高效率高精度LED控制驱动电路设计
- 格式:pdf
- 大小:577.96 KB
- 文档页数:5
LED驱动电路的研究与设计随着LED功率和光效的不断提⾼,⼤功率LED照明将在许多领域逐渐取代传统的照明灯具。
和⽩炽灯等传统灯具不同,LED属于半导体器件,其压降会随温度的增⾼⽽降低,因此⽤传统的电压源驱动LED时会导致其电流和温度不断增加,最终会损坏LED。
所以,⼤功率LED应该⽤恒流电源驱动。
恒流电源的电路种类众多,本⽂分别从电源的效率、成本和恒流性能等⽅⾯进⾏着⼿讨论。
对⽐了包括线性电源和开关电源的⼏种⽅案,并分析各电路的优缺点。
由于线性电源的⼀些固有缺陷,如低效率、体积笨重等,使线性电流源的使⽤受到了较⼤限制,⽽开关电源则恰好弥补了线性电源在这⽅⾯的不⾜。
因此,本设计最后选择了⽬前⼴泛使⽤的开关电源来实现LED的恒流驱动。
开关电源的设计⽬标是驱动1W⾼亮LED,采⽤分模块的设计⽅法,电路类型选择了反激式拓扑,这样既能起到隔离作⽤,也能控制了成本。
在LED驱动电源关键的恒流部分,采⽤TL431提供精密的参考电压,同时⽤低阻值电阻对输出电流采样,再⽤运放将两者⽐较放⼤后输出电压通过光耦反馈到电源控制芯⽚进⾏调节,得到了很好的恒流效果。
在设计完成之后的主要⼯作是对驱动电源的PCB板进⾏测试,使⽤了三个不同⼚家⽣产的1W⾼亮LED灯珠,并在不同交流输⼊情况下⽤万⽤表进⾏测试并记录了相关数据,结果显⽰本设计具有很好的恒流效果,并具有较⾼的效率。
关键词:LED驱动;反激式拓扑;隔离变压器;精密恒流摘要...................................................................... I Abstract................................................. 错误!未定义书签。
第⼀章绪论 (1)1.1 课题背景与意义 (1)1.2 课题研究的主要内容与⽬标 (2)第⼆章相关知识与⽅案的研究 (3)2.1 LED技术参数分析与型号选择 (3)2.2LED驱动电路特性研究 (4)2.2.1 普通恒压限流电路 (4)2.2.2 线性恒流驱动电路 (5)2.2.3 PWM开关恒流驱动电路 (6)2.3LED驱动电路的参数确定和电路类型选择 (6)第三章驱动电路的功率部分设计 (9)3.1PWM驱动电路的拓扑选择 (9)3.2⾼频变压器⼀次侧电路设计 (13)3.2.1 输⼊整流滤波 (13)3.2.2 EMI滤波器设计 (14)3.2.3 漏感尖峰吸收电路 (14)3.3⾼频变压器设计 (15)3.3.1 变压器磁芯与⾻架选定 (15)3.3.2 变压器⼀⼆次电感值和⽓隙设计 (17)3.3.3 变压器绕制与漏感的控制 (19)3.4 变压器⼆次侧输出电路 (20)3.5 PWM驱动IC和开关管的选⽤ (20)3.5.1 驱动IC加开关管⽅式 (21)3.5.2 开关管集成于IC的单⽚开关电源芯⽚ (21)第四章反馈电路与恒流电路设计 (23)4.1输出线与反馈⽅式 (23)4.1.1 限压精度与电路形式 (23)4.1.2 反馈电路类型选择 (23)4.2 恒流电路设计 (23)4.2.1 LED驱动电路的恒流精度要求 (23)4.2.2 恒流电路的类型及其选定 (24)第五章总体⽅案实现 (28)5.1原理图 (28)5.2 主要性能指标 (29)5.3系统调试分析 (29)总结与展望 (30)参考⽂献 (31)致谢 (32)第⼀章绪论1.1 课题背景与意义在当今全球能源紧缺的环境下,节约能源已成为⼤势所趋,仅在在照明领域,⼈们所消耗的能源就不可估量。
单芯片同步整流的LED驱动电路设计
LED车灯温度过高、安全距离不够以及EMC不好控制等问题,设计了一种单芯片同步整流的LED驱动电路。
采用线性恒流IC,实现高精度恒流和高效率;通过散热器件结构设计,解决了LED车灯的散热问题;最后,对LED车灯进行系统测试。
结果表明,在DC9~15V输入电压范围内,采用10~16VCOB灯珠负载,系统输出电流平均值约为Io=1.0~1.8A,系统转换效率约90%,系统的功率因数约0.94;在输出电压Uo=12.2V下,经老化1h后,ESOP8芯片温度为83.2℃,COBLED芯片温度为92.1℃,符合ERP认证要求。
