRD curve (a) of A. yamamai silk fibroin films without gamma irradiation. It indicates that silk fibroin film mainly consists of α-helix structure, according to the studies on wild silkworms silk fibroin molecular conformation[11-18], and a certain amount of amorphous structure is possibly existed. In addition, with the increase of irradiation doses, these diffraction peaks around 11.8º and 22.0º in curve b to e almost have no changes, indicating that the crystal structure of A. yamamai silk fibroin films has no significant changes after gamma irradiation. XRD curves of A. perny silk fibroin films irradiated by gamma ray with various doses are similar to that of A. yamamai silk fibroin films, due to their approximate primary structure.In Figure 1(2), based on those previous studies of B. mori silk fibroin[10, 19], there are some apparent diffraction peaks around 9.1º (w) in XRD curve (a) of B. mori silk fibroin films withouthas no significant changes, indicating that the crystal structure of B. mori silk fibroin films has no visible changes.FTIR spectra(1)(2)Figure 2 FTIR spectra of silk fibroin films irradiated by gamma ray with various doses: (1) A. yamamai silk fibroin films;(2) B. mori silk fibroin films; a—silk fibroin films without gamma irradiation; b, c, d, e—silk fibroin films irradiated with25, 50, 100 and 200 kGy, respectively.In Figure 2(1), these bands at 1652cm-1 (amide I), 1540 cm-1 (amide II), 892 cm-1 (amide IV), 622 cm-1 (amide V) in FT-IR spectra (a-e) are attributed to α-helix structure[11-15], suggesting that these A. yamamai silk fibroin films contain much α-helix structure. The bands at 1238 cm-1 (amide III), 966 cm-1(amide IV) indicated that it still contained a few β-sheet structure. With the increase of irradiation doses, the band at 660 cm-1 (amide V) assigned to random coil disappeared gradually and the bands shifted from 622 cm-1 (amide V) and 660 cm-1 (amide V) to 696 cm-1 (amide V). It indicates that the molecular conformation of silk fibroin films was very likely to transform from random coil or α-helix to β-sheet. And there is no obvious change in the molecular conformation of A. yamamai silk fibroin films with gamma irradiation compared with that of the control samples, which was closely consistent with the results of XRD profile. The FT-IR spectra of A. perny silk fibroin films irradiated by gamma ray with various doses are also similar to that of A. yamamai silk fibroin films.In Figure 2(2), the FT-IR spectra (a-e) of B. mori silk fibroin films irradiated by gamma ray with various doses are similar. The intense bands at 1660 cm-1 (amide I), 1652 cm-1 (amide I), 1540 cm-1 (amide II) and 1536 cm-1(amide III) are assigned to random coil[16-18], indicating that it mainly contained random coil in these silk fibroin films. The bands at 1652 cm-1 (amide I), 1520 cm-1 (amide II) and 700 cm-1 (amide V) show that both silk I and silk II existed. With the increase of irradiation doses, there is no obvious change in the molecular conformation of B. mori silk fibroin films.DSC(1)(2)Figure 3 DSC curves of silk fibroin films irradiated by gamma ray with various doses: (1) A. yamamai silk fibroin films;(2) B. mori silk fibroin films; a—silk fibroin films without gamma irradiation; b, c, d, e—silk fibroin films irradiated with25, 50, 100 and 200 kGy, respectively.In Figure 3(1), the A. yamamai silk fibroin films without gamma irradiation exhibited an endothermal to exothermal transition at around 230 °C, attributed to the pyrolysis of silk fibroin films[20]endothermic peak at about 354.80 °C is due to the thermal decomposition of silk fibroin molecules with unoriented β-sheet configuration[18]. With the increase of irradiation doses, the thermal decomposition temperature of silk fibroin films reduced gradually but slightly, which was also similar to the results of DSC curves of A. perny silk fibroin films irradiated by gamma ray.In Figure 3(2), the B. mori silk fibroin films exhibited visible endothermal to exothermal transition peak from 207°C to 231 °C in curves a to e, especially the exothermal peak at around 218 °C, which is attributed to the transition of silk fibroin from amorphous to silk II[10], suggesting that these silk fibroin films still contain lots of amorphous structure. The endothermic peak at around 282 °C was attributed to the thermal decomposition. With the increase of irradiation doses, the thermal decomposition temperature of B. mori silk fibroin films reduced slightly. That is because when silk fibroin films were irradiated by the high-energy electron produced by gamma ray, the silk fibroin molecules absorbed radiation energy and the original thermodynamic equilibrium in these films was broken. Then it was ionized and polarized to produce various kinds of active particles (such as ions, secondary electrons, free radicals, etc.), leading to the breakage of hydrogen bonds and covalent bonds between silk fibroin molecules, which was very likely to damage the molecular chains. Meanwhile, the thermal movement of the silk fibroin molecules in the amorphous and crystalline regions increased with the increase of irradiation doses, the molecular chains rearrange to disorder silk fibroin chains and weaken intermolecular force, resulting in the scission of peptide bonds in the amorphous regions, the decrease of molecular orientation, and then the thermal stability declined[9]. Mechanical properties(1)(2)(3)Figure 4 The relation curves between irradiation dose and breaking strength or elongation at break of silk fibroin films in dry state: (1) A. yamamai silk fibroin films; (2) A. perny silk fibroin films; (3) B. mori silk fibroin films.In Figure 4(1) to (3), with the increase of irradiation doses, the breaking strength and elongation at break of silk fibroin films in dry state show a significant downtrend, especially the breaking strength. The breaking strength and elongation at break of B. mori silk fibroin films present almost a linear downtrend. These results were consistent with the analyses stated above. When the silk fibroin films were irradiated by gamma ray with various doses, free radical formation, main chains breakage, and disordering of silk fibroin chains were caused due to the broken of hydrogen bonds and peptide bonds in amorphous region, consequently, the average molecular orientation declined. Therefore, the breaking strength and elongation at break of silk fibroin films decreased[9]. However, there were no significant changes in the molecular conformation and crystal structure of silk fibroin films irradiated by gamma ray within the dosage range in this paper, but the breaking strength and elongation at break of silk fibroin films decreased significantly.ConclusionsThe