初一奥赛培训01:有理数的巧算
- 格式:doc
- 大小:148.66 KB
- 文档页数:8
七年级奥数教学讲义七年级奥数讲义第一章《有理数》要求:掌握基本概念和基本运算技能会灵活应用运算律和运算法则解题。
同号相加号不差,绝对值要相加;异号相加“大”减“小”,符号跟着大的跑;(异号相加取绝大,大绝要把小绝压;)谁同0加谁当家,相反数相加0自夸。
遇到减法细观察,改变符号再相加。
乘除符号意义大,同正异负莫出差;谁同0乘0自夸,互为倒数1当家。
混合运算顺序化,乘方乘除再相加;运算律的好处大,合理运用能简化;分配侓,别漏乘,定符号,再相乘。
括号由里小中大,切记负号别拉下。
认真仔细基础打,长大当个科学家。
【注】“大”减“小”是指绝对值的大小。
1-1⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
注:“0”的9 种说法:(1)既不是正数也不是负数的数.(2)最大的非正数.(3)最小的非负数.(4)与其相反数相等的数.(5)最小的非负整数.(6)最大的非正整数.(7)最小的自然数.(8)绝对值最小的有理数.(9)没有倒数的数.4、有理数的概念【定义】:整数与分数统称为有理数(注意:所有的有限小数和无限循环小数都可以化为分数。
)⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
第1讲有理数的巧算——例题一、第1讲有理数的巧算(例题部分)1.计算:【答案】解:原式===0+0+0=0【解析】【分析】在有理数加减运算中,应注意利用交换律与结合律,将其中的数适当改变顺序,重新组合、尽可能“凑整”或“抵消”.“抵消”,即两个相反的数相加,和为0(两个相同的数相减,差为0),如上面的与-,-与,但要注意符号,不要搞错,如上面的-与不能抵消,它们的和与可以抵消.2.计算【答案】解:原式===【解析】【分析】在进行有理数的乘除运算时,要注意确定结果的符号:奇数个负数相乘除,结果为负;偶数个负数相乘除,结果为正.通常将小数化为分数,带分数化为假分数,把除法转化为乘法,能约分的先约分,尽量化简。
3.计算【答案】解:原式==【解析】【分析】在进行有理数的四则运算时,还应注意应用分配律.若有公因数,一般可将公因数提出,然后进行运算.如本例中,分子有公因数1×2×3,分母有公因数1×3×5,就可以将它们提出,然后约分,以简化运算.应注意,当提出的公因数带负号时,提取后各项的符号都要改变.4.计算【答案】解:原式====……==1-=【解析】【分析】经过观察发现算式的特点:后一项是前一项的一半.如果我们把后一项加上它本身,就可以得到前一项的值.因此,我们巧添了一个辅助数,使问题得以顺利解决.当然,根据代数式的值得不变性可知,在添加上后不要忘了还应减。
5.计算(1)1+2+3+4+ +2007+2008(2)1-2+3-4+ +2007-2008【答案】(1)解:令S=1+2+3+4+ +2007+2008则S=2008+2007 +2+1两式相加,得2S===2009 2008所以S=即原式=(2)原式===-1004【解析】【分析】(1)由题意知,本小题的特点是:后一项减去前一项的差都相等.这样的一列数是等差数列.即若一列数,有(常数)(i=12,…,n一1),则这列数称为等差数列,其中称为首项,称为末项,n为项数,d为公差.等差数列的和a,的计算公式为:所以,本题也可用这个计算公式计算.有时,项数不能直接看出,可用下面的公式计算:(2)由题意知,相邻的项两两结合求差为-1,可以简化运算.这是由本题的特点所决定的.所以,在做题时,应先观察一下题目的特点,根据特点下手,往往有事半功倍的效果.6.计算【答案】解:原式==1-= =【解析】【分析】在做加减法运算时,根据数的特点,将其中一些数适当拆开,变成两个数的差并且拆开后有一些数可以相互抵消,达到简化运算的目的,这种方法叫拆项法.本例中,我们把拆成,即可求解。
A普通股每股市价 B普通股每股股利 C每股市场利得 D普通股每股股利与每股市场利得之和108.利润表上半部分反映经营活动,下半部分反映非经营活动,其分界点是( BA净利润 B营业利润 C利润总额 D主营业务利润109.企业管理者将其特有的现金投资于”现金等价物”项目,其目的在于( C )A企业长期规划 B控制其他企业 C利用暂时闲置的资金赚取超过持有现金的收益D谋求高于利息流入的风险报酬110.利润分配表中未分配利润的计算方法是( D )A年初未分配利润-本年净利润 B本年净利润-本年利润分配C年初未分配利润+本年净利润 D年初未分配利润+本年净利润-本年利润分配111下旬各项指标中,能够反映收益质量的指标是A每股经营现金流量B市盈率C营运指数D 每股收益112.财务报表分析是对象是A企业的投资活动B企业的筹资活动C企业的各项基本活动D企业的经营活动113.如果企业速动比率很小,下列结论成立的是( A )A企业短期偿债风险很大B企业资产流动性很强C企业流动资金占用过多D企业短期偿债能力很强114产权比率的分母是( C 。