关键词:单芯片;同步整流;恒流电路;散热;ERP认证
引言
传统LED车灯驱动大多为非ERP认证产品,存在一定的干扰,严重的还会影响车载收音机的正常工作。
目前,主流的LED车灯驱动电路整流都是异步,外围电路必须要二极管续流,整体转换效率偏低,器件温升很高。
近年来,一些专家和技术人员在专利技术[1-4]和LED驱动电路改进[5-8]上做了大量研究,并取得了诸多成就。
文献[5]提出一种基于恒流二极管的LED驱动电路设计,简化了电路设计,降低了成本;文献[8]提出一种用于汽车照明的LED恒流供电电路,利用精密稳压电源芯片产生一个可调的参考电压,在LED负载中串联一个线绕电阻并利用它产生一个反馈电压,将其与参考电压分别送入电压比较器中产生一个控制电压,利用其控制调整元件的压降,从而实现LED恒流供电。
以上文献不同程度地实现了LED灯恒流驱动,取得了较好效果。
目前,。
大功率LED 的驱动电路设计(PT4115应用)摘要:LED (light emitting diode )即发光二极管,是一种用途非常广泛的固体发光光源,一种可以将电能转化为光能的电子器件。
由于LED 具有节能、环保、使用寿命非常长,LED 元件的体积非常小,LED 的发出的光线能量集中度很高,LED 的发光指向性非常强,LED 使用低压直流电即可驱动,显色性高(不会对人的眼睛造成伤害)等优点,LED 被广泛应用在背光源、照明、电子设备、显示屏、汽车等五大领域。
而且随着LED 研发技术的不断突破,高亮度、超高亮度、大功率的LED 相继问世,特别是白光LED 的发光效率已经超过了常用的白炽灯,正朝着常照明应用的方向发展,大有取代传统的白炽灯甚至节能灯的趋势。
本论文主要介绍采用恒流驱动方式实现驱动电路,并且提出一种基于恒流驱动芯片PT4115的高效率的大功率LED 恒流驱动解决方案。
该种驱动电路简单、高效、成本低,适合当今太阳能产品的市场化发展。
关键词:大功率LED ;驱动电路;恒流驱动芯片PT4115一、LED 主要性能指标:1)LED 的颜色:目前LED 的颜色主要有红色,绿色,蓝色,青色,黄色,白色,暖白,琥珀色等其它的颜色;2)LED 的电流:一般小功率的LED 的正向极限电流多在20mA 。
但大功率LED 的功率至少在1W 以上,目前比较常见的有1W 、3W 、5W 、8W 和10W 。
1W LED 的额定电流为350mA,3W LED 的750mA 。
3)LED 的正向电压:LED 的正极接电源正极,负极接电源负极。
一般1W 的大功率LED 的正向电压为3.5V~3.8V 。
4)LED 的反向电压:所允许加的最大反向电压。
超过此值,发光二极管可能被击穿损坏 LED 发光强度:光源在给定方向的单位立体角中发射的光通量定义为光源在该方向的(发)光强(度),单位为坎德拉(cd )。
5)LED 光通量:光源在单位时间内发射出的光量称为光源的发光通量。
典型应用电路图图1 OC4001高精度升降压恒流驱动应用概述 OC4001 是一款宽输入输出电压范围的高精度、高效率的升降压型LED 恒流驱动控制芯片。
OC4001采用电流模闭环控制方式,可实现高精度的恒流驱动。
OC4001工作频率可通过外接电容调整。
OC4001内置逐周期限流保护,软启动,过温保护等功能,保证系统可靠性。
OC4001内置调光脚,可通过CE 脚加PWM 信号进行LED 灯调光。
OC4001采用公司创新的专利电路架构,具有稳定可靠、动态响应快等优点,并能实现高精度、高效率升降压恒流驱动。
OC4001采用SOP8封装。
特点 升降压LED 恒流驱动 高恒流精度:片内1% 优异的母线和负载调整率 宽输入电压范围:5V~100V 输出电流3A 以上高效率:可高达93%工作频率可调 智能过温保护 软启动内置VDD 稳压管 应用LED 汽车灯LED 摩托车、电动车灯 LED 照明 LED 背光封装及管脚分配管脚定义管脚号管脚名描述1 FOSC 频率设置脚,接电容设置开关频率2 VDD 芯片电源3 GND 芯片地4 CE芯片使能,高电平有效;可做PWM调光脚。
5 CC 频率补偿脚,接电容。
