现代控制理论在汽车悬架控制中的应用
- 格式:pdf
- 大小:94.28 KB
- 文档页数:1
汽车悬挂系统的主动控制研究近年来,汽车悬挂系统的主动控制技术日益成熟,成为汽车行业的一个热门研究领域。
汽车悬挂系统的主动控制技术可以对汽车的悬挂系统进行精细化的调节和控制,提高汽车的舒适性、稳定性和安全性。
汽车悬挂系统的主动控制技术的核心是控制算法。
现代汽车悬挂系统采用了许多先进的传感器和控制器,可以实时测量和分析车辆的运动状态和车身姿态,通过计算机控制算法对悬挂系统的刚度、阻尼、高度等参数进行精准调整,以适应不同路况和驾驶条件。
主动控制技术可以根据车速、路面质量、载荷、弯道等多种因素实时调整悬挂系统的参数,使驾驶员和乘客的舒适度和安全性得到提升。
在汽车悬挂系统的主动控制技术中,主要有三种基本类型:主动悬挂、半主动悬挂和电子悬挂。
主动悬挂是指悬挂系统可根据路况和行驶状态主动调整刚度和阻尼,提供最佳的车身控制和舒适性。
半主动悬挂主要是指在保留传统悬挂系统的基础上,通过传感器和控制器实时调整阻尼来提高车辆的稳定性。
电子悬挂则采用了更先进的电子控制技术,它能根据通过传感器收集到的各种数据来自动控制悬挂系统的刚度、阻尼和高度等参数。
汽车悬挂系统的主动控制技术可以帮助各种类型的汽车提高性能和舒适性。
在高性能汽车中,主动悬挂系统可以提供更加精确和快速的车辆控制,帮助驾驶员更好地处理车辆在高速行驶和高强度驾驶时的操控。
在家用车型中,主动悬挂系统可以提供更加平稳和舒适的驾驶体验,减少车辆颠簸和颠簸对驾驶员和乘客的不适感。
需要注意的是,汽车悬挂系统的主动控制技术虽然可以提高汽车的性能和舒适性,但也需要消费者具备一定的技术知识和技能才能操作和维护。
在购买搭载主动控制技术的汽车时,消费者需要了解相关的技术细节和操作指南,并且必须经过专业的培训和考核,才能合理使用和维护这些先进的汽车悬挂系统。
综上所述,汽车悬挂系统的主动控制技术是一项前沿的汽车技术,它可以提高汽车的性能、舒适性和安全性,为汽车行业的发展注入了新的活力。
现代汽车悬架技术的发展趋势肖永清内容提要:本文阐述了现代汽车悬架系统的种类、结构特点、功能与工作原理;介绍了汽车悬架系统的新技术及其发展趋势。
关键词:汽车悬架结构原理发展趋势1.汽车悬架系统的种类、结构特点与功能所谓汽车悬挂,就是指汽车车身和车轮弹性地连接起来的机构。
俗称汽车的避震、悬挂和悬架的意思都一样,都是指车轮与车身之间的连接物,避震是通俗叫法,而悬挂和悬架均是"学名"。
悬架是将车身与车桥、车轮弹性相连,传递作用在车轮和车身之间的力和力矩,缓和由不平路面传给车身的冲击,并衰减由此引起的振动,以保证汽车正常行驶时的平顺性、操纵稳定性和乘坐舒适性。
目前多数汽车的悬架都是被动式悬架,即汽车的车轮和车身状态只能被动地取决于路面及行驶状况以及汽车的弹性支承元件、减振器和导向机构。
汽车上的悬挂结构大体可分为两种:一种是左、右车轮用一根刚性轴连起来并与车身相连的叫非独立悬挂。
常见卡车使用的钢板弹簧避震系统就是非独立悬挂。
它具有结构简单、强度高、稳定性好、容易制造、维修方便、轮胎磨损小和价格低廉等优点。
其缺点是当汽车在高速或在不平路面行驶时,容易颠簸,使人感到不舒服。
另一种是左、右车轮不连在一根轴上,而是单独通过悬挂与车身连接的叫独立悬挂。
往往轿车的舒适性比卡车好, 是因为这些车采用了独立悬挂,其结构是用轻便的杠杆、摆臂代替了整体车轴,当一侧车轮驶入凹凸不平路面时,不会牵动另一侧车轮而引起冲击振动,这就提高了乘座舒适性。
但采用独立悬挂后也相应使结构复杂,成本上升。
常见的独立悬挂结构型式有:螺旋弹簧双横臂独立悬挂、扭杆式独立悬挂、滑柱摆臂式独立悬挂和麦弗逊式独立悬挂等。
现代轿车的前轮都采用独立悬挂,后轮虽然比前轮采用独立悬挂的要少,但中、高级轿车一般都是四轮独立悬挂。
雪铁龙有一种液压悬挂,它是用一个液压筒代替一组弹簧和减震器。
液压筒根据中央控制器的指令来调整自身的工作情况。
而中央控制器是按车身上的传感器所收集的资料信息计算后发出指令的。