A负债总额 B资产总额 C所有者权益总额 D资产与负债之和115下列各项中,不属于投资活动结果的是() A应收帐款B存货C长期投资D股本116投资报酬分析最主要的分析主体是( B ) A上级主管部门B投资人C长期债权人D短期债权人117下列各项中,属于经营活动结果的是( D )A补贴收入B营业外收入C投资收益D主营业务利润118ABC公司2009年度的净资产收益率目标为20%,资产负债率调整为45%,则其资产净利率应达到( A )A11% B55% C9%D 20%119如果企业速动比率很小,下列结论成立的是( C )A企业流动资金站用过多B企业短期偿债能力很强 C企业短期偿债风险很大 D企业资产流动性很强120经营者分析资产运用效率的目的是( C )A判断财务的安全性 B评价偿债能力 C发现和处置闲置资产 D评价获利能力121从营业利润率的计算公式可以得知,当主营业务收入一定时,影响该指标高低的关键因素是( B )A主营业务利润 B营业利润 C利润总额 D净利润二.多选题1. 比较分析法按照比较的对象分类,包括(ABD )P15A历史比较 B同业比较 C 总量指标比较 D预算比较 E财务比率比较2. 下列各项中,决定息税前经营利润的因素包括(ABCD)P54A主营业务利润 B其他业务利润 C营业费用 D管理费用 E财务费用3. 下列各项中属于股东权益的有(ABCDE)P48 01A股本 B资本公积 C盈余公积 DE法定公益金4. 依据杜邦分析法,当权益乘数一定时,影响资产净利率的指标有(AC )P157A销售净利率 B资产负债率 C资产周转率产权比率一、解答题(共16小题,满分150分)1、计算:(1)[47﹣(18.75﹣1÷)×2]÷0.46C投资收益2 E管理费用3、计算:S=1﹣2+3,却不能偿还到期债务,n+1?n.4、在数1,2,3,,1998前添符号“+”和“﹣”,并依次运算,所得可能的最小非负数是多少?5、计算3001×2999的值.6、计算103×97×10 009的值.7、计算:8、计算:(2+1)(使销售收入增长高于成本和费用的增加幅度2+1)(24+1)(28+1D16E 提高销售净利率32+1).9、计算:(1﹣)(1),(1﹣)(1﹣)下列各项活动中,_________10、计算:11、某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91C94,88,93,91,89,10. ,92,86,90,92,88,90,91,86,89,92,95,88.12、计算1+3+5+7+,+1997+1999的值.13、计算1+5+52+53+,+599+5100属于筹资活动结果的有(14、计算:)++,+.15、计算下列各式的值:()﹣D应收账款E9+11﹣,12.财务报表初步分析的内容有(ABCD)P36 17﹣18+,+99+100;(3)1991×1999﹣1990×2000;(4)47263413.2﹣472 633×472 635﹣472 634×472 636;(5)(6)1+4+7+,+244;(7)1+(8)114.财务报表附注中应披露的会计政策有16、某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83所得税的处理方法 D.存货的计价方法 E.固定资产的使用年限84,,76,97,80,90,76,91,86,78,74,85E.现金流动分析答案与评分标准一、解答题(共16小题,满分150分)A(1)[47﹣(18.75﹣1÷)×2]÷0.46(2.)考点)P132专题:计算题。
第一讲:巧算有理数一、巧用运算律进行有理数运算时注意符号的处理,再看是否可以用运算律简化运算。
例1 计算:(1)719998-×16;(2)11311()()63641248--+-÷-解析(1)原式=1 (2000)8--×16=-(3200-2) =-31998(2)原式=-1131()48636412--+-⨯=-(-8-43+36-4)=-2223.点评:(1)像719998、2003等数字在参与运算时,往往将其写成120008-、2000+3的形式;(2)利用乘法对加法的分配律时,应注意符号的处理技巧,尽量以免错误。
二、有理数大小的比较有理数大小比较的一般规律:正数>零>负数;两个负数比较大小,绝对值大的反而小;两个正数比较大小,倒数大的反而小、在进行有理数大小比较时,往往利用到作差、作商、倒数比较、平方比较以及运用一些熟知的规律进行比较.例 2 把199191199292,,,199292199393----四个分数按从小到大的顺序排列是.解析:1992192119931931 1,1,1,1, 199119919191199219929292 =+=+=+=+ 1111199319929392,, 199219919291199219919291 199219919291199219919291,. 199319929392199319929392 <<<∴<<<∴>>>∴-<-<-<-而点评:比较分数的大小通常可以将分子化成相同或分母化成相同,再进行比较,除了通分外,倒数法也是经常用到的方法.实际上,此类习题具有一般规律;11n nn n-<+(n是正整数),如12342345<<<<⋅⋅⋅三、有理数巧算的几种特殊方法有理数运算时,经常会出现一些较大或较多的数求和的问题,仔细观察它们的特点,探求其中的规律,往往可以为解题开辟新的途径.1.倒序相加法例3计算:(1)1+2+3+…+2003+2004;(2)1-2+3-4+…+2003-2004.解析(1)设S=1+2+3+…+2003+2004 ①则S=2004+2003+…+3+2+1 ②①+②,得2S =(1+2004)+(2+2003)+…+(2004+1)=2005+2005+…+2005 (共2004个2005)=2005×2004,∴S =200520042⨯=2009010, 即原式=2009010.(2)原式=(1-2)+(3-4)+…+(2003一2004)=-1-1-…-1(共1002个-1)=-1002.点评:(1)式的特点是:后一项减去前一项的差都相等,这样的一列数称为等差数列,第一项叫首项,通常用a 1表示;最后一项叫末项,通常用a n 表示;相等的差叫公差,通常用d 表示。
