分式的乘除法(精选7篇)
- 格式:docx
- 大小:25.20 KB
- 文档页数:18
分式的乘除法分式的乘法和除法是数学中非常重要的概念,在许多数学题目和实际应用中都会用到这两种运算。
下面我们将详细介绍分式的乘法和除法,帮助大家更好地掌握这个概念。
一、分式的乘法1. 定义两个分数的乘积是将它们的分子相乘,分母相乘得到的新的分数。
简单来说,两个分数的乘积算法是:分式 A ×分式 B = (A的分子× B的分子) / (A的分母× B的分母)例如:(3/4) × (5/6) = (3×5) / (4×6) = 15 / 24(1/3) × (4/5) = (1×4) / (3×5) = 4 / 152. 乘法的性质①乘法是可交换的:两个分式相乘的结果与两个分式交换位置后相乘的结果相同。
A ×B = B × A②乘法是可结合的:三个或更多个分式相乘的结果不受计算的顺序影响。
(A × B) × C = A × (B × C)③乘法满足分配律:一个分式与多个分式相加的结果等于每个分式与它相乘后再相加的结果。
A × (B + C) = A × B + A × C例如:2/3 × (4/5 + 1/5) = 2/3 × 5/5 = 10/152/3 × 4/5 + 2/3 ×1/5 = 8/15 + 2/15 = 10/15二、分式的除法1. 定义两个分式的除法是将它们的分子相乘,分母相乘后,将前者的结果除以后者的结果所得到的新的分数。
简单来说,分式 A ÷分式 B 算法是:分式 A ÷分式 B = (A的分子× B的分母) / (A的分母× B的分子)例如:(3/4) ÷ (5/6) = (3×6) / (4×5) = 18 / 20(1/3) ÷ (4/5) = (1×5) / (3×4) = 5 / 122. 除法的性质①除法是不可交换的:两个分式相除的结果与两个分式交换位置后相除的结果不相同。
分式的乘除法在数学中,分式是一种数学表达式,由一个或多个数的比值构成。
分式的乘除法是指对于两个或多个分式进行相乘或相除的运算。
本文将详细介绍分式的乘法和除法运算规则,并提供相关示例。
一、分式的乘法运算规则分式的乘法运算规则如下:1. 分子与分子相乘,分母与分母相乘。
例如,对于分式 a/b 和 c/d 的乘法运算,结果为(a*c)/(b*d)。
示例1: 计算 (2/3) * (4/5) = (2*4)/(3*5) = 8/15。
示例2: 计算 (1/2) * (3/4) = (1*3)/(2*4) = 3/8。
2. 分式可以和整数进行相乘。
例如,对于分式 a/b 和整数 c 的乘法运算,结果为(a*c)/b。
示例3: 计算 (2/3) * 4 = (2*4)/3 = 8/3。
示例4: 计算 (3/4) * 2 = (3*2)/4 = 6/4 = 3/2。
二、分式的除法运算规则分式的除法运算规则如下:1. 分式的除法可以转化为分子乘以倒数的形式。
例如,对于分式 a/b 除以 c/d 的运算,结果为(a/b)*(d/c)。
示例5: 计算 (2/3) ÷ (4/5) = (2/3)*(5/4) = (2*5)/(3*4) = 10/12 = 5/6。
示例6: 计算 (1/2) ÷ (3/4) = (1/2)*(4/3) = (1*4)/(2*3) = 4/6 = 2/3。
2. 分式可以和整数进行相除。
例如,对于分式 a/b 除以整数 c 的运算,结果为(a/b)*(1/c)。
示例7: 计算 (2/3) ÷ 4 = (2/3)*(1/4) = (2*1)/(3*4) = 2/12 = 1/6。
示例8: 计算 (3/4) ÷ 2 = (3/4)*(1/2) = (3*1)/(4*2) = 3/8。
三、综合运算示例接下来,我们将综合运用分式的乘法和除法规则进行计算。
示例9: 计算 [(1/2) * (4/5)] ÷ [(3/4) * (1/3)]。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==分式的乘除评课篇一:分式的乘除法《分式的乘除法》评课稿龙观中心学校---------周宏方听了俞丽娜老师的课——浙教版七年级数学下《7.2分式的乘除》,使我受益非浅,启发很大。
首先, 俞老师在分式的乘除法这一课的教学中,出示地图,以“邱隘实验中学至古林中学的时间与速度关系”打开教学,创设情景,结合生活,极大地提高了学生的学习积极性,减少了数学课堂紧张的气氛。
并采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。
学生反应较好,能基本上完整地讲出分式的乘除法法则。
做到了巧妙的引入,符合学生的认知发展规律。
然后, 俞老师出示是非题,意在巩固刚学的分式的乘除法法则,学生基本上能判断清楚.接下来的教学,俞老师是分两块分别进行。