effects of gamma radiation on the changes of structure and mechanical properties of A. yamamai, A. perny silk fibroin films were studied in this paper. Meanwhile, the changes in the structure and mechanical properties of B. mori silk fibroin films irradiated by gamma ray were taken as controls. Compared with silk fibroin films without gamma irradiation, the crystal structure and molecular conformation of those silk fibroin films irradiated by gamma ray with 25, 50, 100 and 200 kGy had no significant changes. With the increase of irradiation doses, the thermal stability of silk fibroin filmssignificantly. Therefore, considering mechanical properties, when sterilizing silk fibroin biomaterials by gamma irradiation, it is suggested that small doses had better be used.AcknowledgementsThis work was financially supported by National Natural Science Foundation of China (No. 30970714), College Natural Science Research Project of Jiangsu Province (No. 07KJA43010) and Nature Science Foundation of Jiangsu Province (No. BK2010252).References[1] Y. Wang, H.J. Kim, G. Vunjak-Novakovic, D.L. Kaplan. Biomaterials, 2006, 27(36): 6064-6082.[2] U.J. Kim, J. Park, H.J. Kim, M. Wada, D.L. Kaplan. Biomaterials, 2005, 26(15): 2275-2285.[3] D.W. Hutmacher. Biomaterials, 2000, 21: 2529-2543.[4] B.D. Lawrence, J.K. Marchant, M.A. Pindrus, et al. Biomaterials, 2009, 30:1299-1308.[5] Y. Shamis, S. Patel, A. Taube, et al. Tissue Engineering Part C: Methods, 2009, 15(3):445-454.[6] L. Morejon-Alonso, R.G. Carrodeguas, et al. Materials Research, 2007, 10(1):15-20.[7] M.S. Jahan, D.E. Thomas, M.D. Ridley. Materials Science Forum, 2003, 426-432(4):3139-3144.[8] K. Filipczak, M. Wozniak, P. Ulanski, et al. Macromolecular Bioscience, 2006, 6(4):261-273.[9] T. Masuhiro, et al. Journal of Applied Polymer Science, 1994, 51(5):823-829.[10] M.Z. Li, S.Z. Lu, Z.Y. Wu, et al. Journal of Applied Polymer Science, 2001, 79:2185-2191.[11] K. Hirabayashi, Y. Kondo, Y.Go. Sen-i Gakkaishi, 1967, 23(5): 199-207.[12] M.Z. Li, W. Tao, et al. Polymers for advanced technologies, 2003, 14: 694-698.[13] Y. Kondo, K. Hirabayashi, E. Iizuka, Y. Go. Sen-i Gakkaishi1, 1967, 23(7):311-315.[14] K. Hirabayashi, M. Tsukada. Journal of Sericulture Science, Japan, 1976, 45(6): 473-478.[15] M. Tsukada. Journal of Polymer Science Part B: Polymer Physics, 1986, 24: 457-460.[16] H.Y. Kweon, Y. H. Park. Journal of Applied Polymer Science, 2001, 82:750-758.[17] H.Y. Kweon, I.C. Um, Y.H. Park. Polymer, 2000, 41:7361-7367.[18] M. Tsukada, et al. Journal of Polymer Science Part B: Polymer Physics, 1994, 32:1407-1412.[19] M.Z. Li, et al. Journal of Dong Hua University (Nature Science Edition), 2001, 27: 12-19.[20] H. Kweon, S.O. Woo, Y.H. Park. Journal of Applied Polymer Science, 2001, 81(9): 2271-2276.New and Advanced Materialsdoi:10.4028//AMR.197-198Effects of Gamma Irradiation on the Structure and Mechanical Properties of Wild Silkworms and Bombyx Mori Silk Fibroin Filmsdoi:10.4028//AMR.197-198.27。
伽马辐照对掺镱硅酸盐玻璃光学性能的影响盛于邦;邢瑞先;栾怀训;刘自军;李进延;戴能利【摘要】A series of Yb-doped silicate glasses were prepared by a conventional melting method under normal processing conditions. The effects of gamma-ray (from a 60Co γ source) radiation on the absorption and emission properties of all glass samples were investigated. The radiation exposure leaded to the formation of color centers in glass samples. Such radiation-induced photodarkening caused a strong broad optical absorption band, which had a maximum wavelength centered at around 400 nm and the tail extended into the near infrared region. In addition, a minor part of the Yb3+ ions were converted into Yb2+ by trapping free electrons during irradiation based on the radiation induced absorption (RIA) spectra. The excitation energy could be transferred from Yb3+ ions to radiation-induced defects through cooperative upconversion or multiphoton absorption processes under 960 nm LD pumping. Such energy transfer processes resulted in a decrease of the upper state lifetime of Yb ion which was accompanied by an increase in oxygen deficient center ODC(Ⅱ) defect fluorescence at around 476 nm. Photobleaching effect was observed in irradiated Yb-doped glasses during the fluorescence measurement at room temperature.%采用传统的高温熔融法熔制了一系列掺镱硅酸盐玻璃,并测试了这些样品经总剂量为5 kGy的钴-60伽马射线辐射源辐照前后的吸收谱、荧光谱和上转换发光光谱.实验结果表明:辐致暗化效应导致玻璃样品在400 nm附近出现一个非常强的宽吸收带,其尾端可延伸至近红外区.经辐致损耗谱分析可知,部分Yb3+离子在辐照过程中通过俘获电离自由电子转变成了Yb2+离子,导致掺杂样品的辐致损耗明显比基质材料的要大.在960 nm LD泵浦下辐照过的样品荧光强度、上转换发光强度及荧光寿命均有所下降,且在476 nm附近出现了氧缺陷ODC(Ⅱ)的荧光.室温下辐照过的样品在荧光测试过程中温度明显升高并出现漂白现象.【期刊名称】《无机材料学报》【年(卷),期】2012(027)008【总页数】5页(P860-864)【关键词】掺镱硅酸盐玻璃;辐致损耗;价态转变;色心荧光【作者】盛于邦;邢瑞先;栾怀训;刘自军;李进延;戴能利【作者单位】华中科技大学武汉光电国家实验室,光电子科学与工程学院,武汉430074;华中科技大学武汉光电国家实验室,光电子科学与工程学院,武汉430074;华中科技大学武汉光电国家实验室,光电子科学与工程学院,武汉430074;华中科技大学武汉光电国家实验室,光电子科学与工程学院,武汉430074;华中科技大学武汉光电国家实验室,光电子科学与工程学院,武汉430074;华中科技大学武汉光电国家实验室,光电子科学与工程学院,武汉430074【正文语种】中文【中图分类】TQ171随着科技的发展, 掺镱光纤(YDF)已经被广泛用于光纤激光器和放大器中, 可产生非常高的激光功率和脉冲能量[1-3]. 由于 Yb3+离子的能级结构非常简单(只有基态2F5/2和激发态2F7/2两个能级), 不存在激发态吸收和浓度淬灭效应, 故掺镱光纤具有很高的能量转换效率和量子效率[4]. Yb3+离子还可以作为敏化剂, 吸收并将泵浦能量传递给其他发光离子, 比如 Er3+离子, 可以极大地提高后者的发光效率[5-6]. 此外, 较长的上能级寿命和较小量子缺陷等优势更使得掺镱光纤成为低功耗调Q激光器的理想材料[7].掺镱光纤激光器具有高可靠性、高效率、高光束质量、重量轻及体积小等优势, 可做为空间通信、地球观测和深空探测等系统中信息获取与传输的理想器件, 因此得到了世界各国众多航天机构的青睐.但是在太空中石英基有源光纤及其器件难免要受到恶劣的辐射环境影响. 地球轨道天然空间辐射带由范•艾伦(Van Allen)辐射带粒子和宇宙射线(包括太阳宇宙射线和银河宇宙射线)组成, 处于其中的光纤器件所受到的长时间、低剂量率的空间辐照是导致其性能降低甚至失效的主要因素[8-11]. 近几十年来, 辐照对无源及有源光纤的影响已得到各国科研人员的广泛研究. 一般认为光纤性能下降的主要原因在于辐照在基质材料中电离出的自由电子和空穴对被材料中的杂质或初始原子缺陷俘获形成了色心,从而导致在 400 nm附近出现一个非常强的宽吸收带, 其尾端可延伸至近红外区[8,12-14]. 实际上, 太空中辐照剂量率非常低, 即使经过长达十年的时间光纤所受到的总剂量也不超过 2 kGy, 这个剂量对普通光纤的性能影响并不严重.但是对掺镱光纤来说,为了改善光纤性能通常还会共掺一些其他元素, 如铝或磷, 这些共掺剂极大地提高了有源光纤的辐照敏感性[15]. 此外近红外光泵浦下镱离子通过离子间相互作用可以在 500 nm附近产生协同上转换发光[16], 这个波长恰好处在辐致损耗的强吸收范围内;同时由于Yb在硅酸盐玻璃中可以存在Yb2+和Yb3+两种价态, 因此在辐照过程中部分 Yb3+离子有可能俘获电离自由电子转变成Yb2+[17]. 所有这些因素使得辐照对掺镱光纤的影响变得非常复杂.截止目前, 关于掺镱光纤辐照特性的研究多集中在辐致损耗上, 因此有必要就高能辐照对掺镱玻璃材料光学性能的影响机理进行更深入地研究.考虑到辐照会导致玻璃材料在紫外光及可见光区出现新的吸收和荧光带, 实验中选择吸收谱和荧光谱测试作为研究辐照影响的两个主要手段[18]. 通过分析辐致损耗谱和荧光谱发现伽马射线辐照使得玻璃材料中形成了大量的色心, 这些色心具有新的能级结构, 使得基质对泵浦光的损耗明显增大. 实验还研究了960 nm LD泵浦下色心对Yb3+离子的发光特性影响, 并对其机理进行了讨论.1.1 玻璃样品的制备实验所有样品均采用传统高温熔融法制备所得.玻璃组成为 65SiO2-10Al2O3-25CaO-xYb2O3(x=0、0.2mol%、0.5mol%、1.0mol%、2.0mol%). 所用原料均为分析纯级, 其中 CaO以 CaCO3形式引入.按化学计量比准确称取所需的各原料, 然后放在玛瑙研钵中充分研磨均匀, 再装入刚玉坩埚, 整体放入用程序控制的电阻炉中. 在1580℃熔融2 h后, 将熔体浇铸在预热过的垫板上淬冷成型, 为了消除样品中存在的残余应力, 接着在退火炉中600℃退火2 h. 退火后的样品经切割和光学抛光后加工成尺寸为15 mm×15 mm×2 mm的玻璃片供测试.为研究辐照对掺镱硅酸盐玻璃的光学性能影响, 每种样品均用60Co γ辐射源进行了总剂量约为5 kGy的辐照处理.1.2 测试方法掺镱硅酸盐玻璃样品的吸收谱是用PYbkinElmYb-Lambda35紫外可见分光光度计测得,测量波长范围为200~1100 nm. 在960 nm LD泵浦下的荧光谱由ZOLIX SBP300光谱仪测得: 940~1140 nm范围的荧光由InGaAs探测器测得, 400~700 nm范围的由光电倍增管测得. 荧光寿命由 TRIAX550光谱仪测得.所有测试均在室温环境下进行.2.1 伽马辐照对掺镱硅酸盐玻璃吸收光谱的影响基质及Yb2O3掺杂浓度为1.0mol%的样品在伽马射线辐照前后的吸收系数谱如图1(a)所示.