控制理论在汽车工程中的应用摘要: 在代科学和计算机技术发展过程中,控制理论起着重要的作用,它已成为机械制造业和其它工业生产过程中非常重要和不可缺少的组成部分。
应用控制理论不但可使工程设计人员获得动态系统的最优性能,还可提高产品质量,降低生产成本,提高劳动生产率,并能使人们从繁重的体力劳动和重复的手工劳动中解放出来。
特别是近年来控制理论在汽车工程中的应用已逐渐增多,目前现代控制理论已在汽车悬架系统,自动变速系统,自动防抱死系统和汽车自动驾驶系统等方面已经有了不少成功的应用实例。
本文主要针对控制理论在汽车悬架系统和自动防抱死系统上的应用进行阐述。
关键词:控制理论汽车悬架系统汽车防抱死系统一、控制理论在汽车悬架系统上的应用悬架是现代汽车重要总成之一,它是车架(或车身)与车桥(或车轮)之间弹性连接的机构,一般由弹性元件、导向机构和减振器三部分组成,轿车的悬架还多装有横向稳定杆。
弹性元件用来承受并支撑垂直载荷,缓和由不平路面引起的对车身的冲击。
导向机构用来传递车轮和车身之间的一切力和力矩,并确定车轮相对车身的运动规律。
减振器则用以衰减、限制由冲击载荷引起的车身振动。
横向稳定杆的作用是提高车身的侧倾刚度并使汽车具有不足转向特性,以改善汽车的操纵稳定性,保证汽车正常行驶。
目前,汽车悬架系统已进入到利用电子控制器进行控制的时代。
控制系统由传感器、单片机、外部程序存储器和驱动机构几部分组成。
运用较优的控制方法,得到高性能的减震效果,且使能耗尽可能降低是现代汽车悬架系统发展的主要方向。
1、自适应与自校正控制自适应与自校正控制的基本思想是根据系统当前输入的相关信息,从预先计算并存储的系数中选取当前最合适的控制参数拉。
自适应与自校正悬架系统可看成一个可自动改变其控制参数以适应车辆当前的工作条件的控制系统。
自适应一般发生在车辆行驶过程中的具有较慢统计特性变化的干扰,即路面输入干扰。
自校正是指对运动初始的静止干扰,如车身质量的变化。
现代控制理论在汽车领域的应用现代控制理论发展于20 世纪50 年代末,它以状态空间方法为主,研究控制系统状态的运动规律,通过反馈系统解决某些非线性和时变系统的控制问题,用于多输入多输出反馈控制系统,可以实现最优控制规律。
作为一名车辆工程专业的研究生,现代控制理论在我所学的领域上也有很多应用。
比如说现代控制理论在内燃机振动主动控制中的应用、在汽车防抱死制动系统中的应用、在汽车悬架控制中的应用等等,下面我将根据自己查阅的资料对这三种应用进行简单介绍。
已有文献阐明了现代控制理论在内燃机振动主动控制领域的应用现状,阐述了各种控制理论与内燃机振动系统的关系。
以现代控制理论中有代表性的最优控制、自适应控制、鲁棒控制为重点分析了现代智能控制理论在振动系统控制中应用的可能性与发展,指出了内燃机振动主动控制领域今后一段时间内的研究重点与方向。
内燃机的振动是有害的,对于有害的振动,人们总是在想方设法将其消减甚至消除。
消减振动一般从两个方面着眼:一是耗散振动能,二是抑制激振力。
耗能的方法有加装阻尼摩擦片、附带质量冲击块;抑制激振力的方法有提高系统刚度、加装动力减振器或是主动对振动系统施加同频反向的抑振力。
通过控制系统对振动主体主动施加抑振力即振动的动态控制(也称有源控制、主动控制)。
该控制系统一般由振动体(内燃机振动系统如曲轴)、振动信息采集器(对于旋转振动系统多用涡流传感器和光电传感器,对于整机多用弹簧质量加速度传感器)、变送器、处理器、控制器、执行器、显示与调节器等部件组成。
其中控制器是系统的核心,控制器的设计应依据振动体即被控对象的特性进行。
本文将依据内燃机的振动的特性探讨控制器设计中运用的各种控制理论问题以及在振动动态控制上各种现代控制理论应用的可能性。
汽车防抱制动系统(简称ABS)实质上是一种制动力自动调节装置。
这种装置使汽车制动系统的结构发生了质的变化,它不仅能充分发挥制动器的制动性能,提高制动减速度和缩短制动距离,而且能有效地提高汽车制动时的方向稳定性,大大改善汽车的行驶安全性。