在分式的乘法中,举了两个例题,分子、分母都是单项式,先分子乘以分子,分母乘以分母,然后上下约分,分子、分母都是多项式,先分子乘以分子,分母乘以分母,然后要分解因式,再上下约分。
分式的除法,也是遵循这样的框式。
在例题的讲解中,俞老师讲得比较慢,讲得清,讲得透。
最精彩的还是例2, 例2有相当难度,是本节课的难点,学生大都不太理解,但俞老师做的很好,开始时用了2个小题作铺垫,由具体的数据来代替字母,层层引入,使学生理解,难度马上就降低了,符合由浅入深从特殊到一般的认知规律.这是一节成功的数学课,对照我的数学课堂,我觉得还有很大距离,是我今后应该注意,值得学习的地方。
篇二:蔡俊伟评课稿陈引娣老师《分式的乘除法》评课稿蔡俊伟本节课,陈老师利用分数的乘法作为引入,引导学生类比分数与分式进行学习。
课堂开始,利用教学案预习的优势,陈老师迅速引入正题,讲解了分式的乘法法则,并且紧凑的由学生上台进行了三道例题的讲解、评点。
八年级分式的乘除说课稿9篇八年级分式的乘除说课稿(精选篇1)教学目标(一)教学知识点1.分式乘除法的运算法则,2.会进行分式的乘除法的运算。
(二)能力训练要求1.类比分数乘除法的运算法则。
探索分式乘除法的运算法则。
2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力。
3.用分式的乘除法解决生活中的实际问题,提高“用数学”的意识。
(三)情感与价值观要求1.通过师生共同交流探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感。
2.培养学生的创新意识和应用数学的意识。
教学重点让学生掌握分式乘除法的法则及其应用。
教学难点分子分母是多项式的分式的乘除法的运算。
教学方法引导启发探求教具准备投影片四张第一张:探索交流,(记作§3.2 A);第二张:例1,(记作§3.2 B);第三张:例2,(记作§3.2 C);第四张:做一做,(记作§3.2 D)。
教学过程Ⅰ。
创设情境,引入新课[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?下面我们看投影片(§3.2 A)探索交流--观察下列算式:× = , × = ,÷ = × = , ÷ = × = .猜一猜× =? ÷ =?与同伴交流。
[生]观察上面运算,可知:两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘。
即× = ;÷ = × = .这里字母a,b,c,d都是整数,但a,c,d不为零。
[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法。
Ⅱ。
讲授新课1.分式的乘除法法则[师生共析]分式的乘除法法则与分数的乘除法法则类似:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
专题5.2 分式的乘除法1.掌握分式的乘除运算法则;2.能够进行分子、分母为多项式的分式乘除法运算。
知识点01 分式的乘法与除法【知识点】 1.分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a cb d b d⋅⋅=⋅. 2.分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘. 用式子表示为:a c a d a d b d b c b c⋅÷=⋅=⋅. 3.分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:()(nn n a a n b b=为正整数,0)b ≠.【知识拓展1】分式乘法例1.(2024秋·贵州铜仁·八年级校考期中)计算88x x yx y y-⋅-的结果是( ) A .yxB .x y -C .x yD .y x-【即学即练】1.(2022·江苏九年级专题练习)计算:2223849bc a a b c⋅=__.【知识拓展2】分式除法例2.(2022·西安益新中学八年级月考)2241a a a÷++的计算结果为( )A .2aB .2aC .21a + D .12a + 【即学即练】2.(2022·山东张店·九年级)化简22244242x x x xx x +++÷--的结果是( ) A .2x x + B .1x C .12x + D .12x -【知识拓展3】分式乘除混合运算例3.(2022·成都市八年级月考)下列各分式运算结果正确的是( )①3254342510252a b c c c a b b ⋅=;②23233b c a bc a b a⋅=;③22111(3)131x x x x ÷-⋅=+-+;④21111x x xy x xy -+⋅÷=- A .