2013年湖北省黄冈中学中考第二次模拟考试数学试题
- 格式:doc
- 大小:198.50 KB
- 文档页数:7
2013届湖北黄冈二模数学试卷(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释 一、单选题(注释)1、如果 ,则k 的值为______。
A .B .C .1D .-1【答案】B 【解析】试题分析:由题意知,,所以,所以k 的值为,故选B考点:实数运算点评:解答本题的关键是熟练掌握任何非0数的0次幂为1;两个式子的积为0,则这两个式子至少有一个为0.,2、25的算术平方根是A .5B .±5C .D .± 【答案】A【解析】试题分析:25的平方根是±5,算术平方根5。
考点:算术平方根点评:本题难度较低,主要考查学生对算术平方根知识点的掌握。
算术平方根为正数。
3、下列说法不正确的是( )A .有最小的正整数,没有最小的负整数B .一个整数不是奇数,就是偶数C .如果a 是有理数,2a 就是偶数D .正整数、负整数和零统称整数【答案】C【解析】试题分析:根据有理数的分类依次分析各项即可判断.A.有最小的正整数,没有最小的负整数,B.一个整数不是奇数,就是偶数,D.正整数、负整数和零统称整数,均正确,不符合题意;C.当a=0.5时,2a=1是奇数,故错误,本选项符合题意.考点:有理数的分类点评:对奇数和偶数的认识及应用是初中数学学习的基础,在找规律的问题中比较常见,因而是中考中比较重要的知识点,一般以选择题、填空题形式出现,属于基础题,难度不大.4、已知有理数a、b、c在数轴上对应的位置如图所示,那么下列式子错误的是()A.a+b>a+c B.bc>ac C.ab>ac D.b+c>0【答案】D【解析】试题分析:先根据数轴得到,,,再依次分析各项即可.由数轴可得,,则,,,,考点:数轴的知识点评:解答本题的关键是熟练掌握绝对值不等的异号两数相加,取绝对值较大的加数的符号.5、如图,数轴上两点分别对应实数,则下列结论正确的是()A.B.C.D.【答案】C【解析】试题分析:A由图可知,,,所以,,,考点:正数和负数的运算法则点评:本题需要注意的是a和b的绝对值是6、如果a<0,那么下列各式中一定为负数的是()A.-a B.-(-a)-1 C.1-a D.【答案】B【解析】试题分析:根据a<0结合相反数、绝对值的定义依次分析各选项中的数即可判断.∵∴,,,故选B.考点:相反数,绝对值,负数的定义点评:解题的关键是熟记负数的相反数是正数,负数的绝对值是它的相反数.7、检测足球质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,如图,下列四个足球中最接近标准质量的是( )【答案】C【解析】试题分析:根据绝对值的定义可得记录数据中绝对值最小的即可所求.∵∴最接近标准质量的是第三个故选C.考点:正数和负数,绝对值的定义点评:本题属于基础应用题,只需学生熟练掌握绝对值的定义,即可完成.8、这是一根起点为0的数轴,现有同学将它弯折,如图所示,例如:虚线上第一行0,第二行6,第三行21,……,第10行的数是()A.351 B.702 C.378 D.756【答案】C【解析】试题分析:根据图形可得三角形各边上点的数字变化规律,进而得出第10行的数字.∵虚线上第一行0,第二行6,第三行21…,∴利用图象即可得出:第四行是21+7+8+9=45,∴第n行的公式为∴第10行的数是故选C.考点:找规律-数字的变化点评:发现数在变化过程中各边上点的数字的排列规律是解题的关键.9、下列说法中正确的是()A.实数是负数B.C.一定是正数D.实数的绝对值是【答案】B【解析】试题分析:A中,当a是0时,不符合题意;B中正确,当确定具体的a的符号再做变换,故选B;C中,当a是0时,不是正数,是0,故不符合题意;D 中,当a是0时,不符合题意考点:实数点评:本题属于对实数的基本性质和运算规律的考查和运用,以及实数的分类10、下列计算中正确的是A.B.C.D.【答案】B【解析】试题分析:A.错误:;C.错误 D.错误:;故只有B正确。
2013中考数学模拟试题(满分120分 时间120分钟)命题人: 浠水县余堰中学第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.22-等于( ). A .14-B .14C .4-D .-1 2.下列计算正确的是( ). A .23a a a += B .523)(a a = C .525±=D .283-=-3.下列几何体的正视图与众不同的是( ).4.如图,两个相同的正方形一边重合,在两个正方形的边上存在一些点,使得以这些点为中心旋转一个正方形与另一正方形重合,这样的点一共有( ). A .一个 B .二个 C .三个 D .四个5.如图,梯形ABCD 纸片,AD ∥BC ,现将纸片沿EF 折叠,使点C 与点A 重合,点D 落 在点G 处,展开后,若∠AFG =40°,则∠CEF =( ). A .60° B .65° C .70° D .75° 6.在Rt △ABC 中,∠C=90°,若AC =2BC ,则tan A 的值是( ). A .12B .2 CD7.已知二次函数2y ax bx c =++的图象如图所示,它与x 轴的两个交点分别为(-1,0),(3,0).对于下列结论:①b -2a =0;②abc <0;③a -2b +4c <0;④8a +c >0.其中正确的有( ).A .4个B .3个C .2个D .1个A B C D7题图8. 如图,大半圆O 与小半圆O 1相切于点C ,大半圆的弦AB 与小半圆相切于点F ,且AB ∥CD ,AB =6cm ,CD =12cm ,则图中阴影部分的面积(单位:cm 2)是( ).A .32π B .92π C .32πD .92π第Ⅱ卷(非选择题,共96分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中横线上). 9.2(3)-的平方根是 .10.根据世界海洋法规定,中国拥有的海洋国土面积是299.7万平方公里,包括内水、领海及专属经济区和大陆架.其中299.7万平方公里用科学记数法可表示为 平方公里(保留3位有效数字).11. 分解因式3m m -= .12. 化简2222221x y xy y xyx xy y x y y ⎛⎫-+-⋅ ⎪-+--⎝⎭= . 13. 已知实数x ,y2440y y -+=,则x y -的值等于 .14.圆锥的母线长为5cm ,底面半径为3cm ,那么它的侧面展开图的圆心角等于 度. 15.如图,D 是反比例函数)0(<=k xky 的图像上一点,过D 作DE ⊥x 轴于E ,DC ⊥y 轴于C ,一次函数y x m =-+与233+-=x y 的图象都经过点C ,与x 轴分别交于A 、B两点,四边形DCAE 的面积为4,则k 的值为 .16. 如图,AC 是菱形ABCD 的对角线,点E 、F 是AC 的三等分点,记△BMN 和菱形ABCD 的面积分别为BMN S 、ABCD S 菱形,则BMN ABCDS S 菱形的值为 .三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤).17. (本小题满分5分)xD解不等式组:03123123x x x x +<+⎧⎪⎨--⎪⎩≥() ,并把它的解集在数轴上表示出来.18.(本小题满分6分)两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序.两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车.而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题: (1)三辆车按出现的先后顺序共有哪几种不同的可能?(2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大,为什么? 19.(本小题满分6分)如图所示,在Rt △ABC 中,∠ACB =90°,AC =BC ,D 为BC 边上的中点,CE ⊥AD 于点E ,BF ∥AC 交CE 的延长线于点F ,求证:BD=BF .20.(本小题满分6分)我市某区对参加市模拟考试的8000名学生的数学成绩进行抽样调查,抽取了部分学生的数学成绩(分数为整数)进行统计,绘制成频率分布直方图.如下图,已知从左到右五个小组的频数是之比依次是6:7:11:4:2,第五小组的频数是40. (1)本次调查共抽取了多少名学生?(2)若72分以上(含72分)为及格,96分以上(含96分)为优秀,那么抽取的学生中,及格的人数、优秀的人数各占所抽取的学生数的百分之多少?(3)根据(2)的结论,该区所有参加市模拟考试的学生,及格人数、优秀人数各约是多少人?小王在超市用24元钱买了某种品牌的牛奶若干盒.过一段时间再去该超市,发现这种牛奶进行让利销售,每盒让利0.4元,他同样用24元钱比上次多买2盒,求他第一次买了多少盒这种牛奶?22. (本小题满分8分)在Rt △ABC 中,∠ACB =90°,BD 是⊙O 的直径,弦DE 与AC 交于点E , 且BD =BF .(1)求证:AC 是O ⊙的切线;(2)若BC =6,AD =4,求⊙O 的面积.23. (本小题满分8分)如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°,沿山坡向上走到P处再测得点C 的仰角为45°,已知OA =100米,山坡坡度(竖直高度与水平宽度的比)i =1:2,且O 、A 、B 在同一条直线上.求电视塔OC 的高度以及此人所在位置点P 的铅直高度.(测倾器高度忽略不计,结果保留根号形式)F某公司有甲、乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部份存入仓库,另一部分运往外地销售.根据经验,该农产品在收获过程中两个种植基地累积总产量y (吨)与收获天数x (天)满足函数关系y =2x +3(其中1≤x ≤10且x 为整数).