6 VCS 输出电流检测脚7 GATE 接外部MOS管栅极8 ILM 功率管电流限流检测脚内部电路方框图DRVILMCE极限参数(注1)符号描述参数范围单位VDD VDD端最大电压 5.5 V-0.3~VDD+0.3 VV MAX CE、DRV、CC、ILM、FOSC和VCS脚的电压P SOP8SOP8封装最大功耗0.8 WT A工作温度范围-20~85 o CT STG存储温度范围-40~120 o CT SD焊接温度范围(时间小于30秒)240 o CV ESD静电耐压值(人体模型)2000 V注1:极限参数是指超过上表中规定的工作范围可能会导致器件损坏。
而工作在以上极限条件下可能会影响器件的可靠性。
摘要LED显示屏具有使用寿命长、响应速度快、可视距离远、规格品种多、数字化程度高、亮度高等特点,在信息显示领域已经得到了非常广泛的应用。
它利用发光二极管构成的点阵模块或像素单元,组成大面积显示屏。
其显示方法有静态显示和动态扫描显示。
动态扫描显示耗用硬件资源少,但软件要不断处理,耗CPU。
静态显示虽然软件简单但硬件价格稍贵。
LED显示屏主要包括发光二极管构成的阵列、驱动电路、控制系统及传输接口和相应的应用软件。
而驱动电路设计的好坏,对LED显示屏的显示效果、制作成本及系统的运行性能起着很重要的作用。
本文介绍了点阵式电子显示屏的硬件电路设计原理与软件设计方案,采用51系列单片机芯片,得到了一个能同时显示8个汉字16×16的LED点阵式电子显示屏。
关键词:LED显示屏动态扫描AT89S52 74HC595ABSTRACTThe LED display monitor has the long of service life, quacking response speed, the far of it’s visual range , many specification variety, high of the digitized, the brightness higher characteristic. It in the information demonstrated the domain already obtained the extremely widespread application. It lattice module or picture element unit which constitutes using the light emitter, composes the big area display monitor. It’s demonstration method has the static demonstration and the dynamic scanning demonstration. The dynamic scanning demonstration consumes the hardware resources to be few, but the software must process unceasingly, and consumes CPU. Although the static state software for display is simple, the hardware price is slightly expensive. The LED display monitor mainly include the array which the light emitter diode constitutes , actuates the electric circuit ,the control system and the transmission connection and the corresponding application software. But actuates the circuit design the quality, to the LED display monitor demonstration effect, the manufacture cost and the system performance characteristic is playing the very vital role.Key words: LED display monitor Dynamic scanning AT89S52 74HC595目录第一章绪论LED显示屏是一种可直接播放电视、录像、VCD等视频信号及显示文字、图像的公众信息显示屏。