初一奥数提高班第01讲-有理数的巧算第一篇:初一奥数提高班第01讲-有理数的巧算金苹果文化培训学校奥数学提高班第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1 计算下式的值:211×555+445×789+555×789+211×445.例2 在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?2.用字母表示数我们先来计算(100+2)×(100-2)的值:这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=___________ 于是我们得到了一个重要的计算公式____________________________ 这个公式叫――___________公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.金苹果文化培训学校奥数学提高班3.观察算式找规律例4 某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.例5 计算1+3+5+7+…+1997+1999的值.2399100例6 计算1+5+5+5+…+5+5的值.例7 计算:金苹果文化培训学校奥数学提高班(6)1+4+7+ (244)1111(7)1++2+3+⋅⋅⋅⋅⋅⋅+2000333***9-+-+⋅⋅⋅⋅⋅⋅+-(8)1-+***99002.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.金苹果文化培训学校奥数学提高班再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(500个2000)=2000×500.从而有 S=500 000.例6 计算1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.99100 解设S=1+5+52+…+5+5,①所以231001015S=5+5+5+…+5+5.②②—①得1014S=5-1,例7 计算:分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.第二篇:初一奥数提高班第03讲-绝对值_金苹果文化培训学校奥数学提高班第3讲绝对值(1)一主要知识点回顾1.有理数:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零2.数轴的三要素——原点、正方向和单位长度,缺一不可.相反数:只有符号不同的两个数叫做互为相反数(符号相反且绝对值相等的两数)绝对值一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数二典型例题分析:例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.例2 设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.三.专项练习(一).填空题:1.a>0时,|2a|=________;(2)当a>1时,|a-1|=________;2.已知a++b-3=0,则a____b______3.如果a>0,b<0,a<b,则a,b,—a,—b这4个数从小到大的顺序是______________________(用大于号连接起来)4.若xy>0,z<0,那么xyz=______0.5.上山的速度为a千米/时,下山的速度为b千米/时,则此人上山下山的整个路程的平均速度是_______________千米/时(二).选择题:6.值大于3且小于5的所有整数的和是()A.7B.-7C.0D.57.知字母a、b表示有理数,如果a+b=0,则下列说法正确的是()A.a、b中一定有一个是负数B.a、b都为0C.a与b不可能相等D.a与b的绝对值相等8.下列说法中不正确的是()A.0既不是正数,也不是负数B.0不是自然数C.0的相反数是零D.0的绝对值是09.列说法中正确的是()A、-a是正数B、—a是负数C、-a是负数D、-a不是负数10.x=3,y=2,且x>y,则x+y的值为()A、5B、1C、5或1D、—5或—111.<0时,化简aa等于()A、1B、—1C、0D、±112.若ab=ab,则必有()A、a>0,b<0B、a<0,b<0C、ab>0D、ab≥013.已知:x=3,y=2,且x>y,则x+y的值为()A、5B、1C、5或1D、—5或—1(三).解答题:14.a+b<0,化简|a+b-1|-|3-a-b|.15..若x-y+y-3=0,求2x+y的值.16.当b为何值时,5-2b-有最大值,最大值是多少?17.已知a是最小的正整数,b、c是有理数,并且有|2+b|+(3a+2c)2=0.4ab+c求式子的值.22-a+c+418.若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.《春雨的色彩》说课稿一、教材内容分析:春天里万物复苏,百花争艳、绿草如荫、一派迷人的景色。