《基于智能控制的汽车主动悬架控制策略研究》篇一一、引言随着汽车工业的快速发展,汽车主动悬架系统已经成为现代汽车安全与舒适性的重要组成部分。
通过采用先进的控制策略,主动悬架系统可以有效地提高车辆的行驶稳定性、乘坐舒适性以及操控性能。
本文将重点研究基于智能控制的汽车主动悬架控制策略,旨在为汽车悬架系统的优化设计提供理论依据和技术支持。
二、汽车主动悬架系统概述汽车主动悬架系统是一种具有自适应能力的悬架系统,通过传感器实时监测路面状况和车辆运动状态,采用先进的控制算法对悬架进行实时调整,以实现最佳的行驶性能。
与传统的被动悬架系统相比,主动悬架系统具有更高的灵活性和适应性。
三、智能控制在汽车主动悬架系统中的应用智能控制技术在汽车主动悬架系统中发挥着重要作用。
通过采用先进的控制算法和传感器技术,实现对车辆运动状态的实时监测和调整。
常见的智能控制策略包括模糊控制、神经网络控制、遗传算法等。
这些控制策略可以根据不同的道路条件和驾驶需求,对悬架系统进行实时调整,以实现最佳的行驶性能。
四、基于智能控制的汽车主动悬架控制策略研究(一)控制策略设计本文提出一种基于模糊控制的汽车主动悬架控制策略。
该策略通过建立模糊控制器,实现对车辆运动状态的实时监测和调整。
模糊控制器采用输入输出映射的方法,将传感器采集的信号进行模糊化处理,然后根据预设的规则进行决策,最后输出控制信号对悬架系统进行调整。
(二)仿真分析为了验证所提出的控制策略的有效性,本文采用仿真分析的方法。
通过建立车辆动力学模型和主动悬架系统模型,对所提出的控制策略进行仿真测试。
仿真结果表明,该控制策略可以有效地提高车辆的行驶稳定性、乘坐舒适性以及操控性能。
五、实验验证与结果分析为了进一步验证所提出的控制策略的实用性,本文进行了实验验证。
通过在实车上进行实验测试,对比传统被动悬架系统和所提出的主动悬架控制策略在不同道路条件下的性能表现。
实验结果表明,所提出的基于智能控制的汽车主动悬架控制策略在提高车辆行驶稳定性、乘坐舒适性以及操控性能方面具有显著优势。
电气原理图、电气安装接线图、电器元件布置图基于状态反馈控制的汽车悬驾系统引言随着经济的发展和人民生活水平的提高,汽车的乘坐舒适性越来越受到人们重视,舒适性成了汽车,特别是轿车的主要性能指标。
汽车是日常生活中被广泛应用的交通工具,其本身可以被看作是一个具有质量、弹性和阻尼的振动系统。
汽车产生的振动会导致车身与车架之间的连接部件的振动和噪声,严重的时候甚至损坏汽车的零部件,大大缩短汽车的使用寿命:另外也可导致乘客晕车,影响了乘客的身心健康,那些长期处在这种振动环境下的驾驶员等往往会患上腰椎劳损、胃下垂等职业病。
因此,如何布置悬置以获得较佳的减振降噪效果很有研究意义。
现代汽车动力总成大都是通过弹性支承安装在车架上的,这种弹性支承称为“悬置”。
汽车动力总成和悬置一起构成了汽车动力总成悬置系统。
动力总成的悬置装置可对在动力总成和车架间传递的振动进行双向的隔离,以降低车内的振动和噪声。
由于动力总成悬置装置的体积较小,在隔振理论的发展初期并没有引起设计者的过多的重视。
但随着车辆向高速、轻型、大功率方向的迈进,使得车身的刚度减小,动力总成振动激励增大,特别是采用了平衡性较差的动力总成前置前驱动的四缸四行程动力总成,都使车内的振动和噪声加大。
随着人们对乘坐舒适性的提高,这些现象就必须加以解决。
在解决问题的过程中,人们逐渐认识到了动力总成悬置装置的作用,并可以利用力学知识建立起各种模型。
1. 系统建模1.1系统模型分析传统的汽车悬驾系统的缺点:是一种被动的悬驾,悬驾参数不能改变,因此对路面的状况适应性差。
在路面质量较差的情况下,车身震动大,舒适性差。
主动汽车悬驾系统的优点:它能通过一个动力装置,根据路面的情况改变悬挂架的特性。
在路面质量较差的情况下,也能保持车身的平稳,舒适性好。
本次实习对汽车悬驾系统进行仿真计算的首要工作就是要建立悬驾系统的动力学模型,在验证了模型正确性的基础上,对所建立的模型进行仿真分析。
为了研究方便,取汽车的一个车轮的悬驾系统进行研究,该模型可简化为一维二自由度的弹簧-阻尼-质量系统。