①③ B .②④ C .①② D .③④【即学即练】3.(2022·山东八年级课时练习)(1)()362243105206230c c ab c a b a b÷-÷ (2)()22222x xy y x y xy x xy x -+--÷⋅(3)422222222a a b a ab b a ab b b a-+÷⋅-+ (4)22262(3)443x x x x x x --÷+⋅-+-【知识拓展4】分式的乘方例4.(2023春·江苏·八年级专题练习)下列计算正确的是( )A .236222b b a a ⎛⎫= ⎪⎝⎭B .2223924b b a a --⎛⎫= ⎪⎝⎭ C .33328327y y x x ⎛⎫= ⎪--⎝⎭ D .222239x x x a x a ⎛⎫= ⎪--⎝⎭ 【即学即练】4.(2023春·江苏·八年级专题练习)计算3233b a --⎛⎫- ⎪⎝⎭的结果是( )A .699b aB .6927b a- C .9627a b - D .9627a b【知识拓展5】分式乘除的实际应用例5.(2022·浙江杭州·校考二模)你听说过著名的牛顿万有力定律吗?任何两个物体之间都有吸引力,如果设两个物体的质量分别为m 1,m 2,它们之间的距离是d ,那么它们之间的引力就是f =122gm m d (g 为常数),人在地面上所受的重力近似地等于地球对人的引力,此时d 就是地球的半径R .天文学家测得地球的半径约占木星半径的445,地球的质量约占木星质量的1318,则站在地球上的人所受的地球重力约是他在木星表面上所受木星重力的( ) A .52倍B .25倍C .25倍D .4倍【即学即练】例5.(2024秋·山东泰安·八年级统考期末)公园普通景观灯a 天耗电m 千瓦.改用LED 节能景观灯后,同样m 千瓦的电量可多用5天.普通景观灯每天的耗电量是LED 节能景观灯每天耗电量的( )倍. A .maB .5ma + C .5a a + D .5a a+【知识拓展7】科学计数法例7.(2024·广东清远·统考一模)新型冠状病毒呈球形或椭圆形,有包膜,直径大约是100nm ,属于第七种冠状病毒,将100nm -9(1nm=10m)用科学记数法表示为( ) A .9110m -⨯ B .8110m -⨯C .7110m -⨯D .6110m -⨯【即学即练】7.(2024·河南洛阳·统考一模)用肥皂水吹泡泡,泡沫的厚度约为0.000326毫米,0.000326用科学记数法表示为( ) A .3.26×10﹣4 B .326×10﹣3C .0.326×10﹣3D .3.26×10﹣3【知识拓展8】遮挡问题与错题分析例8.(2022·河北初三其他)已知22439x x x -÷--,这是一道分式化简题,因为一不小心一部分被墨水污染了,若只知道该题化简的结果为整式,则被墨水覆盖的部分不可能是( ) A .3x - B .2x -C .3x +D .2x +【即学即练】8.(2022·成都市八年级期中)老师设计了接力游戏,用合作的方式完成分式化简规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示: 老师22211x x x x x-÷--→甲22211x x x x x --⋅-→乙22211x x x x x --⋅-→丙2(2)11x x x x x --⋅-→丁22x - 接力中,自己负责的一步出现错误的是( ) A .只有乙 B .甲和丁C .乙和丙D .乙和丁题组A 基础过关练1.(2023春·江苏·八年级专题练习)分式2249(3)2a a -⋅-的化简结果为( )A .4(3)26a a +-B .()22492(3)a a -- C .263a a +- D .22.(2022·山西太原·八年级校考期末)计算2125a -÷15a -的结果为( )A .15a- B .5﹣a C .15a+ D .5+a3.(2024·河南洛阳·统考一模)用肥皂水吹泡泡,泡沫的厚度约为0.000326毫米,0.000326用科学记数法表示为( ) A .3.26×10﹣4B .326×10﹣3C .0.326×10﹣3D .3.26×10﹣34.(2022·河北保定·统考三模)下列式子运算结果为1x +的是( ) A .211x x x x -⋅+ B .11x-C .2211x x x +++D .11x xx x +÷- 5.(2023秋·湖南岳阳·八年级校联考期末)计算21b a a a ⎛⎫÷⋅ ⎪⎝⎭的结果为( )A .21bB .24b aC .2aD .2b6.(2023春·江苏·八年级专题练习)化简211m m m m--÷的结果是( ) A .mB .1mC .1m -D .11m - 7.(2023秋·北京东城·八年级北京市第五中学分校校考期中)计算:32b a ⎛⎫-= ⎪⎝⎭________.8.