初一奥赛培训01:有理数的巧算(优选.)一、解答题(共16小初一奥赛培训01:有理数的巧算题,满分150分)1、计算:(1)[47﹣(18.75﹣1÷)×2]÷0.46(2)2、计算下式的值:211×555+445×789+555×789+211×445.3、计算:S=1﹣2+3﹣4+…+(﹣1)n+1•n.4、在数1,2,3,…,1998前添符号“+”和“﹣”,并依次运算,所得可能的最小非负数是多少?5、计算3001×2999的值.6、计算103×97×10 009的值.7、计算:8、计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).9、计算:(1﹣)(1﹣)…(1﹣)(1﹣)=_________10、计算:11、某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.12、计算1+3+5+7+…+1997+1999的值.13、计算1+5+52+53+…+599+5100的值.14、计算:+++…+.15、计算下列各式的值:(1)﹣1+3﹣5+7﹣9+11﹣…﹣1997+1999;(2)11+12﹣13﹣14+15+16﹣17﹣18+…+99+100;(3)1991×1999﹣1990×2000;(4)4726342+472 6352﹣472 633×472 635﹣472 634×472 636;(5)(6)1+4+7+ (244)(7)1+(8)116、某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.答案与评分标准一、解答题(共16小题,满分150分)1、计算:(1)[47﹣(18.75﹣1÷)×2]÷0.46(2)考点:有理数的混合运算。
七年级奥数:有理数的计算阅读与思考在小学我们已经学会根据四则运算法则对整数和分数进行计算,当引进负数概念后,数集扩大到了有理数范围,我们又学习了有理数的计算,有理数的计算与算术数的计算有很大的不同:首先,有理数计算每一步要确定符号;其次,代数与算术不同的是“字母代数”,所以有理数的计算很多是字母运算,也就是通常说的符号演算. 数学竞赛中的计算通常与推理相结合,这不但要求我们能正确地算出结果,而且要善于观察问题的结构特点,将推理与计算相结合,灵活选用算法和技巧,提高计算的速度.有理数的计算常用的技巧与方法有: 1.利用运算律; 2.以符代数; 3.裂项相消 4.分解相约; 5.巧用公式等.例题与求解例1 已知m 、n 互为相反数,a 、b 互为负倒数,x 的绝对值等于3,则x —(1+m +n +ab )x +(m +n )x+(—ab )的值等于_________.(湖北省黄冈市竞赛题)解题思路 利用互为相反数、互为倒数的两个有理数的特征计算.例2 把足够大的一张厚度为0.1mm 的纸连续对折,要使对折后的整叠纸总厚度超过12mm ,至少要对折( ).(A )6次 (B )7次 (C )8次 (D )9次 (江苏省竞赛题)解题思路 探索对折的规律,运用估算求解.例3 计算: (1) 1111..12123123100+++⋯+++++++⋯⋯+ (“祖冲之杯”邀请赛试题) (2) 23419987777.7++++⋯+(江苏省泰州市奥校竞赛题)(3) 22222221949195019511952199719981999-+-+⋯+-+(北京市竞赛题)解题思路 对于(1),若先计算每个分母值,则掩盖问题的实质,不妨先从考察一般情形入手;对于(2),由于相邻的后一项与前一项的比都是7,考虑用字母表示和式;(3)式使人联3220012002想到平方差公式.例4 设三个互不相等的有理数,既可表示为1,a +b ,a 的形式,又可表示为0、、b 的形式,求的值.(“希望杯”邀请赛试题)解题思路 由于三个互不相等的有理数有两种表示形式,因此,应考虑对应分情况讨论.例5 有人编了一个程序:从1开始,交替地做加法或乘法(第一次可以是加法,也可以是乘法),每次加法,将上次运算结果加2或加3;每次乘法,将上次运算结果乘2或乘3,例如,30可以这样得到:(1)证明:可以得到22; (2)证明:可以得到2.(全国初中数学竞赛题)解题思路 要证明可以得到相应的数,只要依据程序编出相应的程序即可.能力训练 A 级1.初一“数学晚会”上,有十个同学藏在10张盾牌后面,男同学的盾牌前面写的是一个正数,女同学的盾牌前面写的是一个负数,这10张盾牌如下所示:则盾牌后面的同学中,有女同学_____人,男同学______人.2.有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,例如对1,2,3,4,可作运算:(1+2+3)×4=24(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3,4,-6,10运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:(杭州市重点中学加试试题)3.计算:(1)111135577919971999+++⋯+=⨯⨯⨯⨯ (2) 43421(0.25)(8)2(2)(6)3⎛⎫⎡⎤-⨯--+-÷-÷- ⎪⎣⎦⎝⎭=ab20001999b a+30108413223−→−−→−−→−−→−⨯+⨯+2297100-+4.将1997减去它的,再减去余下的,再减去余下的,再减去余下的,…,依此类推,直主最后减去余下的,最后的答数是_________. (“祖冲之杯”邀请赛试题)5.如果对于任意非零有理数a 、b 定义运算△如下:a ba b ab-=,则 5(43)=____ 6.如果有理数c 、b 、c 满足关系式0a b c <<<那么代数式23bc acab c-的值( ). (A )必为正数 (C )可正可负 (B )必为负数 (D )可能为0(第十六届江苏省竞赛题) 7.199797199898,,,199898199999----这四个数由小到大的排列顺序是()・ 199797199898(A) 199898199999199819979897 (B) 199919989998979819971998 (C) 989919981999981998971997 (D) 991999981998-<-<-<--<-<-<--<-<-<--<-<-<-(重庆市竞赛题)8.