由图可知, 经 5 kGy剂量伽马射线辐照后, 所有样品在可见光范围内吸收系数都有明显地增大, 而 Yb3+离子本身的吸收峰值波长、半高宽和吸收系数在辐照前后却基本没有发生变化, 这说明镱离子的周围配位场环境基本没有受到影响, 伽马辐照只是在玻璃基质材料中产生了附加损耗.辐致损耗是衡量辐照对光学材料性能影响的一个关键指标[8,15], 能够反映出材料对高能辐照的敏感性.辐致损耗谱可通过相应各样品在辐照前后的吸收系数相减得到, 计算结果如图1(b)所示. 显然辐照后的样品在400 nm附近出现一个非常强的宽吸收带, 其尾端可延伸到近红外区. 前人的研究表明: 在高能辐射下玻璃材料电离出自由电子与空穴对, 被材料中缺陷俘获形成色心从而产生附加损耗. 这些辐致色心主要包括过氧连接(吸收峰为3.8 eV), DOS环(Dioxasilyrane Ring,~3 eV), 过氧基(2.3 eV)以及非桥氧空穴心(2.0 eV)[19-21].此外高能辐照还可以产生一些吸收带处在深紫外区的色心, 如氧空位ODC(Ⅰ)(7.6 eV), E'类心(5~6 eV),以及氧空位ODC(Ⅱ)(5.0 eV)等[18-20].有必要说明的是, 辐照后掺有 Yb元素的玻璃在可见光区的辐致损耗都要明显大于基质玻璃, 且其吸收强度随 Yb浓度增加而增大. 同时 Yb3+离子在980 nm附近的本征吸收则有所减小, 如图1(b)中插图所示.这可能是因为在辐照过程中材料电离出了自由电子和空穴对, 部分 Yb3+离子通过俘获自由电子而转变成了Yb2+离子, Yb2+离子的4f-5d跃迁引起的吸收带在 22000~55000 cm−1处, 且 f-d振子强度远远大于Yb3+离子的f-f振子强度(约数百倍)[17],故少量三价镱离子变成二价即可导致在紫外光至可见光区出现明显的附加吸收.2.2 伽马辐照对掺镱硅酸盐玻璃发光特性的影响图2为960 nm LD泵浦下, 不同Yb2O3掺杂浓度玻璃在辐照前后的荧光峰值强度. 从图中可知,玻璃的荧光强度随Yb2O3掺杂浓度增加先增大后减弱, 即出现了所谓的“浓度淬灭”现象. 虽然 Yb3+离子只有简单的两个能级, 但在高浓度掺杂时会出现团簇效应而形成 Yb3+离子对, 离子间相互作用可以导致镱离子激发态寿命淬灭, 从而影响样品的发光效率. 辐照后所有的掺镱硅酸盐玻璃荧光强度均明显下降, 且在较高Yb离子掺杂浓度样品中, 辐照后的荧光强度下降幅度较大. 从图 1(b)中可以看出,掺杂浓度越高的样品中, 辐照后 Yb3+离子的吸收下降幅度就越大, 即有越多的 Yb3+离子俘获了电离电子变成了 Yb2+离子. 虽然该过程能够减少辐致色心的数量, 但考虑到 Yb2+离子在 200~500 nm 范围内有较强的吸收, 因此高浓度掺杂样品总的辐致暗化效应就反而更加明显, 荧光强度下降幅度也就更大.但是所有样品荧光谱的峰值波长及半高宽都没有发生明显变化(未给出), 进一步说明了辐照并没有改变Yb3+离子的配位场环境.考虑到掺稀土玻璃在近红外激光泵浦下可能出现上转换现象, 产生位于500 nm附加的上转换荧光, 我们测试了辐照前后各样品在960 nm LD泵浦下的协同上转换荧光谱, 如图 3所示, 以深入研究伽马辐照对掺镱硅酸盐玻璃光学特性的影响.荧光谱在488和500 nm处有两个较明显的波峰, 荧光强度随 Yb2O3掺杂浓度增加而线性增大, 没有出现淬灭现象. 同近红外的荧光谱类似, 辐照后各样品协同上转换荧光强度也都有所减弱(Yb2O3浓度为2.0mol%的样品辐照后上转换荧光谱由于样品损坏没有给出). 协同发光是由两个处于激发态的近邻镱离子同时去激产生的, 荧光谱呈多峰值结构, 每个峰值分别对应两个能级对之间的跃迁:2F5/2(m)+2F5/2(m')→2F7/2(n)+2F7/2(n'), m, m'=1, 2, 3; n, n'=1, 2, 3,4.实际上, 掺镱硅酸盐玻璃协同上转换荧光谱还可以通过对其在近红外的荧光谱自卷积得到[16], 协同发光谱形函数F(E)与Yb3+的2F5/2→2F7/2跃迁自发辐射谱f(E)关系可由下式所示:Yb2O3掺杂浓度为 1.0mol%的样品未辐射上转换荧光谱计算结果如图 3中虚线所示. 由图可知,同测试结果一致计算所得上转换荧光谱也是在 488和500 nm附近有两个较明显的波峰, 只是后者荧光强度相对更大一些. 这或许跟测试荧光谱和上转换荧光谱时使用的探测器不同有关. 对比辐照后样品上转换荧光谱还可以发现, 500 nm附近的荧光强度下降幅度明显比488 nm处的要大一些, 这跟吸收测试中观察到的现象是矛盾的, 如图 1显示短波长处的辐致损耗相对更大, 可以猜测这可能跟某些能级结构之间的能量传递机制有关. 同时辐照过的样品在476 nm附近出现了一个新的荧光峰, 虽然在这个波长处有很强的辐致损耗, 该荧光峰强度仍高于未辐照的样品. 根据前人对辐致色心的研究, 此荧光峰应归结为ODC(Ⅱ)色心[22].该色心的吸收带在 5.0 eV(249 nm)处, 可以通过对协同上转换荧光进行双光子吸收激发, 在2.6 eV(478 nm)处产生一个荧光峰,当然具体的相关能量传递机理还需要后续进行更加深入的研究.结合辐致损耗谱可以看出, 镱离子的协同发光中心恰好处在辐致色心的强吸收带范围内, 因此推测泵浦光可经多光子吸收或协同上转换传递给了材料缺陷, 再经后者通过无辐射跃迁可转变成大量热能. 实际上辐照过的玻璃在测试过程中由于温度明显升高而出现漂白现象, 即在激光泵浦下辐致色心被还原而褪色. 这个过程不仅使掺镱硅酸盐玻璃的荧光强度下降, 同时还降低了样品的损伤阈值, 其中Yb2O3掺杂浓度为2.0mol%的样品由于测试过程中温度过高而被损坏. 为了研究 Yb3+离子与色心结构的能量传递, 本课题组还测试了 Yb2O3掺杂浓度为 0.5mol%的玻璃在辐照前后的荧光寿命. 如图 4所示, 样品的荧光寿命经5 kGy剂量伽马射线辐照后由1.33 ms减小为1.18 ms. 由于Yb3+离子只有两个能级, 且激发态2F5/2与基态2F7/2之间的能隙约为10000 cm−1, 无辐射多声子弛豫对激发态的影响可以忽略, 故激发态寿命基本不会受到声子环境变化的影响.因此导致 Yb3+离子的激发态寿命减小的最可能原因是能量从上能级转移给了辐致缺陷(包括Yb2+), 再经后者通过辐射跃迁或无辐射跃迁释放出来. 这种能量传递最终导致了辐照后掺镱硅酸盐玻璃的荧光强度下降.采用传统的高温熔融法熔制了一系列掺镱硅酸盐玻璃, 并测试了这些样品经5 kGy 伽马射线辐照前后的吸收、荧光和上转换发光光谱, 同时利用荧光谱计算 Yb3+离子的上转换发光光谱并与测试结果进行了对比. 实验结果表明高能辐照导致样品基质在400 nm附近出现一个非常强的宽吸收带, 其尾端可延伸至近红外区; 部分Yb3+离子在辐照过程中通过俘获电离自由电子变成 Yb2+离子. 辐照后, 样品在960 nm LD泵浦下荧光及上转换发光强度均有所下降, 且在476 nm附近出现ODC(Ⅱ)色心荧光峰,同时 Yb3+离子的激发态寿命也有所减小, 表明泵浦能量经过复杂的传递机理可从 Yb3+离子上能级传递给辐致色心. 部分泵浦能量最终经色心无辐射跃迁转换成了热能, 使得样品的温度明显升高并出现漂白现象.【相关文献】[1] Lu K, Dutta N K. Spectroscopic properties of Yb-doped silica glass.Journal of Applied Physics, 2002, 91(2): 576−581.[2] Jeong Y, Sahu J, Payne D, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Optics Express,2004, 12(25): 6088−6092.[3] Brooks C, Di Teodoro F. 1-mJ energy, 1-MW peak-power, 10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier. Optics Express, 2005, 13(22):8999−9002.[4] Paschotta R, Nilsson J, Tropper A C, et al. Ytterbium-doped fiber amplifiers. IEEE Journal of Quantum Electronics, 1997, 33(7):1049−1056.[5] Liu Z, Qi C, Dai S, et al. Spectra and laser properties of Er3+, Yb3+:phosphate glasses. Optical Materials, 2003, 21(4): 789−794.[6] Spiegelberg C, Geng J, Hu Y, et al. Low-noise narrow-linewidth fiber laser at 1550 nm. Journal of Lightwave Technology, 2004,22(1): 57−62.[7] Chernikov S V, Zhu Y, Taylor J R, et al. Supercontinuum self-Q-switched ytterbium fiber laser. Optics Letters, 1997, 22(5):298−300.[8] Fox B P, Simmons-Potter K, Thomes W J, et al.Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents. IEEE Transactions on Nuclear Science, 2010, 57(3): 1618−1625.[9] Tortech B, Ouerdane Y, Girard S, et al. Radiation effects on Yb-and Er/Yb-doped optical fibers: a micro-luminescence study.Journal of Non-Crystalline Solids, 2009, 355(18-21): 1085−1088.[10] Fox B P, Schneider Z V, Simmons-Potter K, et al. Spectrally resolved transmission loss in gamma irradiated Yb-doped optical fibers. IEEE Journal of Quantum Electronics, 2008, 44(6):581−586.[11] Taylor E W, Liu J. Ytterbium-doped Fiber Laser Behavior in a Gamma-ray Environment. Photonics for Space Environments X,San Diego, CA, USA, 2005: 58970E.[12] Fox B P, Simmons-Potter K, Simmons J H, et al. Radiation Damage Effects in Doped Fiber Materials. Fiber Lasers V: Technology,Systems, and Applications, San Jose, CA, USA, 2008: 68731F.[13] Girard S, Ouerdane Y, Origlio G, et al. Radiation effects on silicabased preforms and optical fibers—I: experimental study with canonical samples. IEEE Transactions on Nuclear Science, 2009,55(6): 3473−3482.[14] Dicks B M, Heine F, Petermann K, et al. Characterization of a radiation-hard single-mode Yb-doped fiber amplifier at 1064 ser Physics, 2001, 11(1): 134−137.[15] Henschel H, Kohn O, Schmidt H U, et al. Radiation-induced loss of rare earth doped silica fibres. IEEE Transactions on Nuclear Science, 1998, 45(3): 1552−1557.[16] Choi Y G, Shin Y B, Seo H S, et al. Spectral evolution of cooperative luminescence in an Yb3+-doped silica optical fiber. Chemical Physics Letters, 2002, 364(1/2): 200−205. [17] Engholm M, Norin L, Berg D. Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation. Optics Letters, 2007, 32(22): 3352−3354.[18] Raghavachari K, Ricci D, Pacchioni G. Optical properties of point defects in SiO2from time-dependent density functional theory. The Journal of Chemical Physics, 2002, 116(2): 825−831.[19] Skuja L, Hirano M, Hosono H, et al. Defects in oxide glasses.Physica Status Solidi C, 2005, 2(1): 15−24.[20] Griscom D L. Optical properties and structure of defects in silica glass. Journal of the Ceramic Society of Japan, 1991, 99(1154):923−942.[21] Raghavachari K, Pacchioni G. Photoabsorption of dioxasilyrane and silanone groups at the surface of silica. The Journal of Chemical Physics, 2001, 114(10): 4657−4662. [22] Carlson C G, Keister K E, Dragic P D, et al. Photoexcitation of Yb-doped aluminosilicate fibers at 250 nm: evidence for excitation transfer from oxygen deficiency centers to Yb3+. Journal of the Optical Society of America B, 2010, 27(10): 2087−2094.。