(2023·全国·九年级专题练习)计算322334x y y x ⎛⎫⎛⎫⋅= ⎪⎪⎝⎭⎝⎭______. 9.(2024春·辽宁锦州·八年级统考期中)计算:21211x x x +÷--=________. 10.(2022·山东东营·八年级校考阶段练习)计算:22361025a a a -++÷6210a a -+·256a a a++=_______. 11.(2022·江苏九年级专题练习)计算:2223849bc a a b c⋅=__.12.(2023·全国·九年级专题练习)计算:2231x y y x xy ⎛⎫⎛⎫⎛⎫-⋅-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13.(2023·全国·九年级专题练习)计算:23423b a a a b b ⎛⎫⎛⎫-⋅÷- ⎪ ⎪⎝⎭⎝⎭.14.(2024秋·云南昆明·八年级校考阶段练习)计算:(1)1201(3)(3.14)2π-⎛⎫-+-+- ⎪⎝⎭(2)()323222a b a b ---÷(3)2333224263ab b b c d a c ⎛⎫⎛⎫-⋅÷ ⎪ ⎪-⎝⎭⎝⎭(4)22819369269a a a a a a a --+÷⋅++++题组B 能力提升练1.(2023春·八年级课时练习)22a b a b a ba b a b a b +++⎛⎫⎛⎫÷⨯⎪ ⎪---⎝⎭⎝⎭的结果是( ) A .a b a b-+B .a b a b+-C .2a b a b +⎛⎫ ⎪-⎝⎭D .12.(2022·河北路南·)若x 为正整数,则计算211x xx x -⋅+的结果是( )A .正整数B .负整数C .非负整数D .非正整数3.(2024秋·湖南郴州·八年级校考阶段练习)计算222255a a ab b b⎛⎫-⎛⎫÷⋅ ⎪ ⎪⎝⎭⎝⎭的结果为( )A .31254ba B .54abC .31254ba D .54ab-4.(2023春·江苏·八年级专题练习)计算22819369269a a a a a a a --+÷⋅++++的结果为( )A .12B .1C .1-D .2-5.(2023春·江苏·八年级专题练习)计算323a b a b b a⎛⎫÷-⋅ ⎪⎝⎭的结果是( )A .3a -B .323a bC .323a b -D .43ab -6.(2024春·四川内江·八年级校考阶段练习)计算:()()2322221a b a b --÷--=___________.(结果中只含有正整数指数幂)7.(2024·江苏苏州·校考二模)“沉睡数千年,一醒惊天下”.三星堆遗址在5号坑提取出仅1.4 cm 的牙雕制品,最细微处间隔不足50 μm (1μm =10-6 m ),用科学记数法表示50 μm 是_____m . 8.(2022·全国八年级课时练习)计算:(1)222331015a b ab ab a b -⋅-;(2)()224242444416m m m m m m +-⋅-⋅-+-;(3)()23422312a b a b a ab ⎛⎫⎛⎫⎛⎫--⋅-⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.9.(2024秋·全国·八年级期末)化简并求值:322221111x x x x x x x -++⎛⎫⋅÷ ⎪--⎝⎭,其中3x =.10.(2024秋·全国·八年级期末)计算:2222222223256x xy y x y x yx xy y x xy y x y -+-+÷⋅++---11.(2024秋·重庆涪陵·八年级统考阶段练习)涪陵是举世闻名的“榨菜之乡”,今年榨菜更是喜获丰收.为了选育更好的榨菜品种,农民伯伯们开始自己建试验田,王大伯家试验田是边长为a 米()1a >的正方形去掉一个边长为1米的正方形蓄水池后余下的部分,李大爷家试验田是边长为()1a -米的正方形,两块试验田的榨菜最后都分别收获了1000kg .(1)哪家的榨菜品种单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?12.(2024秋·山东泰安·八年级校联考期中)“果园飘香”水果超市运来凤梨和西瓜这两种水果,已知凤梨重2(2)m kg -,西瓜重()24m kg -,其中m>2,售完后,两种水果都卖了540元.(1)请用含m 的代数式分别表示这两种水果的单价. (2)凤梨的单价是西瓜单价的多少倍?题组C 培优拔尖练1.(2022·河南南阳·八年级统考期末)已知23ab a b =+,65bc b c =+,34ac a c =+,则111a b c ++的值等于( ) A .116B .113C .115D .6112.