若a 与(一b )互为相反数,则221898991997a b ab+= (A) 0 (B) 1 (C) -1 (D) 1997 9.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是()・(A) 2 (B) 1 (C ) 0 (D ) -1 (第十三届“希望杯”邀请赛试题)10.若a 、b 、c 、d 是互不相等的整数9且abed = 9,则d+b+c+d 等于( ). (A) 0 (B) 4 (C) 8 (D )值无法确定 1 1 亠1L 把111,3.7,6,2.9,4.652分别填在图中五个○内,再在每个□中填上和它相连的三个○中的数的平均数,再把三个□中的平均数填在△中找出一种填法,使△中的数尽可 能小,并求这个数.2131415119971(“华罗庚金杯”少年数学邀请赛) 12.已知a 、b 、c 都不等于零,且||||||||a b c abca b c abc +++的最大值为m ,最小值为n ,求(+1)1998m n +的值.B 级1.计算:1131351397=244666989898⎛⎫⎛⎫⎛++++++++++⎪ ⎪ ⎝⎭⎝⎭⎝) (第十届“五羊杯”竞赛题)2.计算:23456789102222222222--------+= (第十届“希望杯”邀请赛试题)3.计算:212424824139261839n n n n n n ⨯⨯+⨯⨯++⋅⋅⎛⎫= ⎪⨯⨯+⨯⨯++⋅⋅⎝⎭4.据美国詹姆斯·马丁的测算,在近十年,人类知识总量已达到每三年翻一番,到2020年甚至要达到每73天翻一番的空前速度,因此,基础教育的任务已不是“教会一切人一切知识,而是让一切人会学习”.已知底,人类知识总量为以a .假如从底到2009年底是每3年翻一番;从2009年底到2019年底是每1年翻一番;2020年是每73天翻一番.则: (1)2009年底人类知识总量是——; (2)2019年底人类知识总量是——;(3)2020年按365天计算,2020年底人类知识总量是——. (北京市顺义区中考题) 5.你能比较两个数20022001和20012002的大小吗?为了解决这个问题.我们先写岀它的一般形式,即比较1n n +与+1nn ()的大小(n 是自然数),然后,我们从分析1,2,3,n n n ===中发现规律,经归纳、猜想得出结论.(1)通过计算.比较下列各组中两个数的大小(在空格中填写<,=,>号)2132435465(1)12;(2)23;(3)34;(4)45;(5)56-----(2)从第(1)题的结果经过归纳.以猜想出1n n+与+1nn ()的大小关系是——; (3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小20022001_20012002 (福建省龙岩市中考题)6.如果ac<0,那么下面的不等式22330,0,0,00aac a c c a ca c<<<<<,中必定成立的有()个(A )1 (B )2 (C )3 (D )47. a 、b 都是有理数,代数式222222222,,(),(),1,0.001,a b a b a b a b a a b +--++++24231a b ++中,其中值为正的共有( )个・(A )3 (B )4 (C )5 (D )68.三进位制数201可用十进位制数表示为21230312901219⨯+⨯+=⨯++;二进位制数1011可用十进位制法表示为3211202121802111⨯+⨯+⨯+=+++=.前者按3的幂降幂排列,后者按2的幂降幂排列,现有三进位制数a =221,二进位制数b =10111,则a 与b 的大小关系为( ).(D )不能判定(重庆市竞赛题)9.如果有理数a .b 、c 、d 满足a +b >c +d ,则( ). (第十一届“希望杯”邀请赛试题)222233334444(A) |1||1| (B) (C) (D) a b c d a b c d a b c da b c d-++>++>++>++>+10.有1998个互不相等的有理数,每1997个的和都是分母为3998的既约真分数,则这1998个有理数的和为( ). (《学习报》公开赛试题)999997998999(A)(B)(C)(D)199719971998199811.设n 为自然数,比较与2的大小. 12.如图,在六边形的顶点处分别标上数1,2,3,4,5,6,能否使任意三个相邻顶点处的三数之和(1)大于9 (2)大于10? 若能,请在图中标出来;若不能,请说明理由. (第十五届江苏省竞赛题)n n ns 223222132++++=n s。