热带作物学报2022, 43(1): 119 127 Chinese Journal of Tropical Crops收稿日期 2021-07-06;修回日期 2021-08-23基金项目 广西重点研发计划项目(桂科AB18221064);广西自然科学基金项目(No. 2020GXNSFAA297190);广西科技基地和人才专项(桂科AD17195065)。
作者简介 李春牛(1983—),男,硕士,副研究员,研究方向:园艺植物栽培与育种。
*通信作者(Corresponding author ):卜朝阳(BU Zhaoyang ),E-mail :**************。
60Co-γ射线辐照对茉莉花种子萌发和幼苗生长及生理的影响李春牛,李先民,黄展文,卢家仕,苏 群,王虹妍,卜朝阳*广西农业科学院花卉研究所,广西南宁 530007摘 要:以6种不同剂量(0、20、40、60、80、100 Gy )的60Co-γ射线辐照处理茉莉花[Jasminum sambac (L.) Ait]果实,观测其对茉莉花种子萌发、幼苗生长及生理的影响。
结果表明:(1)低剂量(20~40 Gy )60Co-γ射线辐照加快茉莉花种子萌发;高剂量(60~100 Gy )辐照推迟萌发,并极显著降低茉莉花种子生根率、根长及成苗率;随着辐照剂量的增加,幼苗株高先增后降,不同处理间差异显著,茎粗有降低的趋势,但除80 Gy 剂量处理外,其他处理与对照差异不显著。
(2)随着辐照剂量的增加,幼苗叶片中超氧化物歧化酶(SOD )活性先升后降,过氧化氢酶(CAT )活性极显著降低(P <0.01),过氧化物酶(POD )活性先降后升,丙二醛(MDA )含量出现波动,对照的含量与所有辐照处理均无显著差异。
(3)茉莉花种子幼苗叶片内叶绿素a 、叶绿素b 、叶绿素a+b 均随着辐照剂量的增加呈先降低后上升趋势,不同处理间差异极显著。
棉铃虫精子在雌蛾生殖道内的转移动态刘绪生 李国清 陈长琨(南京农业大学农业部病虫监测与治理重点开放实验室,南京210095)摘要:通过显微镜观察、孚尔根涂片法和显微镜计数法研究了棉铃虫精子在雌蛾生殖道内的转移、分布及转移的动力。
结果表明:(1)交配结束后115h ,雌蛾精包内的真核精子和无核精子开始向受精囊转移,2h 时近2/3的精子已转入受精囊,其后受精囊内精子的数量逐渐下降;(2)精子转移至受精囊后只分布于主囊,成团聚集,副囊中没有精子;(3)雌虫生殖道肌肉的节律性收缩推动精子转移,同时无核精子的运动也有助于真核精子的移动。
关键词:棉铃虫;精子;转移;分布;生殖道中图分类号:S435162213 文献标识码:A 文章编号:1000Ο2030(2001)022*******The transmission of sperm in the female reproduction tract ofcotton boll w orm ,Helicoverpa armigeraLiu Xusheng ,Li G uoqing and Chen Changkun(K ey Laboratory of M onitoring and Management of Plant Disease and Insects ,Ministry of Agriculture ,Nanjing Agric Univ ,Nanjing 210095,China )Abstract :The transmission and distribution of sperm in the reproduction tract of mated female H elicoverpa armigera ,were studied with Feulgen smear and microscope count methods.The results were summarized as follows :(1)Both eupyrene and apyrene sperms started their transmission from the spermatophore to spermatheca at 115h after copulation ,and finished this process in half hour.Thereafter ,the number of sperms in spermatheca decreased gradually ;(2)A fter trans ferred to spermatheca ,the sperms stored in the utriculus in the form of sperm mass.N o sperm was found in lagena ;(3)T ransportation of sperm to the spermatheca was achieved by means of rhythmic muscular contraction of the female reproduction tract.The active apyrene sperm was als o believed to assist in the transmission of theeupyrene sperm.K ey w ords :Helicoverpa armigera ;sperm ;transmission ;distribution ;reproduction tract 交配后精子在雌虫生殖道内的转移是昆虫生殖过程中的一个重要环节。
细胞放射敏感性实验流程英文回答:Radiosensitivity assay is a technique used to evaluate the response of cells to ionizing radiation. It is an important tool in radiation biology and can provide valuable information about the effects of radiation on cells. The assay involves exposing cells to different doses of radiation and measuring their response, such as cell survival or DNA damage. Here is a general outline of the procedure for conducting a radiosensitivity assay:1. Cell culture: Start by culturing the cells of interest in appropriate culture media and conditions. The cells should be in the exponential growth phase and free from contamination.2. Radiation source: Choose a suitable source of ionizing radiation, such as a gamma-ray irradiator or X-ray machine. Ensure that the radiation source is calibrated anddelivers a consistent dose.3. Dose selection: Determine the range of radiation doses to be used in the assay. This can vary depending on the cell type and research objectives. It is common to use a range of doses, including both sub-lethal and lethal doses.4. Irradiation: Expose the cells to the selected doses of radiation. This can be done by placing the cells in a radiation chamber or using specialized irradiation plates. Control groups without radiation exposure should also be included.5. Incubation: After irradiation, incubate the cells for a specific period of time to allow for cellular responses to occur. The duration of incubation can vary depending on the endpoints being measured.6. Cell viability assay: Assess cell survival or viability using appropriate assays, such as colony formation assay or MTT assay. These assays measure theability of cells to form colonies or convert a colorless substrate into a colored product, respectively.7. DNA damage analysis: If the objective is to evaluate DNA damage, perform DNA repair assays or measure DNA fragmentation using techniques like comet assay or TUNEL assay.8. Data analysis: Analyze the obtained data using appropriate statistical methods. Compare the results between different radiation doses and control groups to determine the radiosensitivity of the cells.9. Interpretation: Interpret the results and draw conclusions about the radiosensitivity of the cells. Consider factors such as cell type, radiation dose, and experimental conditions.中文回答:细胞放射敏感性实验是一种评估细胞对电离辐射反应的技术。
吴俊师,缪承杜,温晓梅,等. 辐照技术在肉及肉制品中的应用研究进展[J]. 食品工业科技,2023,44(12):437−444. doi:10.13386/j.issn1002-0306.2022080293WU Junshi, MIAO Chengdu, WEN Xiaomei, et al. Research Progress on the Application of Irradiation Technology in Meat and Meat Products[J]. Science and Technology of Food Industry, 2023, 44(12): 437−444. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2022080293· 专题综述 ·辐照技术在肉及肉制品中的应用研究进展吴俊师,缪承杜,温晓梅,蓝碧锋*(广州辐锐高能技术有限公司,广东省工业钴-60伽玛射线应用工程技术研究中心,广东广州 511458)摘 要:肉及肉制品辐照是一种利用高能电离射线提高安全性和延长货架期的非热杀菌技术,能够有效杀灭腐败微生物,延长肉及肉制品的保质期。
以往的研究主要侧重于辐照处理对肉制品的杀菌保鲜效应及效果,以及辐照对肉类蛋白和脂质氧化的影响规律。
近几年研究发现,辐照在达到保鲜目的的同时,通过协同其他技术能保持和改善肉类营养成分和品质特性,凸显出了良好的应用前景,特别是中式菜和糜类等预制菜领域。
本文综述了食品辐照技术在肉制品保鲜的应用和对品质质构特性的影响,提出了利用抗氧化技术,可食用涂层和气调包装等辅助工艺来保持或提高肉制品原有品质和风味的建议,同时也是往后研究食品辐照科学的一个热点趋势,以期为辐照技术在肉品产业化科学应用提供参考。
关键词:辐照,肉及肉制品,保鲜,协同技术,应用前景本文网刊:中图分类号:TS203 文献标识码:A 文章编号:1002−0306(2023)12−0437−08DOI: 10.13386/j.issn1002-0306.2022080293Research Progress on the Application of Irradiation Technology inMeat and Meat ProductsWU Junshi ,MIAO Chengdu ,WEN Xiaomei ,LAN Bifeng *(Guangzhou Furui High Energy Technology Co., Ltd., Guangdong Industrial Co-60 Gamma Ray Application EngineeringTechnology Research Center, Guangzhou 511458, China )Abstract :Meat and meat product irradiation is a non-thermal sterilization technology that uses high-energy ionizing rays to improve safety and extend storage period, effectively killing spoilage microorganisms and extending the storage period of meat and meat products. Previous studies have focused on the sterilization and preservation effects of irradiation treatment on meat products, as well as the impact of irradiation on meat protein and lipid oxidation patterns. In recent years, it has been found that irradiation can maintain and improve the nutritional composition and quality characteristics of meat by synergizing other techniques while achieving freshness, highlighting good prospects for application, especially in the field of prepared dishes such as Chinese and minced dishes. This paper reviews the application of food irradiation technology in the preservation of meat products and its effect on quality and texture characteristics, and proposes the use of auxiliary processes such as antioxidant technology, edible coating and gasification packaging to maintain or improve the original quality and flavour of meat products, as well as a hot trend for future research in food irradiation science, with a view to providing a reference for the scientific application of irradiation technology in meat industrialisation.Key words :irradiation ;meat and meat products ;preservation ;synergistic technology ;application prospects肉制品味道鲜美,富含蛋白质、氨基酸、维生素和矿物质等多种营养成分[1]。