该农产品在收获过程中甲、乙两基地的累积产量分别占两基地累积总产量的百分比和甲、乙两基地累积存入仓库的量分别占甲、乙两基地的累积产量的百分(1)请用含y 的代数式分别表示在收获过程中甲、乙两个基地累积存入仓库的量; (2)设在收获过程中甲、乙两基地累积存入仓库的该种农产品的总量为p (吨),请求出p (吨)与收获天数x (天)的函数关系式;(3)在(2)的基础上,若仓库内原有该农产品42.6吨,为满足本地市场需求,在此收获 期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售 出的该种农产品总量m (吨)与收获天数x (天)满足函数关系m =-x 2+13.2x -1.6, 其中1≤x ≤10且x 为整数.问在此收获期内连续销售几天,该农产品库存量达到最 低值?最低库存量是多少吨?25. (本小题满分14分)已知二次函数21342y x x =-+的图象如图所示. (1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移k 个单位,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB =90°,求此时抛物线的解析式; (3)设(2)中平移后的抛物线的顶点为M,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙D 的位置关系,并说明理由.(4)在(2)的条件下,平行于x 轴的直线x =t (0<t <k ) 分别交AC 、BC 于E 、F 两点,试问在x 轴上是否存在点P ,使得△PEF 是等腰直角三角形?若存在,请直接写P 点的坐标;若不存在,请说明理由.模拟试题参考答案一、1~8: BDDC CABA二、9. ±3 10. 63.0010⨯ 11. (1)(1)m m m +- 12.xyy x- 13. 4- 14. 216︒ 15. 2- 16. 38三、17. 2-≤x <0.图略18. (1)6;(2)因为P (甲)=2163=<P (乙)=3162=,所以乙采用的方案使自己乘坐上等车的可能性大.19. 证△ACD ≌△CBF .20. (1)600;(2)80%,20%;(3)6400,1600.21. 10.22. (1)连接OE ;(2)16π.23. OC =米,点P 米.24. (1) 0.51,0.09y y ;(2) 1.2 1.8p x =+;(3) 在此收获期内,该农产品库存量为T 吨,则2(6)10T x =-+.所以,当x =6时,max 10.T =25. (1)(3,0);(2)2134,442k y x x ==-++; (3)根据勾股定理逆定理及切线的判定,得直线CM 与⊙D 相切; (4)存在. 1234416(,0),(,0),(,0).737P P P -。
黄冈市2013年初中毕业生学业考试数学模拟试卷8说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页,考试时间90分钟,满分100分.2.本卷试题,考生必须在答题卡上按规定作答;凡在试卷,草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠.3.本卷选择题1-12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13-23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内.第一部分 选择题(本部分共12小题,每小题3分,共36分.每小题给出的4个选项,其中只有一个是正确的.) 1.15-相反数的倒数是( )ABC .5 D2.如图所示的几何体的俯视图是( )A .B .C .D .3.下列各式中,计算错误..的是 ( ) A .2a a a -+=B .()224a a a ÷=C .222()ab a b =D .235()a a =4.2013年03月11日新疆维吾尔自治区克孜勒苏柯尔克孜自治州阿图什市5.2级地震,直接经济损失约为112万,元 ,这个数用科学记数法表示为( )日元。
A .51.1210⨯ B .61.1210⨯ C .511.210⨯ D .71.1210⨯5.下列图形中,既是轴对称图形又是中心对称图形的是( )第2题图A.B.C.D.6.某校七年级有15名同学参加百米竞赛,预赛成绩各不相同,要取前7名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这15名同学成绩的()A.中位数B.众数C.平均数D.极差7.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为()A.12 B.16 C.4 D.28.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为()A.90元B.95元C.80元D.85元9.把抛物线2y x=-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式()A.2(1)3y x=--+B.2(1)3y x=-++C.2(1)3y x=---D.2(1)3y x=-+-10.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC B''则tan B'的值为()A.12B.13C.14D11.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能..是()A.2013 B.2012 C.2011 D.201012.如图,半圆O的直径AB=10cm,把弓形AD沿直线AD翻折,交直径AB于点C′,若AC′=6cm,则AD的长为()A.B.C.D.8cm……红黄绿蓝紫红黄绿黄绿蓝紫第10题图1-030t 331--20132-3an +⎪⎭⎫⎝⎛+第二部分 非选择题填空题(本题共4小题,每小题3分,共12分.) 13.分解因式ax 2-9a =___________.14.不等式组322(4)1x x x +>⎧⎨--⎩≥的解集为___________.15.对实数a 、b 定义新运算“*”如下: ()()a a b a b b a b ⎧*=⎨<⎩≥,如323*=的两根为12,x x ,则12x x *=___________.16.如图,正方形ABCD 的顶点A 、D 在反比例函数)0(2>=x xy的图象上,顶点B 、C 分别在y 轴与x 轴的正半轴上,则点D坐标为___________.解答题(本题共7小题,其中第17小题5分,第18小题6分,第19小题6分,第20小题8分,第21小题8分,第22小题9分,第23小题10分,共52分.)17.(本题8分)计算:求值18.(本题6分)先化简22321121x x x x x x-+÷-+-,然后选取一个你认为符合题意的x 的值代入求值.各型号参展轿车数的百分比A 35%DC 20%B 20%AB CD型号图1图2第19题图BAQPDC第20题图19.(本题6分)在“五一车展”期间,某汽车经销商推出A 、B 、C 、D 四种型号的小轿车共1000辆进行展销.C 型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中. (1)参加展销的D 型号轿车有多少辆? (2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?20.(本题8分)如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P在矩形上方,点Q 在矩形内.求证:(1)∠PBA =∠PCQ =30°;(2)PA =PQ .FB第21题图21.(本题8分)如图,在中,90ACB ∠=°,D 是AB 边上一点,以BD 为直径的O ⊙与边AC 相切于点E ,连结DE 并延长,与BC (1)求证:BD BF =;(2)若64BC AD ==,,求sin A 的值.22.(本题9分)国家推行“节能减排,低碳经济”政策后,环保节能设备的产品供不应求.某公司购进了A 、B 两种节能产品,其中A 种节能产品每件成本比B 种节能产品多4万元;若购买相同数量的两种节能产品,A 种节能产品要花120万元,B 种节能产品要花80万元.已知A 、B 两种节能产品的每周销售数量y (件)与售价x (万元/件)都满足函数关系y =-x +20(x >0) . (1)求两种节能产品的单价;(2)若A 种节能产品的售价比B 种节能产品的售价高2万元/件,求这两种节能产品每周的总销售利润w (万元)与A 种节能产品售价x (万元/件)之间的函数关系式; 并说明A 种节能产品的售价为多少时,每周的总销售利润最大?23.(本题10分)如图(1),在平面直角坐标系中,矩形ABCO ,B 点坐标为(4,3),抛物线y =12-x 2+bx +c 经过矩形ABCO 的顶点B 、C ,D 为BC 的中点,直线AD 与y 轴交于E 点,与抛物线y =12-x 2+bx +c 交于第四象限的F 点.(1)求该抛物线解析式与F 点坐标;(2)如图,动点P 从点C 出发,沿线段CB 以每秒1个单位长度的速度向终点B 运动;同时,动点M 从点A 出发,沿线段AE个单位长度的速度向终点E 运动.过 点P 作PH ⊥OA ,垂足为H ,连接MP ,MH .设点P 的运动时间为t 秒.①问EP +PH +HF 是否有最小值,如果有,求出t 的值;如果没有,请说明理由. ②若△PMH 是等腰三角形,请直接..写出此时t 的值.模拟试卷(八)第一部分 选择题1.C .(15-的相反数是15,而15的倒数是5∴选C )2.A .(俯视图是自上而下所看到的几何体的平面图形,∴选A )3.D .[2a a a -+=正确22(2)(4)4a a a a a ÷=÷=正确;222()ab a b =正确236()a a =不正确5a ≠∴选D] 4.B .(112万=1120000 =61.1210⨯ ∴选B )5.D .(A 、B 是中心对称图形,C 是轴对称图形,D 既是中心对称又是轴对称图形.∴选D )6.A .(15名同学的成绩按从低到高的顺序排列,其中位数就在第8位,因为要取前七名,小梅只要知道了中位数和自己的成绩,如果大于中位数就能被选中,否则就落选∴选A )第23题图7.C .(设盒子里装有m 个黄球,依题意:8283m =+,解得,m =4. ∴选C ) 8.A .