第1讲有理数的巧算——练习题一、第1讲有理数的巧算(练习题部分)1.2.3.4. 3.825 ×−1.825+0.25×3.825+3.825×5.−7.2×0.125+0.375×1.1+3.6×−3.5×0.3756.7.8.9.10. 9+99+999+9999+99999+99999911.12.13.14.15.16.17.答案解析部分一、第1讲有理数的巧算(练习题部分)1.【答案】解:原式=(31+4)+(-22+11)=36-1125.【解析】【分析】根据有理数加法交换律和结合律,把分母相同的放一起,利用有理数加减法法则计算即可得出答案.2.【答案】解:原式=(5-3-2)+(8-3.125)+(6-7-3),=0+5-5,=0.【解析】【分析】根据有理数加法交换律和结合律,把分母相同的放一起,利用有理数加减法法则计算即可得出答案.3.【答案】解:原式=-××(-)×(-)××(-),=.【解析】【分析】根据有理数除法法则:除以一个数等于乘以这个数的倒数,化成乘法之后,再根据乘法法则计算即可得出答案.4.【答案】解:原式=3.825×0.25-1.825+0.25×3.825+3.825×0.5,=3.825×(0.25+0.25+0.5)-1.825,=3.825×1-1.825,=3.825-1.825,=2.【解析】【分析】根据乘法分配律先计算再根据有理数减法法则计算即可得出答案.5.【答案】解:原式=3.6×(-2)×0.125+0.375×1.1+3.6×-3.5×0.375,=3.6×(-2×0.125+0.5)+0.375×(1.1-3.5),=3.6×(-0.25+0.5)+0.375×(-2.4),=3.6×0.25+0.375×(-2.4),=0.9-0.9,=0.【解析】【分析】根据乘法分配律先计算,再根据有理数乘法和减法法则计算即可得出答案.6.【答案】解:原式=,=,=.【解析】【分析】由里往外,逐层计算,根据分数除法和减法的法则计算即可.7.【答案】解:原式=1++3++5++7++9+,=(1+3+5+7+9)+(++++),=25+,=25.【解析】【分析】先将带分数化成整数+分数的形式,再利用加法交换律和结合律计算即可得出得出答案.8.【答案】解:原式=,=,=999.【解析】【分析】先根据分数加法法则:同分母的分数相加,分母不变,分子相加,再由高斯定理计算即可.9.【答案】解:原式=(7-5)+(9-7)+(11-9)+……+(101-99),=2+2+2 (2)=2×48,=96.【解析】【分析】利用加法交换和结合律得出有48个2,计算即可得出答案.10.【答案】解:原式=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)+(1000000-1),=(10+100+1000+10000+100000+1000000)-(1+1+1+1+1+1),=1111110-6,=1111104.【解析】【分析】先将各数分拆,再利用加法交换、结合律计算即可得出答案.11.【答案】解:原式=3×31999-5×31999+2×31999,=31999×(3-5+2),=31999×0,=0.【解析】【分析】根据幂的运算性质拆分,再利用乘法分配律计算即可得出答案.12.【答案】解:原式=1-1+1-1,=0.【解析】【分析】根据负数的偶次幂为正,奇次幂为负,计算即可得出答案.13.【答案】解:原式=×(-)+×(-)+×(-)+……+×(-),=×(-+-+-+……+-),=×(-),=×,=.【解析】【分析】先把每一项裂项,之后抵消,计算即可得出答案.14.【答案】解:原式=2002+-2001-+2000+-1999-+……+2+-1-,=(2002-2001)+(-)+(2000-1999)+(-)+……+(2-1)+(-),=1++1++……+1+,=1×1001+×1001,=1001×(1+),=.【解析】【分析】先将带分数拆成整数+分数形式,再利用加法交换、结合律计算,之后利用乘法分配律计算即可.15.【答案】解:原式=,=,=.【解析】【分析】分子分母先提起公因式,再约分,即可得出答案.16.【答案】解:原式=1+2++3++4++5++6++7+,=(1+2+3+4+5+6+7)+(+++++),=28+(-+-+-+-+-+-),=28+(-),=28+,=28.【解析】【分析】先将带分数拆成整数+分数形式,再利用加法交换、结合律,利用裂项相消计算即可.17.【答案】解:∵,∴原式=2×(1-)+2×(-)+2×(-)+……+2×(-),=2×(1-+-+-+……+-),=2×(1-),=2×,=.【解析】【分析】由展开计算即可得出答案.。
初一数学竞赛培训第一讲:有理数的巧算方法一:把正、负数分别结合相加 例1:计算:-25+29-26+17-33+34方法二:把相加得0的数分别结合相加 例2:计算:5117312323141531129+-+--- = 5117)311312323()151429(+--+-- 例3:计算:1+2-3-4+5+6-7-8+9+…+2005+2006-2007-2008+2009方法三:分数相加,凑整相加 例4:计算:15.1375.0532413855+-++- 例5:计算:325312215412414--+- 方法四:先适当变形,再结合相加例6:28+19-49-997+9996例7:11+192+1993+19994+199995+1999996+19999997+199999998+1999999999 例8:200920081431321211⨯++⨯+⨯+⨯Λ方法五:巧添辅助数相加 例9:641321161814121+++++ 641641641321161814121-++++++= 或64164)641321161814121(⨯⨯+++++= 方法六:巧用和逆用乘法分配律例10: 625.0675.0)1219141(36⨯-⨯---⨯- 例11:)526110132()301(-+-÷-第二讲 有理数的运算要注意什么方法一:乘除做得好,需要讲技巧1.先观察有没有因数“0”2.先定、先写符号3.除法统一成乘法,小数化为分数,带分数化为假分数,然后整体运算4.运用乘法分配律简便运算方法二:混合运算要细心,顺序、符号要分清先看运算顺序:确定先算什么,后算什么,最好每一步用横线标记。