Effects of Gamma Irradiation on Elastomeric Closures伽马射线对橡胶容器的作用影响Table of Contents 内容列表(目录)MISSIO任务S1 INTRODUCTION 绪论S1 EXPEJXIMENTAL DESIGN 实验性设计S1 PHASE I-ELASTOMER SCREENING STUDY 人造橡胶的筛选研究S2 Materials and Methods 材料和方法1. Elastomers 人造橡胶2. Gamma Irradiation 伽马射线3. Test Methods 测试方法a) tensile strength 抗张强度b) elongation at break 断裂伸长率c) modulus 系数PHASE 11-ELASTOMER PERFORMANCE EV ALUATION第二阶段----人造橡胶的性能评估Materials and Methods 材料和方法1. Elastomers 人造橡胶2. Gamma Irradiation 伽马射线3. Test Methods 测试方法a) chemical tests 化学测试-turbidity 浑浊度-reducing agents 还原剂-heavy metals 重金属物-pH change PH值-total extractables 全部萃取物b) physical tests 物理测试-crosslink density 耦合密度-durometer measurement 硬度测量-compression set 压缩应变-surface characteristics 表面特征-viscoelasticity 粘弹性c) use related tests 应用相关的测试-coring 取芯-coefficient of friction 摩擦系数-tackiness 黏滞性-needle penetration force 穿透力4. Results 结果a) chemical tests 化学测试b) physical tests 物理测试-crosslink density 耦合密度-durometer measurement 硬度测量-compression set 压缩应变-surface characteristics 表面特征-viscoelasticity 粘弹性c) use related tests 应用相关的测试-coring 取芯-coefficient of friction 摩擦系数-tackiness 黏滞性-needle penetration force 穿透力TABLES 表格I. PDA Irradiation of Rubber Formulations 合成橡胶的配方的辐射PDAI-A. Formulation Ingredient Details 配方原料的详细资料11. PDA Irradiation of Rubber Formulations 合成橡胶的配方的辐射PDA-Physical Properties 物理属性111. Phase I1 Elastomer Formulations 第二阶段的人造橡胶配方IV. Dosimetry Summary Stoppers and Discs 瓶塞和圆盘的测试放射剂量概要V. Stopper Durometer Hardness Study 瓶塞硬度的研究VI. DMA Viscoelasticity DMA粘弹性FIGURES 图解1. Dumbbells for Physical Tests 哑铃状的物理测试效果图2. 20mm Stopper 20mm的瓶塞3. Typical Rheometer Curing Curve 典型的固化的流变曲线4. Compressiion Set Plugs 压缩应变测试的效果图5. Closure discs for DMA 用于DMA的封闭塑料圆盘6. Compression Set Device 压缩应变测试的设备7. Closure Disc Cut for DMA 用于封闭塑料圆盘的切片8. Turbidity 浑浊度9. Reducing Agents 还原剂10. pH shift PH值11. Total Extractables 全部的萃取物12. Crosslink Density 耦合度13. Durometer Measurement Manually Held Stoppers14. Compression Set 压缩应变15. Coring 取芯16. Coefficient of Friction 摩擦系数17. Needle Penetration Force 穿透力APPENDICES 附录I. Stopper Durometer Test Procedure 瓶塞硬度的测试流程11. Needle Penetration Force Test Procedure 穿透力的测试流程INTRODUCTION 绪论Traditionally dry or wet heat, or chemical sterilants such as ethylene oxide. However, heat sensitive polymeric packaging materials or drug products cannot tolerate autoclaving or dry heat sterilization. Disposal of ethylene oxide and its toxic degradation products is a growing concern with the environmentally conscious and aeration of these chemicals from the sterilized product requires time consuming handling procedures. As a result, radiation sterilization has increased in popularity as a sterilization process for medical devices, pharniaceutical processes and packaging. Yet even with the wide acceptance of radiation sterilization, consideration must be given to the medicament as well as the package to ascertain whether or not any deleterious effects have occurred as a result of irradiation。
不同剂量率X射线辐照对小鼠免疫系统的影响第19卷第5期2006年10月航天医学与医学工程SpaceMedicine&MedicalEngineeringV0l_19No.50ct.2O06不同剂量率x射线辐照对小鼠免疫系统的影响谢漪,党秉荣,邴涛,张红,郝冀芳,郭红云.,王小虎.(1.中国科学院近代物理研究所,甘肃兰州730000;2.中国科学院研究生院,北京100039;3.甘肃省肿瘤研究所,甘肃兰州730000)摘要:目的检测经相同剂量不同剂量率X射线照射的BalB/C小鼠外周血淋巴细胞周期及胸腺和脾脏指数.方法18只BalB/c小鼠随机分为对照组(controI),低剂量率照射组(20cGy/min)和高剂量率照射组(300cGy/min),每组6只.低剂量组和高剂量组采用剂量率分别为20cGy/min 和300cGy/min的1GyX射线对小鼠进行全身照射,24h后取血及器官,用流式细胞仪检测外周血淋巴细胞的周期变化,用称量的方法得到胸腺和脾脏指数.结果高剂量率辐射时,小鼠外周血淋巴细胞的损伤较低剂量时大,而且对雄性鼠的影响大于雌性;同时,胸腺和脾脏指数变化也随着剂量率的增大而减小.结论低剂量率的照射对小鼠外周血淋巴细胞,胸腺和脾脏的影响较高剂量率辐射小;雌性鼠的辐射耐受能力较雄性强.关键词:X射线辐射;淋巴细胞周期;胸腺指数;脾脏指数;免疫系统中图分类号:R818.74;R392.3文献标识码:A文章编号:1002--0837(2006)05—0333-04EffectsofIrradiationwithDifferentDoseRatesofX-rayonMouseImmuneSystem.XIEYi,D ANGBing—rong,BINGTao,ZHANGHong,HAOJi—fang,GUOHong—yun,WANGXiao—hu.SpaceMedicine&MedicaIEngineering.2006,19(5):333336Abstract:0bjectiveToinvestigatetheeffectsofirradiationwithdifferentdoseratesofX—rayonmouseimmunesystem.MethodEighteenBaIB/Cmiceweredividedinto3groupsrandomly: con—troIgroup,IOWdoserateirradiatedgroup(2OcGY/min)andhighdoseirradiatedrategroup( 300cGy/min1.TheIOWandhighdoserateirradiatedgroupswereirradiatedwith1GyofX—rayat20cGy/minand300cGy/min.Lymphocytecycleandapoptosisweredeterminedbyflowcytom etry,andthvmusandspleenindicesweremeasuredbyweight.ResultThedamagescausedtoexpos ure atIOWdoseratetoperipheraIbloodIymphocyteswereIessthanthatathigherdoserate.Mean —while,thVmusandspleenindicesdeclinedwiththeincreaseofdoserate.Theirradiationeffect sonmale—micewerestrongerthanthoseonfemales.ConclusionTheIowerdoseratecanreduceradia—tiondamagetotheimmunesystemthanthehigherdoserate:andfemalemicearemoreradiatio nresistantthanmales.Keywords:X—raysirradiation;Iymphocytescycle;thymusindex;spleenindex;immunesystem Addressreprintrequeststo:XIEYi.InstituteofModernPhysics,ChineseAcademyofScienc es,LanZhouGanSu73O000,China恶性肿瘤是威胁人类健康最凶险的疾病之一.目前的治疗方法有手术治疗,辐射治疗,化疗,综合治疗等.而其中又以辐射治疗方法应用较为普遍.但医生在给病人制订治疗计划时,并未将病人自身免疫系统的承受能力考虑进去,仅仅只是根据经验和肿瘤的情况制订治疗计划,而接受放疗的病人经常会出现脱发,恶心,呕吐,消瘦等症状,而且,不同个体存在很大的差异,严重的甚至可以影响治疗的效果.目前国际上,已经有越来越多的医生和学者开始关注这一点j.而在航空或航天飞行中,飞行人员或多或少的收稿日期:2005—12—13通讯作者:谢漪***************.cn{基金项目:中国科学院西部之光课题(XB040602);中国科学院"百人计划"基金将受到来自宇宙的辐射J,即使在地面上,我们也会受到一些来自外层空间的辐射,这些辐射中有部分为低传能线密度(LET)辐射.本实验的目的是:观察相同剂量,不同剂量率的X射线照射对小鼠外周血淋巴细胞周期和凋亡以及脾脏和胸腺指数的影响,期望可以为减少癌症放射治疗对机体免疫系统的影响与航空航天飞行中低LET辐射对免疫细胞影响提供一定实验依据.实验动物实验用纯种BalB/C小鼠,雌雄各半,健康,6—7周龄,体重(234-2)g,由甘肃省医学科学研究院动物实验中心提供.随机分为正常对照组,低剂量率照射组和较高剂量率照射组,334航天医学与医学工程第19卷每组设6只.主要试剂和仪器淋巴细胞分离液(上海生物工程技术服务有限公司),PI(碘化丙啶)购自上海生物工程技术服务有限公司,流式细胞仪(FCM,美国B—D公司).照射条件采用PRIMUS型高能医用电子直线加速器治疗机(德国西门子公司)产生的X 射线治疗机进行全身照射.辐射条件:能量为6 MeV,靶皮距(SSD)为100cm,剂量率分别为20cGy/min和300cGy/min,剂量为1Gy.正常对照组进行假照射.外周血淋巴细胞周期的测定采用流式荧光强度分析.照射后24h,小鼠眼眶放血,收集血液,肝素抗凝.全血加等量的PBS液,混匀后置于2mI淋巴细胞分离液上,经密度梯度离心后, 吸出淋巴细胞层,用PBS洗1次,75%的酒精固定.用PI染色30min后流式细胞仪检测,波长为488nm,用FACScan软件收集1X10个细胞,ModFitLT3.0分析细胞周期和凋亡的变化.胸腺和脾脏指数的测定摘取小鼠的胸腺和脾脏,用滤纸吸干残血后,称重(mg),分别除以小鼠体重(g),乘以10,得到胸腺指数和脾脏指胸腺指数=(胸腺重量/4,鼠体重)X10脾脏指数:(脾脏重量/4'鼠体重)X10统计方法数据用±s表示,各组均数采用t检验,采用SPSS13.0统计软件和Origin7.0绘图软件处理.结果不同剂量率X射线全身照射后小鼠外周血淋巴细胞周期的变化小鼠经剂量为1Gy的X射线辐射后,外周血淋巴细胞周期发生了变化,引起了不同程度的G期阻滞.X射线全身照射后小鼠外周血淋巴细胞周期的变化在G期中,小鼠外周血淋巴细胞所占的比例有所增加,而G和S期所占的比例有所减少,其中S期的变化又较为明显,具有统计学意义(表1).