(设该商品的进货价为x 元,依题意:1200.920100x x ⨯-=解得x =90∴选A )9.B .(二次函数图象的平移在水平方向上遵循左加右减,在铅直方向上遵循上加下减.∴选B )10.B .(∵△ABC ≌△AB ′C ′∴tan B ′= tan B 13=∴选B )11.B .(设中间有n 个,依题意知5n +3-1=2013,2012,2011,2010.只有等于2012时n 是整数,∴选B ) 12.A .(过O 作O E AC ⊥、O F AD ⊥分别交AC 、AD 于E 、F ,OE 交AD 于M ,过M 作M N AB ⊥交AB 于N .∴3AE AN == 2NO AO AN =-= 设EM M N x == 4M O x =- 在Rt M NO ∆中222(4)x x x -=+∴32x =52MO =又由EM MF AM MO = 得MF = 在Rt AME ∆中 由勾股定理得AM∴AF AM MF =+∴2AD AF ==第二部分 非选择题13.(3)(3)a x x +-(原式=2(9)(3)(3)a x a x x -=+-) 14.-2<x ≤3.(由①式得x >-2 由②式得x ≤3∴不等式组的解为-2<x ≤3)15.(由210x x +-=得1x2x x 1>x 22x ∴12x x ⨯)16.(2,1)(过D 、A 分别作轴、y 轴垂线,交轴、y 轴于M 、N 两点,则△DMC ≌△COB ≌△BNA ∴DM =CO =BN =m CM =OB =NA =n ∴MO =ON =m +n ∴A (n ,m +n ),D (m +n ,m ) 又∵A 、D 在2y x=的图象上 ∴n (m +n )=m (m +n )=2 ∴m =n 设D (2m ,m ) 代入2y x=得 m =1 ∴D (2,1))17.解:原式=(21(3)3+--+18.解:原式=222(1)(1)(1)(1)1x x x x x x x +--∙=-+ 选取的数字不为-1,0,1 当x =2时,原式=4 (答案不唯一) 19.解:(1)100025%250⨯=(辆)(2)如图1,(3)四种型号 轿车的成交率:A :168100%48%350⨯= B :98100%49%200⨯=C :50%D :130100%52%250⨯=∴D 种型号的轿车销售情况最好. 20.证明:(1)∵四边形ABCD 是矩形,∴∠ABC =∠BCD =90°.∵△PBC 和△QCD 是等边三角形, ∴∠PBC =∠PCB =∠QCD =60° ∴∠PBA =∠ABC -∠PBC =30° ∠PCD =∠BCD -∠PCB =30°. ∴∠PCQ =∠QCD -∠PCD =30°. ∴∠PBA =∠PCQ =30°.(2)∵AB =DC =QC ,∠PBA =∠PCQ ,PB =PC , ∴△PAB ≌△PQC ,∴PA =PQ . 21.(1)证明:连结OE .∵AC 切⊙O 于E ,∴OE ⊥AC , 又90ACB ∠=︒即O E AC ⊥, ∴OE ∥BC ∴∠OED=∠F . 又OD =OE ,∴∠OED=∠OED , ∴∠OED=∠F ∴BD=BF(2)设⊙O 半径为r ,由OE ∥BC 得△AOE ∽△ABC .AO OE AB BC ∴=,即4246r rr +=+,2120r r ∴--=,解之得14r =,23r =-(舍).在Rt △AOE 中,∴sin A =41442OE AO ==+. 22.解:(1)设B 种节能产品的单价为m 万元, A 种节能产品的单价为(m +4)万元,120804m m=+,m =8 经检验m =8是原方程的解. ∴m +4=12∴设A 种节能产品的单价为12万元,B 种节能产品的单价为 8万元.(2)()()()()122028220w x x x x ⎡⎤⎢⎥⎣⎦=--++----+ 即2264460w x x =-+-222(32230)2(16)52w x x x =--+=--+∴当x =16时,w 最大为52.23.解:(1)∵矩形ABCO ,B 点坐标为(4,3)∴C 点坐标为(0,3) ∵抛物线y =12-x 2+bx +c 经过矩形ABCO 的顶点B 、C ∴3843c b c ⎧⎪⎨⎪⎩=-++= ∴32c b ⎧⎪⎨⎪⎩== ∴y =12-x 2+2x +3设直线AD 的解析式为11y k x b =+∵A (4,0)、D (2,3) ∴11114023k b k b +=⎧⎨+=⎩ ∴11326k b ⎧=-⎪⎨⎪=⎩ ∴362y x =-+ 23621232y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩∵F 点在第四象限,∴F (6,-3) (2)①∵E (0,6) ∴CE =CO连接CF 交x 轴于H ′,过H ′作x 轴的垂线交BC 于P ′,当P 运动到P ′,当H 运动到H ′时, EP +PH +HF 的值最小.设直线CF 的解析式为22y k x b =+∵C (0,3)、F (6,-3) ∴222363b k b =⎧⎨+=-⎩ ∴2213k b =-⎧⎨=⎩ ∴3y x =-+当y =0时,x=3,∴H ′(3,0) ∴CP =3 ∴t =3 ②如图1,过M 作MN ⊥OA 交OA 于N ∵△AMN ∽△AEO ,∴AM AN MNAE AO EO==I .如图1,当PM =H M时,M 在PH 的垂直平分线上, ∴MN =12PH ∴MN =3322t =∴t =1 II .如图2,当PH =HM 时,MH =3,MN =32t , HN=OA -AN -OH =4-2t 在Rt △HMN 中,222MN HN MH +=,2223()(42)32t t +-=,22564280t t -+= 12t =(舍去),21425t =III .如图3.如图4,当PH=PM 时,PM =3, MT =332t -,PT =BC -CP -BT =42t -在Rt △PMT 中,222M T PT PM +=,2223(3)(42)32t t -+-=,25t 2-100t +64=0 1165t =,245t = ∴1425t =,45,1,165。
数学试卷 第1页(共8页) 数学试卷 第2页(共8页)黄冈市2013年初中毕业生学业考试数学模拟试卷(二)说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页,考试时间90分钟,满分100分.2.本卷试题,考生必须在答题卡上按规定作答;凡在试卷,草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠.3.本卷选择题1-12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13-23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内.第一部分 选择题(本部分共12小题,每小题3分,共36分.每小题给出的4个选项,其中只有一个是正确的.) 1.22-的值是( )A .2-B .2C .4D .4- 2()正面A .B .C . 3.我国第二颗月球探测卫星嫦娥二号于2011年6月9号奔向距地球1 500 000km 的深空, 用科学记数法表示1 500 000为( ) A .1.5×106B .0.15×107C .1.5×107D .15×1064.下面有4个汽车标志图案,其中是轴对称图形的是( )① ② ③ ④ A .②③④B .①③④C .①②④D .①②③5.不等式组⎩⎨⎧≥+≤-3242x x x 的解集是( )A .x ≥3B .x ≤6C .3≤x ≤6D .x ≥66.商场对某商品优惠促销,如果以八折的优惠价格每出售一件商品,就少赚15元,那么顾客买一件这种商品 就只需付( )元. A .35B .60C .75D .1507.甲、乙两班学生参加植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,则依题意可列方程( ) A .xx 70580=- B .57080+=x x C .xx 70580=+ D .57080-=x x 8.为了呼吁同学们共同关注地球暖化问题对人类生活的影响,小明调查了2011年6月气温 情况,如图所示.根据统计图分析,这组数据的众数和中位数分别是 ( )A .32℃,30℃B .31℃,30℃C .32℃,31℃D .31℃,31℃9.如图所示的函数图象的关系式可能是( )A .x y 2=B .y =x1C .y = x 2D .y =1x10.如图,ABC ∆中,90B ∠= ,6AB =,8BC =,将ABC ∆沿DE 折叠,使点C 落在AB 边上的C ′处,并且C ′D ∥BC ,则C ′D 的长是)A .950B .940C .415D .425 11.在平面直角坐标系中给定以下五个点A (-2,0)、B (1,0)、C (4,0)、D (-2,29)、E (0,-6),在五个形状、颜色、质量完全相同的乒乓球上标上A 、B 、C 、D 、E 代表以上五个点.玩摸球游戏,每次摸三个球,摸一次,三球代表的点恰好能确定一条抛物线(对称轴平行于y 轴)的概率是( )A .21B .53C .107D .54第8题图29℃ 30℃ 31℃ 32℃ CC 第10题图数学试卷 第3页(共8页) 数学试卷 第4页(共8页)密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………123 5月份商场各月销售总额统计图 月份图1图2商场服装部...各月销售额占商场当月 销售总额的百分比统计图 第19题图12.如图,ABCD 、CEFG 是正方形,E 在CD 上且BE 平分∠DBC ,O 是BD 中点,直线BE 、DG 交于H ,BD 、AH 交于M ,连接OH ,下列四个结论:①BE ⊥GD ;②BG OH 21=;③∠AHD=45°;④GD.其中正确的结论个数有( )A .1个B .2个C .3个D .4个第二部分 非选择题填空题(本题共4小题,每小题3分,共12分.) 13.分解因式:228x -=_______________;14.