其次看运算符号:(1)加减的符号:例 :-8-6 2131-(2) 乘除的符号:例:)21()2()32()5(6-⨯-÷---⨯- (3)幂的符号:例:4)1(-与41- 42-与4)2(-一、要注意运算顺序:例1:计算:(1) 2)21(212⨯-÷⨯- (2) )6(121121)6(6-⨯÷⨯---(3) []24)3(2611--⨯-- (4)[]⎭⎬⎫⎩⎨⎧-÷-+-⨯⨯--)3265()1()2(33722008二、要注意运算符号:例2:计算:(1) 200922232)1()8.0()32(35.12-⨯-÷-⨯---(2) 32222)21()74()75(4)4()4()3()3(--÷-⨯--+-+---三、灵活运用运算律;(1) )322()87()12787431(-+-÷-- (2) 722)247()1278543125(--÷+-+ (3) )36(727199)1713(17-⨯+-⨯- (4) 34.075)13(317234.03213⨯--⨯+⨯-⨯-第四讲 有 理 数一、有理数的概念及分类。
一、解答题(共16小题,满分150分)1、计算:(1)[47﹣(18.75﹣1÷)×2]÷0.46(2)2、计算下式的值:211×555+445×789+555×789+211×445.3、计算:S=1﹣2+3﹣4+…+(﹣1)n+1•n.4、在数1,2,3,…,1998前添符号“+”和“﹣”,并依次运算,所得可能的最小非负数是多少?5、计算3001×2999的值.6、计算103×97×10 009的值.7、计算:8、计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).9、计算:(1﹣)(1﹣)…(1﹣)(1﹣)=_________10、计算:11、某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.12、计算1+3+5+7+…+1997+1999的值.13、计算1+5+52+53+…+599+5100的值.14、计算:+++…+.15、计算下列各式的值:(1)﹣1+3﹣5+7﹣9+11﹣…﹣1997+1999;(2)11+12﹣13﹣14+15+16﹣17﹣18+…+99+100;(3)1991×1999﹣1990×2000;(4)4726342+472 6352﹣472 633×472 635﹣472 634×472 636;(5)(6)1+4+7+ (244)(7)1+(8)116、某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.初一奥赛培训01:有理数的巧算答案与评分标准一、解答题(共16小题,满分150分)1、计算:(1)[47﹣(18.75﹣1÷)×2]÷0.46(2)考点:有理数的混合运算。
专题:计算题。
分析:(1)先算乘除,再算加减,有括号的先算括号里的;(2)先算乘方,再算乘除,最后算加减,有括号的先算括号里的.解答:解:(1)原式=[47﹣(18﹣)×]÷0.46=[47﹣×]×=×=20;(2)原式===.点评:进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.2、计算下式的值:211×555+445×789+555×789+211×445.考点:因式分解的应用;有理数的混合运算。
分析:直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解答:解:原式=(211×555+211×445)+(445×789+555×789),=211×(555+445)+(445+555)×789,=211×1000+1000×789,=1000×(211+789),=1 000 000.点评:本题考查因式分解的运用.加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.3、计算:S=1﹣2+3﹣4+…+(﹣1)n+1•n.考点:有理数的乘方。
专题:规律型。
分析:分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“﹣1”.如果按照将第一、第二项,第三、第四项,分别配对的方式计算,就能得到一系列的“﹣1”,于是一改“去括号”的习惯,而取“添括号”之法.解答:解:S=(1﹣2)+(3﹣4)+…+(﹣1)n+1•n.下面需对n的奇偶性进行讨论:当n为偶数时,上式是个(﹣1)的和,所以有S=(﹣1)×=﹣;当n为奇数时,上式是个(﹣1)的和,再加上最后一项(﹣1)n+1•n=n,所以有S=(﹣1)×+n=.点评:本题属规律性题目,解答此题时要注意对n的奇偶性进行讨论,再根据有理数的乘方法则计算,找出其规律.4、在数1,2,3,…,1998前添符号“+”和“﹣”,并依次运算,所得可能的最小非负数是多少?考点:整数的奇偶性问题。
专题:综合题。
分析:分析因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,1998之前任意添加符号“+”或“﹣”,不会改变和的奇偶性.在1,2,3,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“﹣”之后,所得的代数和总为奇数,故最小非负数不小于1.解答:解:现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“﹣”,显然n﹣(n+1)﹣(n+2)+(n+3)=0.这启发我们将1,2,3,1998每连续四个数分为一组,再按上述规则添加符号,即(1﹣2﹣3+4)+(5﹣6﹣7+8)++(1993﹣1994﹣1995+1996)﹣1997+1998=1.所以,所求最小非负数是1.点评:说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.5、计算3001×2999的值.考点:平方差公式。