表1x射线全身照射后小鼠外周血淋巴细胞周期的变化(i±,%,,l=6)Table1Effectsofirradiationwithdi仃erentdoseratesOfX-rayonmouseperipheralbloodlympho-cytecycle(±,%,,l:6)Note:P<O.01,ascomparedwithcontrolx射线照射后不同性别小鼠在同一淋巴细胞周期内的差异雄性小鼠较雌性的外周血淋巴细胞周期变化大,且高剂量率较低剂量率时的雌雄差异较大(表2).外周血淋巴细胞的凋亡如图1所示,剂量doserate/eGy?rain一图1X线照射后外周血淋巴细胞凋亡的改变(P<0.05, ,l=61Fig.1Alterationsofperipheralbloodlymphocyteapop-tosisafterirradiation(P<0.05.,l=6)$P<0.05.ascomparedwithcontroI表2X射线照射后不同性别小鼠在同一淋巴细胞周期内的差异(i±,%,,l=3) Table2EffectsofdifferentdoseratesofX-rayonperipheralbloodlymphocytescycleinmiceo fdifferentsexesfi±.%.n=3Note:#P<O.05.ascomparedwithcontrol第5期谢漪,等.不同剂量率X射线辐照对小鼠免疫系统的影响335率为300cGy/min时,外周血淋巴细胞的凋亡比20cGy/min时多了36.28%,比对照组多了15倍;而剂量率为20cGy/min时,外周血淋巴细胞的凋亡只比对照组多了10倍.X射线全身照射后小鼠胸腺和脾脏指数的变化小鼠在剂量率为20cGy/min辐射后,胸腺指数减少了22.30%,脾脏指数减少了28.11%,其中雄性减少了20.78%和32.80%,雌性减少了24.81%和26.15%;在剂量率为300cGy/min时,胸腺指数急剧下降了56.62%,脾脏指数为41.30%,其中雄性减少了66.09%和43.05%,雌性减少了43.29%和37.09%(表3).表3X射线全身照射后小鼠胸腺和脾脏指数的变化(i4-S,%,n=6)Table3EffectsofdifferentdoseratesofX-rayonthy- musandspleenindicesonmice(±S,%,n=6)Note:}P<O.O1,ascomparedwithcontro讨论细胞周期是近年来细胞,分子生物学,免疫学以及肿瘤学研究的前沿课题和研究热点,特别是淋巴细胞的周期及分布反映着细胞生长增殖的具体过程.它的变化较为客观地显示了机体免疫力的变化,老化的免疫细胞可以导致机体免疫功能下降,从而诱发一系列的像传染性,自身免疫系统紊乱和癌症等疾病J.辐射可延长细胞周期,但不同阶段的细胞辐射敏感性不同.放射生物学研究表明:电离辐射作用后可改变细胞的周期进程,对于不同的细胞可引起不同的周期阻滞,同时也可引起细胞的损伤而导致其凋亡.胸腺和脾脏指数的变化显示了淋巴样器官细胞量(T,B 淋巴细胞的数量)的变化.本实验以外周血淋巴细胞,胸腺和脾脏为研究对象,观察了BalB/C小鼠经不同剂量率X射线辐照对免疫系统的影响, 结果发现低剂量率的照射对小鼠外周血淋巴细胞的损伤较高剂量率辐射小(表1,图1),其原因可能是高剂量率辐射时对DNA的损伤较低剂量率时大,在低剂量率辐射下较容易诱发细胞的适应性反应;外周血淋巴细胞的周期在S期变化较G0-G和G2-M期变化明显,因为S期是细胞的关键周期,染色体,中心粒的复制和合成组蛋白在此周期完成,一般需要持续几个小时.如果在照射36h或48h后,再处死小鼠,可能会观察到不同的结果.同时还发现,雌性和雄性对于辐射的敏感性存在着较大的差异性,揭示雌鼠较雄鼠有较强的抗辐射的能力(表2),雌鼠淋巴细胞在G2-M期的变化较明显,可能是因为在X射线照射下,机体性激素的分泌会受到影响,雌性的DNA会出现显着的甲基化不足,而雄性则反之_6J.DNA的甲基化是衡量诱发肿瘤和保持基因组的稳定性的一个重要指标j.反应的机理可能与DNA的修复有关j,另一种可能是与DNA转甲基酶(DNMTs)的表达有关系,有研究表明,辐射会导致小鼠脾脏和肝中的DNA转甲基酶DNMT3a和DNMT3b的表达发生变化¨...同时由于辐射的作用,小鼠胸腺和脾脏指数随着剂量率的增高而减小(表3),这表示胸腺和脾脏萎缩,可能主要源于胸腺和脾脏细胞受到辐射后细胞凋亡增加.当机体受到辐射时,在抗原刺激第一信号和第二信号¨的共同作用下,产生一系列的特异性和非特异性免疫应答,这种持久,过强的应答进一步加重组织器官的损伤引.此外,高强度的辐射直接造成免疫系统损伤效应,而其修复功能又不足以弥补高剂量率辐射的损伤作用,从而出现CD3和CD4下调,CD25,CD69和CD95上调,以及一些免疫因子(如TNF,IL, TRAIL等)[13-16]和免疫球蛋白的变化,使细胞凋亡明显增多.实验中也发现,雄性小鼠在受到高剂量率辐照时,胸腺和脾脏指数变化的速度较雌I生快;在较低剂量率时,胸腺和脾脏指数变化的性别差异不大,这一现象发生的机理尚不十分清楚.实验中辐射对小鼠的免疫系统产生的影响出现雌雄差异有待于进一步的研究.本研究对于在肿瘤的辐射治疗中,达到最大的治疗效果的同时如何最大限度地减少对患者免疫系统的影响;同时对于在航空,航天飞行中,低LET辐射对飞行人员的免疫系统造成的损伤提供了一定的实验根据,这在临床治疗肿瘤中和飞行辐射防护中具有参考价值.336航天医学与医学工程第19卷[1][2][3][4][5][6][7][8][9][1O][参考文献]MenkesDB.DavisonMP,ShaunA,eta1.Stereotactic radiosurgery:thepatient'sexperience[J].SocialSci- ence&Medicine.2005,60(11):2561—2573.W ANGTao.,,ANGGuanghua.Effectsofspacefightfac—torsonimmunesystemandthemechanismofthese changes[J].SpaceMedicineandMedicaIEngineering, 1996.9(1):70-74.HaleTJ,RichardsonBC,SweetLI.eta1.Age—related changesinmatureCD4Tcells:celIcycleanalysis [J].CellularImmunology,2002,2201(1):51-62. TeyssierF,BayJO,DionetC,eta1.CelIcycleregulationafterexposuretoionizingradiation[J].BulICancer, 1999.86(2):345-357.OtsukaK.SakaiK.Effectsoflowdose—rateIong—term gamma—rayirradiationOnDNAdamagejnmousespleen [J].InternationaICongressSeries,2005,1276(2):258-259.Kovalchuk0,BurkeP,BesplugJ,eta1.Methylation changesjnmuscleandIivertissuesofmaleandfemale miceexposedtoacuteandchronicIow--doseX--ray--irra-- diation』J].MutatRes,2oo4,548(2):75—84. GaudetF.HodgsonJG,EdenA.eta1.Inductionof tumorsjnmicebygenomichypomethylation[J].Sci—ence.2003.300(5618):489-492.ChenRZ,PettersonU,BeardC.eta1.DNAhypometh—ylationIeadstoelevatedmutationrates[J].Nature. 1998.395(6697):89_93.JonesA.GonzalgoML.AIteredDNAmethylationand genomeinstability:anewpathwaytocancer[J].Proc NatIAcadSciUSA,1997,94(6):2103—2105. RaicheJ,JuarezRR,PogdbnyJ,eta1.Sex—andtissue—specificexpressionofmaintenanceanddenovoDNA[11][12][13][14][15][16][17] methvItransferasesuponIowdoseX—irradiationi1"1mice『J].BiochemicaIandBiophysicalResearchCOmmunI_ cations,2004.325(1):39-47.ZHANGXueguang.GUTao.Costimulatorymolecules andtheirregulatorynetworkinspecificlmmunere—sponse『J].ChineseJournaIofCancerBiotherapy,20o2.9(1):229-232.CAOMD.CHENZD.XINGY.Gammairradiationofhu- mandendriticcellsinfluencesproliferationandcytokine profileofTcellsinautologousmixedlymphocytereac—tion[J].CellBiologyInternational,2004,28(3):223—228.SafwatA,AggerholmN,RoittI,eta1.Tumourburden andinterleukin-2doseaffecttheinteractionbetweenIow-dosetotalbodyirradiationandinterleukin2[J1. EuropeanJournaIofCancer,2OO4,40(9):1412-1417. ShankarS,SrivastavaRK.Enhancemc-ntoftherapeutic potentialofTRAILbycancerchemotherapyandirradia—tion:mechanismsandclinicalimplications[J].Drug ResistanceUpdates.2004,7(2):139—156.MartinaC,WayneJ,BelIA,eta1.InvivoligationofCD3onneonataIscidthymocytesblocks—irradiation—in- ducedTCRrearrangementsandthvmiclymphomagene—sis[JJ.ImmunologyLetters,20o3,85(3):279-286. LVDuicai.SULiaoyuan.StimulativeeffectsofLDRin—ducedproteinsonhumanperipheraIbloodIymphocyte subsets[J].SpaceMedicineandMedicalEngineering,20o3.16(3):165—167.TranH,MarloweK,McKenneyK.eta1.FunctionaIin—tegrityofintravenousimmunoglobulinfollowingirradia—tionwithavirucidaIdoseofgammaradiation『J].Bio—Iogicals,2004,32(2):94—104.[作者简介:谢漪,女,博士研究生,研究方向为辐射医学和辐射免疫学研究]。
不同γ-射线辐照剂量对鱼腥藻生长及生理特性的影响郑宾国;崔节虎;彭伟功;张继彪;郑正【摘要】[目的]研究γ-射线辐照对水华优势藻种——鱼腥藻生长及生理特性的影响,为蓝藻水华暴发的防治提供新方法.[方法]采用60 Co衰变产生的不同剂量γ-射线辐照鱼腥藻,分析γ-射线对鱼腥藻生长的影响,并探讨了辐照剂量(0,3,5,7,9,11 kGy)、溶液pH及外源物质(H2O2、抗坏血酸)对辐照效果的影响,在此基础上分析了不同辐照剂量γ-射线对鱼腥藻细胞内含物、抗氧化酶活性和丙二醛含量的影响,并采用扫描电镜和透射电镜分析了γ-射线辐照前后鱼腥藻细胞表面结构和内部结构的变化.[结果]经γ-射线辐照处理后,鱼腥藻的生长受到了明显的抑制,且抑制效果随辐照剂量的增加而增强.经剂量11 kGy的γ-射线辐照处理后培养5d,培养悬浮液中Chl-a质量浓度为0.18 mg/L,较未辐照前明显降低.酸性环境和H2O2促进了γ-射线辐照对鱼腥藻的抑制作用.11 kGy γ-射线辐照处理后鱼腥藻细胞内光合色素和总可溶性蛋白质量浓度与未经γ-射线处理鱼腥藻的百分比几乎降至为0.γ-射线辐照后藻细胞内SOD、POD和CAT活性随γ-射线辐照剂量的增大先增加后降低,细胞内丙二醛含量随γ-射线辐照剂量的增大而增加.扫描电镜和透射电镜观察结果显示,γ-射线辐照处理后的鱼腥藻细胞严重萎缩,细胞内类囊体溶解消失.[结论]γ-射线辐照对鱼腥藻生长的抑制作用明显,是一种高效、无二次污染,能有效防止鱼腥藻暴发的新技术.【期刊名称】《西北农林科技大学学报(自然科学版)》【年(卷),期】2013(041)008【总页数】7页(P182-188)【关键词】γ-射线;辐照处理;鱼腥藻;生理特性【作者】郑宾国;崔节虎;彭伟功;张继彪;郑正【作者单位】郑州航空工业管理学院资源与环境研究所,河南郑州450015;郑州航空工业管理学院资源与环境研究所,河南郑州450015;郑州航空工业管理学院资源与环境研究所,河南郑州450015;复旦大学环境科学与工程系,上海200433;复旦大学环境科学与工程系,上海200433【正文语种】中文【中图分类】X17水体富营养化是我国水域生态环境最常见污染类型之一。