(2022·河南新野·八年级期中)若△÷2111a a a -=-,则“△”可能是( ) A .1a a - B .11a - C .1a a + D .1a a+3.(2024年广东八年级数学应用知识展示试题)今年以来,猪肉价格波动较大,王阿姨和李阿姨在生活上精打细算,为了减少开支,王阿姨和李阿姨制定了不同的购肉策略,王阿姨每次买一样重量的肉,李阿姨每次买一样钱数的肉,某个周六、周日两位阿姨同时在同一个摊位上买肉,但这两天这个摊位的肉价不一样,则从这两次买肉的均价来看( ). A .王阿姨更合适B .李阿姨更合适C .谁更合适与猪肉的变动价格有关D .谁更合适与买猪肉的量有关4.(2024秋·湖南长沙·八年级统考期末)计算21224x x y y y x -⎛⎫⎛⎫-÷⋅= ⎪ ⎪⎝⎭⎝⎭_______ .5.(2024秋·八年级课时练习)小明同学不小心弄污了练习本的一道题,这道题是:“化简211m m ÷-⊗”,其中“⊗”处被弄污了,但他知道这道题的化简结果是1mm -,则“⊗”处的式子为____________. 6.(2024春·四川内江·八年级校考阶段练习)已知三个数x ,y ,z 满足13xy x y =+,14yz y z =+,15zx z x =+,则xyzxy yz zx++的值为_____.7.(2023春·八年级课时练习)(1)根据图形(1)的面积写出一个公式:___________图二是两块试验田,“丰收1号”小麦的试验田是边长a 米、b 米两个正方形,“丰收2号”小麦的试验田是边长为a 米、2b 米的长方形,(ab )两块试验田的小麦都收获了500kg .(2)哪种小麦的单位面积产量高?(请说明理由) (3)高的单位面积产量是低的单位面积产量的多少倍?8.(2024春·江苏徐州·八年级统考阶段练习)在解决数学问题时,我们常常借助“转化”的思想化繁为简,化难为易.如在某些分式问题中,根据分式的结构特征,通过取倒数的方法可将复杂问题转化为简单问题,使问题迎刃而解. 例:已知2113a a =+,求221a a +的值.解:∵2113a a =+,∵213a a +=.∵213a a a+=,∵13a a +=,……(1)请继续完成上面的问题;(2)请仿照上述思想方法解决问题:已知2421x x x =-+,求2421x x x -+的值.9.(2024秋·八年级课时练习)【探究思考】 (1)探究一:观察分式1x x-的变形过程和结果,1111x x x x x x --=+=-. 填空:若x 为小于10的正整数,则当x =_______时,分式1x x-的值最大. (2)探究二:观察分式2221a a a +--的变形过程和结果,()()()2221431411221114311111a a a a a a a a a a a a a -+--+-++-===-++=++-----.模仿以上分式的变形过程和结果求出分式2211x x x +--的变形结果.【问题解决】(3)当21x -<≤时,求分式2212x x x ---的最小值.10.(2024秋·湖南长沙·八年级长沙市开福区青竹湖湘一外国语学校校考阶段练习)我们定义:如果一个代数式有最大值,就称之为“青一式”,对应的最大值称之为“青一值”.如:()222314x x x -++=--+是“青一式”,它的“青一值”为4.(1)以下代数式是“青一式”的有___________(请填序号)①25x + ②245x x -+- ③21x x +- ④()2122x -+ (2)如果实数21m n -=请判断代数式22241m n m -++-是否为“青一式”?如果是,请求出它的“青一值”,如果不是,请说明理由.(3)①已知225x y +=,求“青一式”xy 的“青一值”,并求出此时x 和y 满足何种条件? ②求代数式2632x x x -+-在36x ≤≤范围内的“青一值”.11/ 11。
分式的乘除法(精选7篇)分式的乘除法篇1一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇2一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇3一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇4第一课时一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.第 1 2 页分式的乘除法篇5第一课时一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇6一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇7各位评委:午安!今日我说课的题目是《分式的乘除法(第1课时)》,所选用是人教版的教材。