专题:计算题。
分析:将积中的两个因数变为相同两数的和与差的积,再运用平方差公式计算即可.解答:解:3001×2999=(3000+1)(3000﹣1)=30002﹣12=8999999.点评:本题考查了平方差公式再实数运算中的作用,复杂的实数运算中,运用乘法公式可使计算简便.6、计算103×97×10 009的值.考点:平方差公式。
专题:计算题。
分析:本题可根据平方差公式:(a+b)(a﹣b)=a2﹣b2,化简式子,把103看成100+3,把97看成100﹣3,把10009看成10000+9计算,得出答案.解答:解:103×97×10 009,=(100+3)(100﹣3)(10000+9),=(1002﹣9)(1002+9),=1004﹣92,=99 999 919.点评:本题主要考查了平方差公式的运用,难度适中.7、(2000•内蒙古)计算:考点:平方差公式;有理数的混合运算。
专题:计算题。
分析:分析直接计算繁,仔细观察,发现分母中涉及到三个连续整数:12345,12346,12347,然后利用平方差公式进行计算.解答:解:由题意可设字母n=12346,那么12345=n﹣1,12347=n+1,于是分母变为n2﹣(n﹣1)(n+1).应用平方差公式化简得n2﹣(n2﹣12)=n2﹣n2+1=1,即原式分母的值是1,所以原式=24690.点评:此题主要考查平方差公式的性质及其应用,是一道好题,计算时要仔细.8、计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).考点:平方差公式。
分析:分析式子中2,22,24,每一个数都是前一个数的平方,若在(2+1)前面有一个(2﹣1),就可以连续递进地运用(a+b)(a﹣b)=a2﹣b2了.解答:解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1),=(22﹣1)(22+1)(24+1)(28+1)(216+1)×(232+1),=(24﹣1)(24+1)(28+1)(216+1)(232+1),=(232﹣1)(232+1),=264﹣1.点评:本题考查了平方差公式的运用,构造能使用平方差公式的条件是解题的关键.9、计算:(1﹣)(1﹣)…(1﹣)(1﹣)=考点:平方差公式。
分析:利用平方差公式对各项分解因式,前一项与后一项出现倒数,然后再根据有理数的乘法计算即可.解答:解:(1﹣)(1﹣)…(1﹣)(1﹣),=(1﹣)(1+)(1﹣)(1+)•…•(1﹣)(1+)(1﹣)(1+),=××××××…××××,=×,=.点评:本题考查了平方差公式的逆运用,利用公式分解成两数的积,并且出现倒数相乘是解题的关键,求解方法灵活巧妙.10、计算:考点:有理数的混合运算。
专题:规律型。
分析:首先要仔细审题,看似挺复杂,但是只要找出其中的规律,就会把问题简单化.四个括号中均包含一个共同部分++…,我们用一个字母表示它以简化计算.解答:解:设:m=++…,则原式=(m+)(1+m)﹣(1+m+)m=(m+㎡++)﹣(m+㎡+),=点评:本题主要考查的是有理数混合运算的拓展练习,有一定的规律性,本题难度适中.11、某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.考点:有理数的混合运算。
专题:计算题;应用题。
分析:由于若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.由此即可求解.解答:解:取90为基准数,大于90的数取“正”,小于90的数取“负”,所以总分为:90×20+(﹣3)+1+4+(﹣2)+3+1+(﹣1)+(﹣3)+2+(﹣4)+0+2+(﹣2)+0+1+(﹣4)+(﹣1)+2+5+(﹣2)=1800﹣1=1799;平均分为90+(﹣1)÷20=89.95.点评:此题主要考查了有理数的混合运算,解题时把所给数据分别减去90,这样就会大大简化计算,使解题变得比较方便.12、计算1+3+5+7+…+1997+1999的值.考点:有理数的加法。
专题:规律型。
分析:观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.用字母S表示所求算式,即S=1+3+5++1997+1999①;再将S各项倒过来写为S=1999+1997+1995++3+1②.将①,②两式左右分别相加除以2可得结果.解答:解:令S=1+3+5++1997+1999①;再根据加法交换律将S各项倒过来写为S=1999+1997+1995++3+1②.2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(1000个2000)=2000×1000=2 000 000.∴S=1 000 000.故1+3+5+7+…+1997+1999的值为:1000000.点评:本题考查了有理数的加法.一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3﹣1=5﹣3=7﹣5=1999﹣1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.13、计算1+5+52+53+…+599+5100的值.考点:有理数的乘方。