γ电离辐射对斑马鱼胚胎肝、脾和肾发育形态学的影响冯永富;胡南;丁德馨;赵维超;胡淼【摘要】Zebrafish was used as a model organism to study the effects of γ-ray irradia-tion on the developmental morphology of important organs in the aquatic organisms. Different doses of gamma rays (0.25,0.5,1 Gy)at the dose rate of 47.79 cGy/min were used to irradiate zebrafish embryos at early development stage (5 hours post-fertili-zation,5 hpf).The changes of yolk sac area at 3 days post-fertilization (3 dpf)and the changes of the morphology of liver,spleen and p ronephros at 3 dpf and 5 dpf after γ-ray irradiation were analyzed,respectively.It is found that the area of yolk sac in larval zebrafish at 3 dpf increases with γ-ray irradiation dose in a dose-dependent manner.The vacuoles increase and some cavities occur in liver of larval zebrafish at 3 dpf.The devel-opmental morphology of liver in larval zebrafish at 5 dpf is abnormal,including the reduction in liver size,the increase of vacuoles in liver cells,the deformation of hepato-cyte nucleus,the relatively small hepatic sinusoid and the deformation of nucleated erythrocyte and so on,but the developmental morphology of pronephros and spleen are normal.The ultrastructure of liver cells at 3 dpf shows that γ-ray irradiation can impair mitochondria of liver cells,broaden the intermembrane space of cell nuclei,spoil the arrangement of rough endoplasmic reticulum and so on.The results show that γ-ray irradiation can inhibit the absorption of the yolk in embryos in a dose-dependent manner and change the microscopic and submicroscopic structure of thelivers in embryos.%为研究γ电离辐射对水生生物重要器官发育形态学的影响,以斑马鱼(Danio rerio)作为模式生物,研究了胚胎发育早期(受精后5 h,5 hpf)接受急性γ辐照(累积剂量为0.25、0.5、1 Gy,剂量率为47.79 cGy/min)后,受精后3 d(3 dpf)的幼鱼卵黄囊面积以及3 dpf和5 dpf的幼鱼肝、肾和脾发育形态学的变化.结果显示:3 dpf的幼鱼卵黄囊面积随剂量的增大而增大;3 dpf的幼鱼肝脏中空泡增加、肝脏局部出现空洞;5 dpf的幼鱼肝脏尺寸缩减、肝细胞内空泡增加且细胞核变形、血窦较小以及有核红细胞变形等;但前肾和脾的发育形态并没有出现异常.随后对3 dpf的幼鱼肝细胞超微结构进行观察,发现γ辐照使幼鱼肝脏细胞线粒体受损、核膜间隙扩大、粗面内质网排列混乱等.以上结果表明,γ辐照对胚胎卵黄吸收有抑制作用,并呈一定的剂量依赖性,胚胎肝脏的发育形态在显微及亚显微结构上都发生了改变.【期刊名称】《原子能科学技术》【年(卷),期】2017(051)010【总页数】7页(P1886-1892)【关键词】斑马鱼胚胎;γ辐照;形态学;生物标志物【作者】冯永富;胡南;丁德馨;赵维超;胡淼【作者单位】南华大学铀矿冶生物技术国防重点学科实验室,湖南衡阳 421001;南华大学铀矿冶生物技术国防重点学科实验室,湖南衡阳 421001;南华大学铀矿冶生物技术国防重点学科实验室,湖南衡阳 421001;南华大学铀矿冶生物技术国防重点学科实验室,湖南衡阳 421001;南华大学铀矿冶生物技术国防重点学科实验室,湖南衡阳 421001【正文语种】中文【中图分类】Q136Abstract: Zebrafish was used as a model organism to study the effects of γ-ray irradiation on the developmental morphology of important organs in the aquatic organisms. Different doses of gamma rays (0.25, 0.5, 1 Gy) at the dose rate of 47.79 cGy/min were used to irradiate zebrafish embryos at early development stage (5 hours post-fertilization, 5 hpf). The changes of yolk sac area at 3 days post-fertilization (3 dpf) and the changes of the morphology of liver, spleen and pronephros at 3 dpf and 5 dpf after γ-ray irradiation were analyzed, respectively. It is found that the area of yolk sac in larval zebrafish at 3 dpf increases with γ-ray irradiation dose in a dose-dependent manner. The vacuoles increase and some cavities occur in liver of larval zebrafish at 3 dpf. The developmental morphology of liver in larval zebrafish at 5 dpf is abnormal, including the reduction in liver size, the increase of vacuoles in liver cells, the deformation of hepatocyte nucleus, the relatively small hepatic sinusoid and the deformation of nucleated erythrocyte and so on, but the developmental morphology of pronephros and spleen are normal. The ultrastructure of liver cells at 3 dpf shows that γ-ray irradiation can impair mitochondria of liver cells, broaden the intermembrane space of cell nuclei, spoil the arrangement of rough endoplasmic reticulum and so on. The results show that γ-ray irradiation can inhibit the absorption of the yolk in embryos in a dose-dependent manner and change the microscopic and submicroscopic structure of thelivers in embryos.Key words:zebrafish embryo; γ-ray irradiation; morphology; biomarker近年来,随着我国放射医学与核电事业的快速发展,核科学给人们带来巨大利益的同时也带来了潜在的威胁,所以个人与环境放射性监测与风险评估显得越来越重要。
儿茶素、槲皮素和葡萄籽原花青素的协同抗辐射作用吴涛;张倩;刘锐;张民【摘要】The present study investigated the synergetic anti-radiation effect of catechin,quercetin and procyanidins in the AHH-1 lymphocytes radiation damage model.The results show that when the concentration of catechin and quercetin is 10,and 5,μg/mL,or the concentrations of catechin and procyanidins is 10 and 15 or 25 or 30 μg/mL,or the concentration of quercetin and procyanidins is 5 and 25 μg/mL,or the concentration of quercetin and procyanidins is 10 and 20 or 25 μg/mL, the two substances have synergetic anti-radiation effect.When the concentration of catechin and quercetin is 10 and 15 or 20 μg/mL,or the concentration of catechin and procyanidins is 10 and 10 or 20 μg/mL,catechin has antagonistic effects on quercetin and procyanidins respectively. When the concentration of quercetin and procyanidins is 5 and 20 μg/mL,or the concentration of quercetin and procyanidins is 10 and 15 μg/mL,or the concentration of quercetin and procyanidins is 15 and 15 or 20 or 25μg/mL,t here is antagonism between the two substances.This research plays an important role in the develop-ment of anti-radiation functional food.%通过建立体外 AHH-1淋巴细胞辐射损伤模型,研究儿茶素、槲皮素和葡萄籽原花青素之间的协同抗辐射作用.结果表明:当儿茶素质量浓度为10,μg/mL和槲皮素质量浓度为5,μg/mL时,儿茶素质量浓度为10,μg/mL和原花青素质量浓度为15、25、30,μg/mL时,槲皮素质量浓度为5,μg/mL和原花青素质量浓度为25,μg/mL时,槲皮素质量浓度为10,μg/mL 和原花青素质量浓度为20、25,μg/mL时,两物质间皆具有协同抗辐射作用.当儿茶素质量浓度为10,μg/mL 时,槲皮素质量浓度为15、20,μg/mL以及原花青素质量浓度为10、20,μg/mL时,儿茶素分别与槲皮素、原花青素存在拮抗作用.当槲皮素质量浓度为5,μg/mL 和原花青素质量浓度为20,μg/mL 时,当槲皮素质量浓度为10,μg/mL 和原花青素质量浓度为15,μg/mL 时,当槲皮素质量浓度为15,μg/mL 和原花青素质量浓度为15、20、25,μg/mL 时,原花青素与槲皮素皆存在拮抗作用.因此,在适量浓度范围内儿茶素、槲皮素和原花青素之间具有协同、拮抗抗辐射作用,这一研究发现对开发抗辐射功能食品具有指导意义.【期刊名称】《天津科技大学学报》【年(卷),期】2018(033)001【总页数】5页(P9-13)【关键词】儿茶素;原花青素;槲皮素;抗辐射;协同作用【作者】吴涛;张倩;刘锐;张民【作者单位】天津科技大学新农村发展研究院,食品生物技术教育部工程研究中心,天津科技大学食品工程与生物技术学院,天津 300457;天津科技大学新农村发展研究院,食品生物技术教育部工程研究中心,天津科技大学食品工程与生物技术学院,天津 300457;天津科技大学新农村发展研究院,食品生物技术教育部工程研究中心,天津科技大学食品工程与生物技术学院,天津 300457;天津科技大学新农村发展研究院,食品生物技术教育部工程研究中心,天津科技大学食品工程与生物技术学院,天津300457【正文语种】中文【中图分类】TS202.3辐射是一种严重危害人体健康的有害因素,机体受到大剂量辐射会使体内新陈代谢紊乱,诱发各种病态和损伤,如神经衰弱综合症、造血机能受损、抗感染能力下降、心脏损伤、加速衰老、遗传损伤等,严重时还可能诱发癌变[1–2].因此,寻求天然有效的抗辐射防护剂对人体健康有重要意义[3].近年来关于抗辐射防护剂的研究较多,已发现的天然抗辐射活性成分有多酚类[4–5]、多糖类[6–8]、黄酮类等[9–11],这些物质主要在抵抗射线对健康机体的损伤[12–14]、提高肿瘤细胞对辐射的敏感性[15–16]、修复受损细胞[12,17]、消除自由基等方面起作用[18].但是各种活性物质抗辐射作用的效果比较研究和协同效应研究还很少,有待进一步研究.儿茶素、槲皮素和原花青素隶属于多酚类化合物,均具有与氧自由基反应的作用,能够截断自由基的链式反应,从而具有良好的捕集自由基等抗辐射功效.基于上述原因,本文通过建立体外 AHH-1淋巴细胞辐射损伤模型,探究儿茶素、槲皮素、葡萄籽原花青素之间的协同抗辐射作用,为进一步研究开发抗辐射功能食品奠定基础.1 材料与方法1.1 原料、试剂与仪器槲皮素(98%)、葡萄籽原花青素(95%),陕西浩洋生物科技有限公司;儿茶素(80%),江西绿康天然产物有限责任公司;二甲基亚砜(DMSO),Sigma公司;改良型RPMI-1640培养基,赛默飞世尔生物化学制品有限公司;胎牛血清,杭州四季青生物工程材料有限公司;噻唑蓝(MTT),北京索莱宝科技有限公司;其余试剂均为分析纯.紫外可见分光光度计,上海菁华科技仪器有限公司;NIKON TS100型相差倒置光学显微镜,日本尼康公司;MCO-18ATC(UV)型二氧化碳培养箱,日本三洋公司;高通大容量台式离心机、全自动酶标分析仪,美国Thermo公司.1.2 构建AHH-1淋巴细胞辐射损伤模型在细胞培养瓶中加入 AHH-1淋巴细胞,细胞培养液的细胞浓度为1×105,mL-1,培养2,h后,将细胞经137Cs-γ射线一次辐射,辐射剂量分别为0、1、2、4、6、8,Gy.并设正常对照组,辐射结束后,于 CO2培养箱中培养 24,h后,加入5,mg/mL的 MTT溶液20,µL,继续培养 4,h 后,1,000,r/min 离心 5,min,吸去上清液,加入150,µL的 DMSO,振荡溶解,待紫色颗粒完全溶解后,用酶标仪检测 490,nm下的吸光度(A),按照式(1)计算细胞存活率.1.3 儿茶素、槲皮素和原花青素对γ射线辐射的细胞存活率的影响将正常培养的细胞分为 3组:正常对照组,采用含 10%,胎牛血清的培养基培养细胞;辐射组,正常培养细胞用γ射线辐射但不加药物;药物+辐射组,在γ射线辐射前加入不同质量浓度酚类物质孵育 2,h.