如图,为了测量河宽AB (假设河的两岸平行),测得∠ACB =30°, ∠ADB =60°,CD =60m ,则河宽AB 为________m(结果保留根号)15.如图,梯形ABCD 中,AD //BC ,CE 是BCD ∠的平分线,且AB CE ⊥,E 为垂足,AE BE 2=.若四边形AECD 的面积为1,则梯形ABCD 的面积是________________.16.如图,在Rt ABC △中,90301ACB A BC ∠=∠==°,°,,过点C 作1CC AB ⊥,垂足为1C ,过点1C 作12C C AC ⊥,垂足为2C ,过点2C 作23C C AB ⊥,垂足为3C ,……按此作法进行下去,则n AC =______________.解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第 21题8分,第22题9分,第23题9分,共52分.) 17.(本题5分)计算:22)3(60sin 2|23|122-︒-+--++-18.(本题6分)解分式方程:1213-+=+x x x19.(本题7分)图1表示的是某综合商场今年1~5月份的商品各月销售总额的情况,图2表示的是商场服装部...各月销售额占商场当月销售总额的百分比情况,观察图1、图2, 解答下列问题:第14题图OM H GF E DCA第12题图第15题图C 5C 4C 3C 2C 1CBA第16题图C 6数学试卷 第5页 (共8页) 数学试卷 第 6页 (共8页)密 封 线 内 请 勿 答 题………密………………………………………………..…封………………………………………………...线………(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元, 请你根据这一信息将图1中的统计图补充完整; (2)商场服装部...5月份的销售额是多少万元?(3)小刚观察图2后认为,5月份商场服装部...的销售额比4月份减少了.你同意他的看法吗?请说明理由.20.(本题8分)给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边. (1)在你学过的特殊四边形中,写出两种勾股四边形的名称:__________和_________; (2)如图1,已知格点(小正方形的顶点)O (0,0),A (3,0),B (0,4).请画出以格点为顶点,OA OB ,为勾股边,且对角线相等的勾股四边形OAM B ;(3)如图2,将ABC △绕顶点B 按顺时针方向旋转60 ,得到DBE △,连接AD DC ,,已知30DCB = ∠.求证:222DC BC AC +=,即四边形ABCD 是勾股四边形.21.(本题8分)如图,AB 为⊙O 的直径,过半径OA 的中点G 作弦CE ⊥AB ,在⌒CB上取一点D ,直线CD 、ED 分别交直线AB 于点F 和M . (1)求∠COA 和∠FDM 的度数;(2)已知OM =1,MF =3,请求出⊙O 的半径并计算tan ∠DMF 的值.图1A图2第20题图第21题图数学试卷第3页(共8页)数学试卷第4页(共8页)密封线内请勿答题………密………………………………………………..…封………………………………………………...线………22.(本题9分)某经销商销售一种进价为每件20元的护眼台灯,销售过程中发现,如果按进价销售,每月销售量为300台,售价每增加1元,销量减少10台,若商场将这种台灯销售单价定为x(元),每月销量为y(件).(1)试判断商场每月销量y(件)与销售单价x(元)之间的函数关系;(2)如果经销商想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种台灯的销售单价不得高于32元,如果经销商想要每月获得的利润不低于2000元,那么他每月用于购进这种台灯的成本最少需要多少元?23.(本题9分)已知如图,抛物线cbxaxy++=2与x轴相交于B(1,0)、C(4,0)两点,与y轴的正半轴相交于A点,过A、B、C三点的⊙P与y轴相切于点A.(1)请求出点A坐标和⊙P的半径;(2)请确定抛物线的解析式;(3)M为y轴负半轴上的一个动点,直线MB交⊙P于点D.若△AOB与以A、B、D为顶点的三角形相似,求MB•MD的值.(先画出符合题意的示意图再求解).数学试卷第7页(共8页)数学试卷第8页(共8页)数学试卷 第5页 (共8页) 数学试卷 第 6页 (共8页)密 封 线 内 请 勿 答 题………密………………………………………………..…封………………………………………………...线………模拟试卷(二)第一部分 选择题1.C .提示:22-是4-,而4-的绝对值是4.2.C .提示:圆柱的主视图是矩形,正方体的主视图是正方形.3.A .提示:因为1500000共有7位整数位,所以用科学记数法表示10的次数为6. 4.D .提示:第④个图案是中心对称图形,不是轴对称图形.5.C .提示:由242+≤-x x 得6≤x ,所以原不等式组的解集为63≤≤x .6.B .提示:设这种商品原价为x 元,可列方程得15%80=-x x ,解得75=x ,所以60%80=x 元. 7.D .提示:根据题意,甲班所需天数为x80,乙班所需天数为570-x ,因为两班所用天数相等,故可得57080-=x x . 8.C .提示:这组数据共有30个,由图可知众数为32,按从小到大排列第15个为31,第16个为31,所以中位数为31. 9.D .提示因为双曲线x y 1=图象在第一、三象限,故||1x y =图象应在第一、二象限.10.B .提示:设CD = C’D =x ,因为AC =1022=+BC AB ,所以AD =10-x ,因为△AC’D ∽△ABC ,所以BCDC AC AD '=, 即81010x x =-,解得940=x . 11.B .提示:每次摸三球,共有10种可能:ABC 、ABD 、ABE 、ACD 、ACE 、ADE 、BCD 、BCE 、BDE 、CDE .而A 、B 、C 三点都在x 轴上不可能在同一抛物线上,A 、D 在同一条平行于y 轴的直线上,也不可能在同一抛物线上,所以能确定抛物线的只有ABE 、ACE 、BCD 、BCE 、BDE 、CDE ,所以概率是53106=.H 12.D .提示:易证△BCE ≌△DCG ,故∠EBC =∠GDC ,又因为∠GDC +∠DGC =90º,所以∠EBC +∠DGC =90º,所以BE ⊥GD 即①正确;易证△BHG ≌△BHD ,故H 为DG 中点,由三角形中位线性质可知BG OH 21=即②正确;因为△ABD 、△BDC 、△BDH 均为直角三角形且斜边为BD ,可知A 、B 、C 、D 、H 五点均在以BD 为直径的⊙O 上,所以∠AHD=∠ABD=45°即③正确;因为A 、B 、C 、D 、H 五点均在⊙O 上,所以∠BAH=∠BDH ,又因为∠ABM=∠DBG=45°,所以△ABM ∽△DBG ,故有21==BD AB GD AM ,可知④正确.第二部分 非选择题13.)2)(2(2+-x x .提示: )2)(2(2)4(28222+-=-=-x x x x .14.330提示:由题可知∠CAD =30°,所以AD =CD =60,所以33060sin =︒⋅=AD AB .15.715.提示:分别延长BA 、CD 交于点F ,因为CE 是BCD ∠ 的平分线,且AB C E ⊥可得△BCE ≌△FCE ,所以BE =FE ,易知△F AD ∽△FBC ,所以22)41()(==∆∆FB FA S S FBC FAD ,设△F AD 面积为x ,则161)1(2=+x x ,解得71=x ,所以梯形ABCD 的面积是715.16.n n 2)3(1+.提示:易知3=AC ,2)3(2321==AC AC3122)3(23==AC AC ,…n n n AC AC 2)3(2311+-==.17.解:原式=923232324+⨯--++- 79332324=+--++-=18.解:去分母得)3(2)1)(3()1(++-+=-x x x x x整理得35-=x ∴53-=x 检验:把53-=x 代入)1)(3(-+x x 得 0)153)(353()1)(3(≠--+-=-+x x∴53-=x 是原方程的解.19.(1)410-100-90-65-80=75(万元)OM H GF ED CBA月份5432120 40 60 80 100数学试卷 第3页(共8页) 数学试卷 第4页(共8页)密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………(2)5月份的销售额是80×16%=12.8(万元) (3)4月份的销售额是75×17%=12.75(万元), ∵12.75<12.8. ∴不同意他的看法.20.解(1)正方形、长方形、直角梯形.(任选两个均可)(2)答案如图所示.M (3,4)或M (4,3). (3)证明:连结EC ∵△ABC ≌△DBE ∴AC =DE ,BC =BE ∵∠CBE =60° ∴EC =BC ,∠BCE =60° ∵∠DCB =30°∴∠DCE =90° ∴DC 2+EC 2=DE 2∴DC 2+BC 2=AC 2,即四边形ABCD 是勾股四边形21.解:(1)∵OA 、OC 都是⊙O 的半径,且G 为OA 的中点,直径AB ⊥CE∴在Rt △OCG 中,cos ∠COG =21∴∠COG =60° ∵⌒AC =⌒AE =21⌒CE ∴∠EDC =∠COA =60°∴∠EDF =120°,即∠FDM =120°(2)∵直径AB ⊥CE ∴AB 平分CE∴AB 垂直平分CE . ∴MC =ME ∴∠CMA =∠EMA 又∵∠FMD =∠EMA ∴∠FMD =∠CMA ∵∠FDM =∠COM =120° ∴∠F =∠OCM 又∵∠FOC =∠COM ∴△FOC ∽△COM ∴OMOCOC OF =即4)31(12=+⨯=⋅=OF OM OC ∴OC =2 在Rt △CGO 中,322=-=OG OC CG又∵∠DMF =∠CMA ∴tan ∠DMF =tan ∠CMA =23=GM CG 22.解:(1)50010)20(10300+-=--=x x y(2)根据题意列方程得(x -20)(-10x +500)=2000 化简得 01200702=+-x x 解得,301=x 402=x 答:经销商想要每月获得2000元的利润,那么销售单价应定 30元或40元.