基于PWM的无级调光LED驱动电路设计共3篇基于PWM的无级调光LED驱动电路设计1无级调光LED驱动电路设计PWM调制是现代电子技术中广泛使用的一种技术,它通过调节与维持多种输出点之间的准确关系,使得电子器件能够控制电力用于对外输出。
在LED灯的驱动电路中,PWM调制技术同样得到了广泛的应用。
本文旨在介绍基于PWM技术的无级调光LED驱动电路的设计原理和具体实现方法。
1. PWM技术原理PWM技术是利用开关元件不断地开关,将直流电按照一定的占空比转换成为具有高频脉冲的电压信号,从而精准地控制输出的电力大小。
PWM技术可以实现模拟信号的数字化,进而通过数字控制进行输出。
这种技术的优势包括:(1)工作效率高:PWM驱动电路的输出信号是具有脉冲宽度和周期的高频脉冲信号,其输出的平均值可以由占空比决定,因此电力传输效率高。
(2)输出精度高:PWM技术可以便捷地实现数字控制输出,利用数字序列、计数器等实现精准控制。
(3)抗干扰能力好:PWM技术输出的是高频脉冲信号,因此能够减少对噪声等外部干扰的影响,保证输出效果。
由于PWM技术的优势,其在LED灯的驱动电路中得到了广泛的应用。
下面我们将介绍基于PWM技术的无级调光LED驱动电路的具体设计方法。
2. 无级调光LED驱动电路设计(1)PWM信号的产生与控制PWM信号的产生与控制是无级调光LED驱动电路的核心。
其原理是通过对PWM信号的频率和占空比进行控制,进而实现对LED的亮度进行精准控制。
该电路实现的具体步骤如下:步骤一:产生基础信号在无级调光LED驱动电路中,我们需要产生一种基础的PWM信号,以此作为后续控制的基础信号。
产生基础信号的主要步骤包括:通过555定时器或者微处理器产生基础信号;对产生的信号进行整形,使其成为占空比可调的方波。
步骤二:PWM信号的控制针对LED驱动电路的具体要求,我们需要实现对基础信号频率和占空比的控制。
具体的PWM信号控制方法如下:进入控制阶段后,对信号进行持续分频,并利用数字控制占空比输出。
LED驱动电路设计功率因数改善探讨以及NCP1014解决方案本参考设计将分析现有照明LED驱动电路设计功率因数低的原因,探讨改善功率因数的技术及解决方案,以NCP1014为例,介绍相关设计过程、元器件选择依据、测试数据分享,显示这参考设计如何轻松符合“能源之星”固态照明标准的功率因数要求,非常适合低成本、低功率LED照明应用。
无源PFC与有源PFC方案比较典型离线反激电源转换器在开关稳压器前面采用全波桥整流器及大电容,选择这种配置的原因是每2个线路周期内线路功率降低,直到零,然后上升至下一个峰值。
大电容作为储能元件,填补相应所缺失的功率,为开关稳压器提供更加恒定的输入,维持电能流向负载。
这种配置的功率利用率或输入线路波形的功率因数较低。
线路电流在接近电压波形峰值的大幅度窄脉冲处消耗,引入了干扰性的高频谐波。
业界有关无源(Passive)功率因数校正(PFC)的方案众多,这些方案通常都使用较多的额外元器件,其中的一种方案就是谷底填充(valley-fill)整流器,其中采用的电解电容和二极管组合增大了线路频率导电角,从而改善功率因数。
实际上,这个过程从高线路电压处以低电流给串联电容充电,然后在较低电压时以较大电流让电容放电给开关稳压器。
典型应用使用2个电容和3个二极管,而要进一步增强功率因数性能,则使用3颗电容和6个二极管。
图1:典型谷底填充电路。
虽然谷底填充整流器提高了线路电流的利用率,但并未给开关稳压器提供恒定的输入。
提供给负载的功率拥有较大纹波,达线路电源频率的2倍。
需要指出的是,仍然需要4个二极管来对线路电源整流,使这种方案所用的二极管数量达到7个或10个。
这些二极管及多个电解电容增加了方案成本,降低了可靠性,并占用了可观的电路板面积。
另外一种方案是在反激转换器前采用有源(Active) PFC段,如NCP1607B。
这种方案提供典型性能高于0.98的优异功率功数,但增加了元件数量、降低了效率及增加了复杂性,最适用的功率电平远高于本应用的功率电平。