然后经γ射线一次辐射,辐射结束后置于CO2培养箱中培养 24,h后,1,000,r/min离心 5,min,去掉加药的培养液,用PBS清洗1次,加入5,mg/mL的MTT溶液20,µL,继续培养 4,h后,1,000,r/min离心 5,min,吸去上清液,加入150,µL的 DMSO,振荡溶解,待紫色颗粒完全溶解后,用酶标仪检测 490,nm 下吸光度,按照式(1)计算细胞存活率及存活率提高值.1.4 儿茶素、槲皮素和原花青素之间的作用对于儿茶素、槲皮素和原花青素,若两种物质联合作用的存活率提高值大于单独作用的相加值,则判定两种物质具有协同作用;若两种物质联合作用的存活率提高值小于单独作用的相加值,则判定两种物质具有拮抗作用;若两种物质联合作用的存活率提高值等于单独作用的相加值,则判定两种物质具有相加作用.1.4.1 槲皮素与儿茶素之间的作用槲皮素的质量浓度分别为 5、10、15、20,µg/mL,儿茶素的质量浓度为10,µg/mL,进行复合,然后进行γ射线的辐射,经 MTT测定,计算存活率,研究是否有协同作用.1.4.2 原花青素与儿茶素之间的作用设定原花青素的质量浓度分别为 10、15、20、25、30,µg/mL,儿茶素的质量浓度为10,µg/mL,进行复合,然后进行γ射线的辐射,经MTT测定,计算存活率,研究是否有协同作用.1.4.3 原花青素与槲皮素之间的作用设原花青素的质量浓度分别为15、20、25,µg/mL,槲皮素的质量浓度分别为5、10、15,µg/mL,分别进行复合,然后进行γ射线的辐射,经MTT测定,计算存活率,研究是否有协同作用.1.5 统计分析平行实验6次,利用SPSS,19.0对实验数据进行统计学分析.A表示与正常组比较差异显著(P<0.05),a表示与正常组比较差异极显著(P<0.01),b表示与辐射组比较差异极显著(P<0.01).2 结果与讨论2.1 γ射线辐射剂量的确定不同剂量的γ射线对细胞存活率的影响如图1所示.随着γ射线辐射剂量的增加,细胞的存活率下降,当辐射剂量为 6,Gy时,细胞的存活率降到 45%.辐射剂量为8,Gy时,对细胞的损伤过大,因此选取6,Gy为后续实验的辐射剂量.图1 不同剂量的γ射线对细胞存活率的影响Fig. 1 Effect of different gamma-ray irradiation dose on cell survival rate2.2 原花青素、槲皮素和儿茶素对γ射线辐射的细胞存活率的影响原花青素对γ射线辐射的细胞存活率的影响如图2所示.与正常组比较,辐射组的细胞存活率有极显著性差异(P<0.01),原花青素各个剂量组,与辐射组比较均有极显著差异(P<0.01).其中,在200,µg/mL剂量时,与正常组比较,存活率无显著性差异,说明此剂量的原花青素使细胞的存活率达到了正常水平.图2 原花青素对γ射线辐射的细胞存活率的影响Fig. 2 Effect of procyanidinson cell survival rate after gamma-ray irradiation槲皮素对γ射线辐射的细胞存活率的影响如图3所示.图3 槲皮素对γ射线辐射的细胞存活率的影响Fig. 3 Effect of quercetin on cell survival rate after gamma-ray irradiation槲皮素 5、10,µg/mL剂量组与正常组比较,细胞存活率有极显著性差异(P<0.01);槲皮素各个剂量组与辐射组比较,细胞存活率均有极显著升高(P<0.01).儿茶素对γ射线辐射的细胞存活率的影响如图4所示.儿茶素各剂量组与正常组比较,细胞存活率有极显著性差异(P<0.01);儿茶素各剂量组与辐射组相比,细胞存活率显著升高(P<0.01).图4 儿茶素对γ射线辐射的细胞存活率的影响Fig. 4 Effect of catechin on cell survival rate after gamma-ray irradiation2.3 槲皮素、儿茶素和原花青素之间的作用2.3.1 槲皮素与儿茶素之间的作用槲皮素与儿茶素联合作用的结果见表 1.由表 1可知,当儿茶素质量浓度为10,µg/mL,槲皮素质量浓度为5,µg/mL时,两物质联合作用的存活率提高值大于两物质单独作用的相加值,说明两物质具有协同作用.随着槲皮素浓度的增加,两物质的作用类型由相加变为拮抗.表1 槲皮素与儿茶素联合作用的结果Tab. 1 Joint effect of quercetin and catechin儿茶素/(µg·mL-1)槲皮素/(µg·mL-1)存活率提高值/%,联合作用提高值/%,单独作用相加值/%,联合作用类型10 00 10.01 0 0 —00 05 05.90 0 0—00 10 27.97 0 0 —00 15 36.56 0 0 —00 20 37.98 0 0 —10 05 0 20.11 15.91 协同10 10 0 37.90 37.98 相加10 15 0 40.44 46.57拮抗10 20 0 15.31 47.99 拮抗2.3.2 原花青素与儿茶素之间的作用原花青素与儿茶素联合作用的结果见表 2.当儿茶素质量浓度为10,µg/mL时,原花青素质量浓度为15、25、30,µg/mL 时,两物质联合作用的存活率提高值大于两单独作用的相加值,具有协同作用;当原花青素质量浓度为10、20,µg/mL时,两物质联合作用的存活率低于两物质单独作用相加值,具有拮抗作用.表2 原花青素与儿茶素联合作用的结果Tab. 2 Joint effect of procyanidins and catechin?2.3.3 原花青素与槲皮素之间的作用原花青素与槲皮素联合作用的结果见表 3.在槲皮素质量浓度为5,µg/mL和原花青素质量浓度为25,µg/mL时,槲皮素质量浓度为10,µg/mL和原花青素质量浓度为 20、25,µg/mL时,两物质联合作用的存活率提高值皆大于两物质单独作用的相加值,具有协同作用.表3 原花青素与槲皮素联合作用的结果Tab. 3 Joint effect of procyanidins and quercetin槲皮素/(µg·mL-1)原花青素/(µg·mL-1)存活率提高值/%,联合作用提高值/%,单独作用相加值/%,联合作用类型05 00 05.90 0 0 —10 00 27.97 00 —15 00 36.56 0 0 —00 15 10.29 0 0 —00 20 12.53 0 0 —00 25 14.91 0 0 —05 15 0 16.09 16.19 相加05 20 0 14.87 18.43 拮抗05 25 0 28.63 20.81 协同10 15 0 06.80 38.26 拮抗10 20 0 43.52 40.50 协同10 25 0 45.61 42.88 协同15 15 0 40.72 46.85 拮抗15 20 0 35.35 49.09 拮抗15 25 0 10.76 51.47 拮抗2.4 讨论酚类物质的多元酚羟基均具有与氧自由基反应的作用,截断自由基的链式反应,从而具有良好的捕集自由基等抗辐射功效.孙维琦等[9]研究表明,大豆异黄酮能提高受辐射小鼠的抗氧化能力,在一定程度上减缓由辐射引起的外周血白细胞和骨髓有核细胞数的下降,减少微核的产生,对γ射线损伤具有良好的防护作用.大豆异黄酮抗辐射损伤的机理主要是抗氧化作用、抑制膜的脂质过氧化、抑制细胞凋亡的发生、调节细胞基因表达这几个方面[19].李德远等[20]研究证明银杏叶黄酮能显著提高辐射小鼠的存活率和平均存活时间,低剂量银杏叶黄酮具有较强的抗辐射作用,其作用机理与提高小鼠免疫力有关. Benkovic等[11] 研究抗辐射损伤作用时发现,槲皮素及蜂胶提取物对辐射小鼠白细胞具有激活效应且对其DNA的损伤具有保护作用.Srinivasan等[21]在研究中发现,姜黄素对辐射所致小鼠肝细胞DNA的损害具有防护作用.吴健全等[10]报道染料木黄酮可以延长受照射小鼠存活时间,提高 30,d活存率,升高血小板、淋巴细胞和脾结节数,降低骨髓嗜多染红细胞微核率,对小鼠有辐射防护作用.因此儿茶素、槲皮素和原花青素可能通过提高受辐照细胞的抗氧化能力、减少DNA的损伤达到协同抗辐射作用.3 结语通过建立体外 AHH-1淋巴细胞辐射损伤模型,研究儿茶素、槲皮素和原花青素之间的协同抗辐射作用.结果表明:当儿茶素质量浓度为10,µg/mL和槲皮素质量浓度为5,µg/mL时,儿茶素质量浓度为10,µg/mL 和原花青素质量浓度为 15、25、30,µg/mL时,槲皮素质量浓度为5,µg/mL和原花青素质量浓度为25,µg/mL时,槲皮素质量浓度为10,µg/mL和原花青素质量浓度为 20、25,µg/mL时,两物质间皆具有协同抗辐射作用.当儿茶素质量浓度为10,µg/mL 时,槲皮素质量浓度为 15、20,µg/mL以及原花青素质量浓度为 10、20,µg/mL 时,儿茶素分别与槲皮素、原花青素存在拮抗作用.当槲皮素质量浓度为5,µg/mL 和原花青素质量浓度为20,µg/mL 时,当槲皮素质量浓度为10,µg/mL和原花青素质量浓度为15,µg/mL时,当槲皮素质量浓度为15,µg/mL和原花青素质量浓度为15、20、25,µg/mL时,原花青素与槲皮素皆存在拮抗作用.因此,在适量浓度范围内儿茶素、槲皮素和原花青素之间具有协同或拮抗抗辐射作用,这一研究发现对开发抗辐射功能食品具有指导意义.参考文献:[1] Simmons J H W. Radiation Damage in Graphite[M]Oxford:Pergamon Press,1965:243.[2]高月,马增春. 辐射损伤防治药物发展历史与展望[J].辐射防护通讯,2009,29(5):30-35.[3] Wang Q,Han T,Sun L,et al. Progress on anti-radiation natural medicines[J]. Journal of Pharmaceutical Practice,2012,5:171-177.[4] Bao L,Zhang Z,Dai X,et al. Effects of grape seed proanthocyanidin extract on renal injury in type 2 diabetic rats[J]. Molecular Medicine Reports,2015,11(1):645-652.[5] Duan Y,Chen F,Yao X,et al. Protective effect of Lycium ruthenicum Murr. against radiation injury in mice[J]. International Journalof Environmental Research &Public Health,2015,12(7):8332-8347. [6] Jiang S,Shen X,Liu Y,et al. Radioprotective effects of Sipunculus nudus L. polysaccharide combined with WR-2721,rhIL-11 and rhG-CSF on radiation-injured mice[J]. Journal of Radiation Research,2015,56(3):515-522.[7] Luo Q,Li J,Cui X,et al. The effect of Lycium barbarum polysaccharides on the male rats’ reproductive system and spermatogenic cell apoptosis exposed to low-dose ionizing irradiation[J].Journal of Ethnopharmacology,2014,154(1):249-258.[8]王楠,张民,李茜,等. 裸燕麦多糖酶解产物 OP-1 纯化组分结构分析[J]. 天津科技大学学报,2016,31(1):8-12.[9]孙维琦,郭英,张义全,等. 大豆异黄酮与大豆皂甙抗辐射作用的实验研究[J]. 中国辐射卫生,2007,16(3):273-274.[10]吴健全,金宏,许志勤,等. 染料木黄酮抗辐射作用的实验研究[J]. 中国辐射卫生,2004,13(3):170-172.[11] Benkovic V,Knezevic A H,Dikic D,et al. Radioprotective effects of propolis and quercetin in γ-irradiated mice evaluated by the alkaline comet assay[J].Phytomedicine International Journal of Phytotherapy&Phytopharmacology,2008,15(10):851-858.[12] Oyagbemi A A,Omobowale T O,Akinrinde A S,et ck of reversal of oxidative damage in renal tissues of lead acetate-treated rats[J]. Environmental Toxicology,2015,30(11):1235-1243.[13] Ma B,Zhu L,Zang X,et al. Coptis chinensis inflorescence and its main alkaloids protect against ultraviolet-B-induced oxidative damage[J]. Journal of Functional Foods,2013,5(4):1665-1672.[14]Rodríguez-Pérez C,Quirantes-Piné R,Contreras M M,et al. Assessment of the stability of proanthocyanidins and other phenolic compounds in cranberry syrup after gamma-irradiation treatment and during storage[J]. Food Chemistry,2015,174:392-399.[15] Wang L,Li X,Wang Z. Whole body radioprotective effect of phenolic extracts from the fruits of Malus baccata(Linn.)Borkh[J]. Food & Function,2016,7(2):975-981.[16]张英,吴聪俊. 生物黄酮作为天然辐射防护剂的研究进展[J]. 天然产物研究与开发,2015,27(3):552-557.[17]王丽,王振宇,张浩,等. 天然化合物的电离辐射防护作用研究[J]. 食品工业科技,2012,33(16):372-376.[18] Zhao L,Wang Y,Wang Y,et al. Advances in research on radioprotective effects of natural active components[J]. Pharmaceutical Care and Research,2012,12(2):86-89.[19] Dixit A K,Bhatnagar D,Kumar V,et al. Antioxidant potential and radioprotective effect of soy isoflavone against gamma irradiation induced oxidative stress[J].Journal of Functional Foods,2012,4(1):197-206. [20]李德远,周韫珍,余应利,等. 银杏叶黄酮抗辐射效应研究[J]. 营养学报,2004,26(3):220-222.[21] Srinivasan M,Prasad N R,Menon V P. Protective effect of curcumin on γ-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes[J].Mutation Research,2006,611(1/2):96-103.。