(3)设这种台灯每月利润为w ,则有)50010)(20(+--=x x w10000700102-+-=x x 2250)35(102+--=x可知当销售单价为35元时可获得最大利润2250元,由(2) 知当销售单价为30元时可获得利润2000元,所以30≤x ≤32,因为y =-10x +500,可知y 随x 的增大而减少,当x 取最 大值32时销量最小,此时购进这种台灯的成本为360018020)5003210(20=⨯=+⨯-⨯答:每月用于购进这种台灯的成本最少需要3600元. 23.(1)∵OA 是⊙P 的切线,OC 是⊙P 的割线.∴OA 2=OB ×OC 即OA 2=1×4∴OA =2 即点A 点坐标是(0,2)连接P A ,过P 作PE 交OC 于E 显然,四边形P AOE 为矩形, 故P A =OE∵PE ⊥BC ∴BE =CE 又BC =3,故BE =23∴P A =OE =OB +BE =1+23=25即⊙P 的半径长为25. (2)抛物线的解析式是:225212+-=x x y(3)根据题意∠OAB =∠ADB ,所以△AOB 和△ABD 相似有两 种情况①∠ABD 和∠AOB 是⊙P 的直径则AB =5∴BD =25∵Rt △AMB ∽Rt △DAB ∴MA :AD =AB :BD 即MA =25=⋅BD AD AB ∵Rt △AMB ∽Rt △DMA ∴MA :MD =MB :MA 即MB ·MD =MA 2=425②∠⊙P 的直径,所以直线∵B (1,0),P ()2,25∴直线MB 的解析式是:3434-=x y∴M 点的坐标为(0,)34-∴ AM =310由△MAB ∽△MDA 得MA :MD =MB :MA ∴MB ·MD =MA 2=9100x。
湖北省黄冈市实验中学2013届九年级二模数学试题(无答案) 新人教版考试时间:120分钟 分值:120分一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.要使算式“-) A .加号 B .减号 C .乘号 D .除号2.据2013年4月1日《CCTV —10讲述》栏目报道,2012年7月11日,一位26岁的北京小伙樊蒙,推着坐在轮椅上的母亲,开始从北京到西双版纳的徒步旅行,圆了母亲的旅游梦,历时93天,行程3 359公里.请把3 359用科学记数法表示应为( )A .233.5910⨯B .43.35910⨯C .33.35910⨯D .433.5910⨯ 3.下面四个几何体中,俯视图为四边形的是( )4.我区某一周的最高气温统计如下表:则这组数据的中位数与众数分别是( ) A .17,17 B . 17, 18 C .18,17 D .18,185.下列计算正确的是( )A .235a a a +=B .236a a a ⋅= C. 235()a a = D. 532a a a ÷=6.如图,AB ∥CD ,点E 在BC 上,68BED ∠=︒,38D ∠=︒,则B ∠的度数为( ) A . 30︒ B . 34︒C . 38︒D .68︒7.若x y ,为实数,且30x +=,则2013y x ⎛⎫⎪⎝⎭的值为( )A .1B . 1-C . 2D . 2-8.如图, AB 为半圆的直径, 点P 为AB 上一动点,动点P 从点A 出发,沿AB 匀速运动到点B ,运动时间为t ,分别以AP 和PB 为直径作半圆,则图中阴影部分的面积S 与时间t 之间的函数图象大致为( )二、填空题(本题共21分,每小题3分)EDC BA 第8题图A .B .C .D .9.计算)13)(13(-+=___________.10.若x 1、x 2是一元二次方程0342=+-x x 的两根,则x 1+x 2+x 1·x 2的值为 . 11.分解因式:231212ab ab a -+= .12.已知a +b=1,则2221a b a ab --+÷1a的值为 。
黄冈市2013年初中毕业生学业考试数学模拟试卷说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页,考试时间90分钟,满分100分.2.本卷试题,考生必须在答题卡上按规定作答;凡在试卷,草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠.3.本卷选择题1-12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13-23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内.第一部分选择题(本部分共10小题,每小题3分,共30分.每小题给出的4个选项,其中只有一个是正确的.)1.2的相反数是( ) A .2-B .2C .2-D .22.如图,用一个平面去截长方体,则截面形状为()3.国家投资建设的棋盘洲长江公路大桥将要开工,据黄冈日报报道,大桥预算总造价是4 370 000000元人民币,用科学记数法保留两位有效数字表示为()A .4.4×109元 B .4.37×109元 C .4.4×1010元 D .4.37×1010元 4.下图所列图形中是中心对称图形的为()A .B .C .D .5.不等式组24357x x -⎧⎨-⎩>≤的解集在数轴上可以表示为( )A .B .C .D .6.有两只口袋,第一只口袋中装有红、黄、蓝三个球,第二只口袋中装有红、黄、蓝、白 四个球,求分别从两只口袋中各取一个球,两个球都是黄球的概率( ) A .13B .16C .19D .1127.下列说法错误的是( )A .直线y =x 就是第一、三象限的角平分线 B .反比例函数2y x=的图象经过点(1,2) C .函数310y x =-中,y 随着x 的增大而减小 D .抛物线221y x x =-+的对称轴是x =18.受季节的影响,某种商品每件按原售价降价10%,又降价a 元,现每件售价为b 元,那 么该商品每件的原售价为( ) A .110%a b+-元B .(110%)()a b -+元 C .110%b a--元D .(110%)()b a --元 题 号一二三合 计1-1213-16 17-18 19-20 21-22 23 得 分D C B A 图 3第2题图A .B .C . D.9.如图,两个等圆⊙O 和⊙O ′外切,过点O 作⊙O 是切点,则 ∠AOB 等于() A .30° B .45° C .60° D .75°10.甲、乙两名同学在相同条件下各射击5次,命中的环数如下表:那么下列结论正确的是()A .甲的平均数是7,方差是1.2C .甲的平均数是8,方差是1.211.用一个半径为6㎝的半圆围成一个圆锥的侧面,则这个圆锥的侧面积为()cm 2.(结果保留π)A .6π+6B .12πC .15πD .18π12.已知:如图,四边形AOBC 是矩形,以O 为坐标原点,OB 、OA 分别在x 轴、y 轴上,点A 的坐标为(0,3),∠OAB =60°,以AB 标为() A.3)2- B .3()2-C.3(,2 D .(3,-第二部分非选择题填空题(本题共6小题,每小题3分,共18分.) 13.如图,AB =AC ,120BAC ∠=︒,AB 的垂直平分线交BC于点D ,那么ADC ∠=___________.14.某商店4月份销售额为50万元,第二季度的总销售额为182万元,若5、6两个月的月增长率相同,求月增长率为_______.15.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为________16.如图,M 为双曲线y =x1上的一点,过点M 作x 轴、y 轴的垂线,分别交直线y =-x +m 于D 、C 两点,若直线y =-x +m 与y 轴交于点A ,与x 交于点B .则AD ·BC 的值为___________.解答题(本题共7小题,其中第17题5分,第18题6分,第19题8分,第20题8分,第21题8分,第22题8分,第23题9分,共52分.)第13题图第12题图B 级60%A 级25%C 级A 级B 级学习态度层级图①图②第19题图17.(本题5分)求值:计算:011(2cos301)()13-︒-+-18.(本题6分)先化简,再请你用喜爱的数代入求值.xx x x x x xx x 42)44122(322-+÷+----+19.(本题8分)2012年,黄冈市被教育部列为“减负”工作改革试点地区.学生的学业负担过重会严重影响学生对待学习的态度.为此该市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了___________名学生; (2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A 级和B第21题图B20.(本题8分)如图,在等腰梯形ABCD 中,已知AD ∥BC ,AB =DC ,AD =2,BC =4,延长BC到E ,使CE =AD .(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(2)探究当等腰梯形ABCD 的高DF 是多少时,对角线AC 与BD 互相垂直?请回答并说明理由.21.(本题8分)如图,AB 为⊙O 的直径,弦C D ⊥AB 于点M ,过点B 作BE ∥CD ,交AC 的延长线于点E ,连结BC . (1)求证:BE 为⊙O 的切线; (2)如果CD =6,tan∠BCD =12,求⊙O 的直径。
黄冈市2013年初中毕业生学业水平考数学试题(含答案全解全析)(满分120分时间120分钟)第Ⅰ卷(选择题,共24分)一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的...1.-(-3)2=()A.-3B.3C.-9D.92.随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()3.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150°D.180°4.下列计算正确的是()A.x4·x4=x16B.(a3)2·a4=a9C.(ab2)3÷(-ab)2=-ab4D.(a6)2÷(a4)3=15.已知一个正棱柱的俯视图和左视图如图,则其主视图为()6.已知一元二次方程x2-6x+c=0有一个根为2,则另一根为()A.2B.3C.4D.87.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π8.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是()第Ⅱ卷(非选择题,共96分)二、填空题(本题共21分,每小题3分)9.计算:---=.10.分解因式:ab2-4a=.11.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连结DE,则DE=.12.已知反比例函数y=在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连结AO、AB,且AO=AB,则S△AOB=.13.如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.14.钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是.15.如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l做无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为.三、解答题(本题共75分)16.(6分)解方程组:-----17.(6分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连结OH,求证:∠DHO=∠DCO.18.(7分)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?19.(6分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求摸出的两张牌同为红色的概率.20.(7分)如图,AB为☉O的直径,C为☉O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为☉O的切线;(2)若☉O的半径为3,AD=4,求AC的长.21.(8分)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.22.(8分)如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB.(结果保留整数,≈1.73,≈1.41)23.(12分)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售若在国外销售,平均每件产品的利润y2(元)数量x(千件)的关系为:y1=-与国外的销售数量t(千件)的关系为:y2=-(1)用x的代数式表示t为:t=;当0<x≤4时,y2与x的函数关系为:y2=;当≤x<时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?24.(15分)如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P、Q运动的时间为t(秒).(1)求经过A、B、C三点的抛物线的解析式;(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;(3)以O、P、Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由;(4)经过A、B、C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围);若不能,请说明理由.答案全解全析:1.C ∵-(-3)2=-9,故选C.2.A 根据中心对称图形的概念知只有A中的图形符合,而C、D中的图形均是轴对称图形,B 中的图形既不是中心对称图形也不是轴对称图形,故选A.3.A ∵AB∥CD∥EF,∠BAC=120°,∴∠ACD=60°.∵AC∥DF,∴∠CDF=∠ACD=60°.故选A.4.D ∵x4·x4=x4+4=x8,(a3)2·a4=a6·a4=a10,(ab2)3÷(-ab)2=(a3b6)÷(a2b2)=ab4,(a6)2÷(a4)3=a12÷a12=1,∴计算正确的只有D,故选D.评析本题主要考查同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法和单项式除以单项式法则.熟练掌握几种相关法则是解题关键,属容易题.5.D 根据三视图的概念和画法规则可想象此正棱柱的主视图是D项的图形.评析本题主要考查三视图的概念的应用和学生的空间想象能力.注意画三视图时,看不见的线画虚线,看得见的线画实线.6.C 设所求的方程另一根为x.则x+2=6,∴x=4.故选C.7.C 设圆柱底面圆的半径为r.由于圆柱侧面展开图的矩形的一边长为圆柱底面圆的周长.∴2πr=2π或2πr=4π.则r=1或r=2,∴圆柱底面圆的面积为π或4π.故选C.8.C 图象反映了快车与特快车之间的距离y与快车行驶时间t之间的函数图象.首先必须弄清楚实际问题的背景是两列火车从甲乙两地同时出发相向而行,其次要将这一过程分为三个阶段,一是从出发到两车相遇,二是从相遇后到特快车到达终点,三是特快车到达终点后到快车到达终点,这样,我们就找到三个“拐点”.第一个“拐点”:==4,∴其坐标为(4,0).第二个“拐点”:=,100×=,∴其坐标为,.第三个“拐点”:=10,∴其坐标为(10,1 000).故应选择C.评析此题考查了一次函数的图象在实际生活中的运用,函数图象与实际问题背景的相互对照,此题找准三个“拐点”是难点.属较难的题目.9.答案--或-解析∵(-)-(-)=-(-)=(-)(-)=--,∴答案为--或-.10.答案a(b-2)(b+2)解析ab2-4a=a(b2-4)=a(b-2)(b+2).11.答案解析∵△ABC是等边三角形,BD是中线,∴∠BDC=90°,∠BCD=60°,∠DBC=30°.又∵CE=CD=1,∠BCD=∠E+∠CDE,∴∠E=∠CDE=∠BCD=30°.∴∠DBC=∠E=30°.∴BD=DE,在Rt△BDC中,BD=°==.故填.12.答案 6解析如图,过A作AF⊥OB,垂足为F.∵OA=AB,∴OF=FB=OB,∴S△AOB=2S△AOF.又由题易知S△AOF=|k|=×6=3.∴S△AOB=2S△AOF=6.13.答案解析如图,连结OD.设所在圆的半径为R,则OM=8-R.∵EM⊥CD,CD=4,∴MD=CD=2,在Rt△OMD中,由勾股定理得22+(8-R)2=R2,解得R=.14.答案7:00解析由题图象可知,巡逻艇原来的速度为80海里/小时,排除故障后的速度为-=100(海里/小时),不妨设巡逻艇经过t小时后准时到达,据题意得80t=80+100(t-2), -解得t=6.由于是凌晨1:00出发,故6+1=7.∴原计划准点到达的时刻是7:00.15.答案6π解析如图所示.当矩形ABCD沿直线l做无滑动翻滚,当点A第一次翻滚到A1位置时,点A经过的路线分为三段:,,,其中==π,==2π.∵∠A B C1=90°,A B =4,B C1=3,∴A C1=5.∵∠A B C1=∠C1D1A1=90°,A B =C1D1=4,B C1=D1A1=3,∴△A B C1≌△C1D1A1,∴∠1=∠2,又∠2+∠3=90°,∴∠1+∠3=90°.又∠B C1D1=180°,∴∠A C1A1=90°.∴==π,∴点A经过的路线长为π+2π+π=6π.评析此题考查弧长公式,同时考查了勾股定理以及构造全等三角形,综合性较强,属较难题.16.解析原方程组整理得,,由 得x=5y-3,③将③代入 得25y-15-11y=-1,即14y=14,解得y=1,将y=1代入③得x=2,∴原方程组的解为, .17.证明∵四边形ABCD是菱形,∴OD=OB,∠COD=90°.∵DH⊥AB于H,∴∠DHB=90°,∴OH=BD=BO,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC.∴∠OHB=∠ODC.在Rt△COD中,∠ODC+∠OCD=90°,在Rt△DHB中,∠DHB=∠DHO+∠OHB=90°,∴∠DHO=∠DCO.18.解析(1)(2)平均数:==11.6(吨).中位数:11(吨).众数:11(吨).(3)×500=350(户).答:不超过12吨的用户约有350户.19.解析(1)树状图:列表法:(2)所求概率P==.20.解析(1)证明:连结OC,∵OC=OA,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,∴OC⊥CD.∴DC为☉O的切线.(2)连结BC,易知△ADC∽△ACB,∴=,即AC2=AD·AB,∵☉O的半径为3,∴AB=6,又∵AD=4,∴AC=2.评析本题是一道以圆为载体的几何证明、计算题,主要考查圆的有关性质,圆的切线的判定以及相似三角形的判定与性质等知识的综合运用,属中等难度题.21.解析设租甲种货车x辆,则乙种货车(6-x)辆,依题意有(-),解得4≤x≤5.(-),∵x为正整数,∴共有两种方案.方案一:租甲种货车4辆,乙种货车2辆;方案二:租甲种货车5辆,乙种货车1辆.方案一费用:4×400+2×300=2 200元;方案二费用:5×400+1×300=2 300元.∵2 200<2 300,∴选择方案一,即租用甲种货车4辆,乙种货车2辆时最省钱.22.解析依题意可知∠AEB=30°,∠ACE=15°,又∠AEB=∠ACE+∠CAE,∴∠CAE=15°,即△ACE为等腰三角形,∴AE=CE=100米.在Rt△AEF中,∠AEF=60°,∴EF=AE·cos 60°=50米,AF=AE·sin 60°=50米.在Rt△BEF中,∠BEF=30°,∴BF=EF·tan 30°=50×=米.∴AB=AF-BF=50-=≈58米.答:塔高AB大约为58米.23.解析(1)t=6-x;当0<x≤4时,y2=-5(6-x)+110=5x+80;当4≤x<6时,y2=100.(2)当0<x≤2时,w=(15x+90)x+(5x+80)(6-x)=10x2+40x+480; 当2<x≤4时,w=(-5x+130)x+(5x+80)(6-x)=-10x2+80x+480; 当4<x<6时,w=(-5x+130)x+100(6-x)=-5x2+30x+600.w=(), -(),-().(3)当0<x≤2时,w=10x2+40x+480=10(x+2)2+440,x=2时,w最大=600.当2<x≤4时,w=-10x2+80x+480=-10(x-4)2+640,x=4时,w最大=640.当4<x<6时,w=-5x2+30x+600=-5(x-3)2+645,w<640.∴x=4时,w最大=640.即国内销售4千件,国外销售2千件时,可使公司每年利润最大,最大利润为64万元(或640千元).评析本题是一道函数综合应用题,题目设置有梯度,主要考查数学的转化、建模、分类讨论思想,属较难题.24.解析(1)设所求抛物线解析式为y=ax2+bx+c,把A(6,0),B(3,),C(1,)三点坐标代入得,,,,解得a=-,b=,c=.即所求抛物线为y=-x2+x+.(2)依题意,可知OC=CB=2,∠COA=60°,∴当动点Q运动到OC边上时,OQ=4-t,∴△OPQ的边OP上的高为OQ·sin 60°=(4-t)×, 又OP=2t,∴S=×2t×(4-t)×=-(t2-4t)(2≤t≤3).(3)依题意,可知0≤t≤3.当0≤t≤2时,Q 在BC 边上运动,此时OP=2t,OQ= ( - ) ,PQ= -( - )= ( - ),∵∠POQ<∠POC=60°,∴若△OPQ 为直角三角形,只能是∠OPQ=90°或∠OQP=90°, 若∠OPQ=90°,则OP 2+PQ 2=OQ 2,即4t 2+3+(3t-3)2=3+(3-t)2,解得t=1或t=0(舍); 若∠OQP=90°,则OQ 2+PQ 2=OP 2,即6+(3-t)2+(3t-3)2=4t 2,解得t=2.当2<t≤3时,Q 在OC 边上运动,此时PO=2t>4,∠POQ=∠COP=60°,OQ<OC=2, ∴△OPQ 不可能为直角三角形.综上所述:当t=1或t=2时,△OPQ 为直角三角形. (4)由(1)可知:抛物线y=-x 2+x+ =-(x-2)2+ ,其对称轴为x=2.又直线OB 的方程为y=x, ∴抛物线对称轴与OB 交点为M ,, 又P(2t,0),设过P 、M 的直线解析式为y=kx+b, ∴, · ,解得( - ), -( - ),即直线PM:y=( - )x-( - ),即 (1-t)y=x-2t.又0≤t≤2时,Q(3-t, ),代入上式,得 (1-t)× =3-t-2t 恒成立, 即0≤t≤2时,P 、M 、Q 总在一条直线上, 即M 在直线PQ 上;2<t≤3时,OQ=4-t,∠QOP=60°,∴Q-,(-),代入上式,得(-)×(1-t)=--2t,解得t=2或t=,均不合题意,应舍去.综上所述,过A、B、C三点的抛物线的对称轴、OB和PQ能够交于一点,此时0≤t≤2.评析本题是二次函数,梯形,直角三角形有关的动态几何综合题,难度较大.其解题关键是灵活运用“动中取静”的策略,找到临界位置探究问题,尤其是第(4)小题运用解析法解题,学生不易想到.。
黄冈市2013年初中毕业生学业及升学考试数学模拟试题(满分:120 分考试时间:120 分钟)一、选择题:(共8小题,每小题3分,共24分.)1.下列图形中,是中心对称图形,但不是轴对称图形的是( )2.下列计算正确的是( )A .12=12⋅B .43=1-C .63=2÷D .4=2± 3.如图,将三角尺与直尺贴在一起,使三角尺的直角顶点C(∠ACB =90°)在直尺的一边上,若∠1=60°,则∠2的度数等于( )A .75°B .60°C .45°D .30°4.在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为( ) A .24米 B .20米 C .16米 D .12米5.已知抛物线y =ax 2﹣2x +1与x 轴没有交点,那么该抛物线的顶点所在的象限是( )A .第四象限B .第三象限C .第二象限D .第一象限 6.将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的( ) A 、面CDHE B 、面BCEF C 、面ABFG D 、面ADHG 7.若不等式组有解,则a 的取值范围是( )A .a ≤3B .a <3C .a <2D .a ≤28.如果关于x 的一元二次方程kx 2﹣x+1=0有两个不相等的实数根,那么k 的取值范围是( ) A .k <B .k <且k ≠0C .﹣≤k <D ﹣≤k <且k ≠0二、填空题(共7小题,每小题3分,共21分)9.当x=________时,函数21232--=x x y 的值为零。
-210.商店某天销售了ll 件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm) 38 39 40 41 42件数 1 4 3 1 2则这ll 件衬衫领口尺寸的众数是________cm ,中位数是________cm .11.如图,在平面直角坐标系中,已知一圆弧过小正方形网格的格点A B C ,,,已知A 点的坐标是(35)-,,则该圆弧所在圆的圆心坐标是___________.12.如右图在反比例函数)0(4>-=x xy 的图象上有三点P 1、P 2、P 3, 它们的横坐标依次为1、2、3, 分别过这3个点作x 轴、y 轴的垂线, 设图中阴影部分面积依次为S 1、S 2、S 3, 则123S S S ++=_____________. 13. 如右图, 扇形纸扇完全打开后, 阴影部分为贴纸, 外侧两竹条AB 、AC 夹角为120°, 弧BC 的长为20πcm ,AD 的长为10cm , 则贴纸的面积是_________________cm 2.14.已知点A (1,5),B (3,-1),点M 在x 轴上,当AM -BM 最大时,点M 的坐标为 . 15.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3在x 轴上.若正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3,则点A 3到x 轴的距离是 .三、解答题(共8小题,共75分 16.先化简,再求值:,其中a=,b=.17.如图,在梯形ABCD 中,AD ∥BC ,E 为BC 的中点,BC=2AD ,EA=ED=2,AC 与ED 相交于点F .(1)求证:梯形ABCD 是等腰梯形;(2)当AB 与AC 具有什么位置关系时,四边形AECD 是菱形?请说明理由,并求出此时菱形AECD 的面积.A B C D 第6题第4题第3题B C E D Ay xO AB C18.某同学进行社会调查,随机抽查了某个地区的20个家庭的收入情况,并绘制了统计图.请你根据统计图给出的信息回答:(1)填写完成下表:年收入(万元) 0.6 0.9 1.0 1.1 1.2 1.3 1.4 9.7 家庭户数这20个家庭的年平均收入为 万元;(2)样本中的中位数是_____ _万元,众数是____ __万元;(3)在平均数、中位数两数中,哪个量更能反映这个地区家庭的年收入水平?说明理由.19.大众服装店今年4月用4000元购进了一款衬衣若干件,上市后很快售完,服装店于5月初又购进同样数量的该款衬衣,由于第二批衬衣进货时价格比第一批衬衣进货时价格提高了20元,结果第二批衬衣进货用了5000元. (1)第一批衬衣进货时的价格是多少?(2)第一批衬衣售价为120元/件,为保证第二批衬衣的利润率不低于第一批衬衣的利润率,那么第二批衬衣每件售价至少是多少元?(提示:利润=售价﹣成本,利润率=错误!未找到引用源。
黄冈2013年中考模拟试题数学D 卷(考试时间:120分钟 满分:120分)一、选择题(每题3分,共24分) 1.下列各式中,不成立的是( ).A . 3-=3B .-3=-3C .3-=3D .-3-=3 2.近似数53.1210⨯精确到了( )位 A . 百分B .万 C .千 D .十万3.如图,已知AC ∥ED ,∠C =26°,∠CBE =37°,则∠BED 的度数 是( ). A.63°B.83°C.73°D.53°4. 计算()4323b a --的结果是( ).A .12881b aB .7612b aC .7612b a -D .12881b a -5.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是().A .B .C .D .6.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值X 围是( )A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠7.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P 在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点, 设OP x =,则x 的取值X 围是( ).A .O≤x ≤2B .2-≤x ≤2C .-1≤x ≤1D .x >28. 如图,某一中学生耐力测试比赛中,甲、乙两学生测试的1 1 12 P AOB7题图3题图路程s (米)与时间t (秒)之间的函数关系的图象分别为折线OABC 和线段OD ,下列说法正确的是( ).A .乙比甲先到终点B .乙测试的速度随时间增加而增大C .比赛进行到29.4秒时,两人出发后第一次相遇D .比赛全程甲的测试速度始终比乙的测试速度快二、填空题(每题3分,共21分)9.化简24()22a a a a a a---+的结果是.10.分解因式把a ax ax 22--=.11. 如图,在边长为1的等边△ABC 中,中线AD 与中线BE 相交于点O , 则OA 长度为.12. 有一组数据如下:3、a 、4、6、7,它们的平均数是5,那 么这组数据的方差是.13. 如图,已知点A 、B 在双曲线xky =(x >0)上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3,则k =.14.如图,直线l 经过⊙O 的圆心O ,且与⊙O 交于A 、B 两点,点C 在⊙O 上,且AOC ∠=30,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q .且QP=QO ,则∠OCP 的度数为.15.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为cm .11题图yAB PD三、解答下列各题(共75分)16.(本题6分)解不等式组⎪⎩⎪⎨⎧+-≤>+,232,01x x x 并在数轴上表示不等式组的解集.17.(本题6分)如图,已知ABC △中,AB BC =,90ABC =∠,把一块含30角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DE ,长直角边为DF ),将直角三角板DEF 绕D 点按逆时针方向旋转至如图的位置,延长AB 交DE 于M ,延长BC 交DF 于N ,求证:DM DN =.18.(本题7分)19.(本题7分)某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,请用列表法或树状图法,求选出的恰为一男一女的概率.20.(本题6分)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.校运会后,班主任拿出200元交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,要求笔记本数不少于钢笔数,请问钢笔最多能买多少支?21.(本题8分)如图,AB为⊙O的直径,DF⊥AB于点D,交弦AC于点E,FC=FE.求证:(1)FC是⊙O的切线;(2)若⊙O的半径为5,2cos5FCE∠=,求弦AC的长.22.(本题8分)如图所示,某居民楼Ⅰ高20米,窗户朝南。
黄冈市2013年中考模拟试题数学C 卷(满分120分 考试时间:120分钟 闭卷)命题人:湖北省黄冈市英山县实验中学 姜文清一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个是符合题目要求的) 1、下列各数中,没有平方根的是( )A .0B .2)3(-C .23- D .)3(--2、由6个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A .正视图的面积最大B .左视图的面积最大C .俯视图的面积最大D .三个视图的面积一样大3、下列运算正确的是( ) A .3a 3+4a 3=7a 6 B .3a 2-4a 2=-a 2 C .(3a 3)2÷4a 3=243a D .3a 2·4a 3=12a 6 4、如图,AD ∥BC ,点E 在BD 的延长线上,若∠ADE=155°,则∠DBC 的度数为( )A .155°B .50°C .45°D .25°(第2题图) (第4题图) (第7题图) 5、解方程x x -=-22482的结果是( )A .-2B .x=2C .x=4D .无解6、2013年5月3日,《齐心协力 抗震救灾》邮票首发。
此次中国邮政发行的编号为特8的《齐心协力 抗震救灾》邮票全国发行1000万枚,面值1.2元,全部邮资收入将捐赠给雅安地震灾区。
全部邮资收入用科学计数法表示为( ) A .1×107元 B .1.2×107元 C .12×107元 D .1.2×108元7、如图,△ABC 中,点D 在边AB 上,且满足∠ACD=∠ABC ,若AC=2,AD=1,则DB 的长为( ) (第6题图) A .1 B .2 C .3 D .4 8、如图,P 是函数)0(21>=x xy 图像上一点,直线y=-x+1分别交x 轴、y 轴于点A 、B ,作PM ⊥x 轴于点M ,交AB 于点E ,作PN ⊥y 轴于点N ,交AB 于点F ,则AF ·BE 的值为( )A .2B .1C .2D .21 (第8题图)二、填空题(本大题共7小题,每小题3分,共21分) 9、53-的相反数是______。
黄冈中学2013届初三年级第二次模拟考试数学试题
一、选择题(本大题共8小题,每小题3分,共24分、在每小题给出的四个选顶中,只有一项是符合题目要求的)
1、-32的绝对值是()
A.32B.-32
C.D.
2、据法新社3月20日报道,全球管理咨询公司麦肯锡预计中国网络销售额将达到4200亿美元(约合2.6万亿人民币),中国将因此成为世界最大的网络零售市场,其中数据4200亿用科学记数法表示错误的是()
A.4.2×103亿B.4.2×1011
C.0.42×104亿D.4.2×107万
3、如图,直线AB、CD相交于点O,OE平分∠BOD,若∠COE=160°,则∠AOC等于()
A.20°B.40°
C.60°D.80°
4、下列计算正确的是()
A.(-p2q)3=-p5q3
B.(12a2b3c)÷(6ab2)=2ab
C.(a5)2=a7
D.a3a4=a7
5、某几何体的三视图如图,则该几何体是()
A.球B.圆柱
C.圆锥D.长方体
6、一元二次方程x2+x=1的两根为x1,x2,则()
A.x1+x2=1B.x1x2=1
C.x1+x2=-1D.
7、如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,,则⊙O的半径为()
A.B.
C.8D.12
8、甲、乙两人准备在一段长为1200m的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100m处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y(m)与时间t(s)的函数图象是()
二、填空题(每小题3分,共21分)
9、化简的结果是__________.
10、分解因式4x2-8x+4=__________.
11、如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连结CD,若AB=4cm,则△BCD的面积为__________cm2.
12、“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得
13、如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则k的值为__________.
14、一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是__________.
15、在平面直角坐标系中、若四条直线:l1:直线x=1;l2:过点(0,-1)且与x轴平行的直线;l3:过点(1,3)且与x轴平行的直线;l4:直线y=kx-3所围成的凸四边形的面积等于12,则k的值为__________.
三、解答下列各题(本大题共75分)
16、(本小题6分)解不等式组:
17、(本小题6分)如图,△ABC与△BEF都是等边三角形,D是BC上一点,且CD=BE,求证:∠EDB=∠CHD.
18、(本小题7分)2013年某市初中毕业生升学体育集中测试项目包括体能(耐力)类项目
和速度(跳跃、力量、技能)类项目.体能类项目从游泳和中长跑中任选一项,速度类项目从立定跳远、50米跑等6项中任选一项.某校九年级共有200名女生在速度类项目中选择了立定跳远,现从这200名女生中随机抽取10名女生进行测试,下面是她们测试结果的条形图.(另附:九年级女生立定跳远的计分标准)
九年级女生立定跳远计分标准
(1)求这10名女生在本次测试中,立定跳远距离的极差,立定跳远得分的众数和平均数.
(2)请你估计该校选择立定跳远的200名女生得满分的人数.
19、(本小题6分)某班用抽签的方式,在甲、乙、丙、丁四位同学中挑选2位同学,代表该班参加学校卫生大检查,请用列表法或树状图法,求乙被选中的概率.
20、(本小题7分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠,若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,同样只需付款1936元,请问该学校九年级学生有多少人?
21、(本小题8分)如图,已知等边△ABC,以边BC为直径的圆与AB、AC分别交于点D、点E.过点D作DF⊥AC,垂足为F.
(1)判断DF与⊙O的位置关系,并证明你的结论;
(2)过点F作FH⊥BC,垂足为H,若FH的长为4,求BC的长.
22、(本小题8分)为了开发利用海洋资源,某勘测飞机欲测量一岛屿的两端A、B的距离,飞机在距海平面垂直高度为300米的C处测得端点A的俯角为60°,然后飞机沿着俯角30°的方向俯冲到D点,发现端点B的俯角为45°,而此时飞机距离海平面的垂直高度为100
米,求岛屿两端A、B的距离.(结果精确到0.1米,)
23、(本小题12分)某大学生创业团队新研发了一日常科技产品,决定在市场上进行试推销,已知团队试推销期间每天需固定支出各种费用(差旅费、人工费、托运费等)800元,该产品成本价为每个5元,经测算若按成本价5元/个进行推销时,每天可销售1440个,若每个每提高1元,每天就少销售120个,为便于测算,每个产品的售价x(元)只取整数,设该团队的日净收入为y元.
(1)写出y与x的函数关系式,并指出x的取值范围;
(2)团队若要使得日净收入最大,同时尽可能多的推销产品以扩大人气,则每个产品的售价应定为多少元?此时日净收入是多少?
(3)若要求日净收入不低于3000元,则每个产品的售价应定在什么范围?
24、(本小题15分)如图,点A在y轴上,点B在x轴上,以AB为边作正方形ABCD,P为正方形ABCD的对称中心,正方形ABCD的边长为,tan∠ABO=3.直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从原点O出发沿OM方向以个单位每秒速度运动,设运动时间为t秒.
(1)分别写出A,C,P三点的坐标;
(2)经过坐标原点O且顶点为P的抛物线是否经过C点,请说明理由?
(3)当t为何值时,△ANO与△DMR相似?
(4)设△HCR面积为S,求S与t的函数关系式;并求以A、B、C、R为顶点的四边形是梯形时t的值.。