七年级数学有理数的运算含答案
- 格式:doc
- 大小:467.63 KB
- 文档页数:26
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
初一七年级数学有理数混合运算专题练习及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初一七年级有理数混合运算专题练习及答案1.计算(1)27﹣18+(﹣7)﹣32;(2);(3);(4).2.(1)(﹣4)﹣(﹣3)﹣(﹣6)+(﹣2)(2)7×1÷(﹣9+19)(3)(﹣+﹣+)×(﹣24)(4)﹣13﹣(1﹣0.5)×[2﹣(﹣3)2](5)﹣22×|﹣3|+(﹣6)2×(﹣)﹣|+|÷(﹣)3.(6)[2﹣(+﹣)×24]÷5×(﹣1)2003.3.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)4.计算:(1)﹣15+(﹣8)﹣(﹣11)﹣12(2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].5.计算(1)(﹣)÷×(﹣)÷(﹣)(2)﹣3﹣[﹣5+(1﹣0.2×)÷(﹣2)](3)(4﹣3)×(﹣2)﹣2÷(﹣)(4)[50﹣(﹣+)×(﹣6)2]÷(﹣7)2.6.计算:(1);(2)﹣24+3﹣16﹣5;(3);(4);(5);(6);(7);(8);(9);(10);(11);(12)(﹣47.65)×2+(﹣37.15)×(﹣2)+10.5×(﹣7).7.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(3)(4)(5).8.计算:(1)5﹣(﹣2)+(﹣3)﹣(+4)(2)(﹣﹣+)×(﹣24)(3)(﹣3)÷××(﹣15)(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017.9.计算:(1)1.78+3.64﹣5.25﹣0.2+0.3﹣0.33.(2)1﹣++﹣﹣3(3)(﹣+)÷(﹣)×+(﹣1)100(4)﹣102﹣[(1﹣)×][2﹣(﹣3)2](5)﹣2﹣{8+(﹣1)2﹣[(﹣4)×2÷(﹣2)+×(﹣6)]}(6)+|﹣(﹣)2﹣|÷﹣|﹣2﹣3|﹣.10.计算(1)(﹣2.48)+(+4.33)+(﹣7.52)+(﹣4.33)(2)(+3)+(﹣5)+(﹣2)+(﹣32)(3)﹣(+)﹣(+)+(4)﹣14﹣×[2﹣(﹣3)2].11.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4).12.计算题(1)﹣3+8﹣15﹣6(2)(﹣)×(﹣1)÷(﹣2)(3)(﹣+﹣)÷(﹣)(4)(﹣6)÷(﹣)2﹣72+2×(﹣3)213.计算:(1)25×﹣(﹣25)×+25÷(﹣);(2)2﹣23÷[()2﹣(﹣3+0.75)]×5.14.计算下列各题(1)﹣28﹣(﹣15)+(﹣17)﹣(+5)(2)(﹣1)2017+(﹣3)2×|﹣|﹣42÷(﹣2)4 15.计算(1)(﹣1)﹣(+6)﹣2.25+(2)﹣9×(﹣11)﹣3÷(﹣3)(3)8×(﹣)﹣(﹣4)×(﹣)+(﹣8)×(4)(﹣24)×(+﹣).16.计算:(1)(﹣28)÷(﹣6+4)+(﹣1)×5;(2)÷.17.有理数计算.(1)﹣2.8+(﹣3.6)+(+3)﹣(﹣3.6)+(﹣1)2013(2)(﹣12)×(﹣+)+(﹣32)÷2.18.细心算一算(1)19+(﹣6)+(﹣5)+(﹣3)(2)(﹣81)÷×÷(﹣16)(3)(﹣24)×(﹣﹣)(4)﹣|﹣5|+(﹣3)3÷(﹣22)(5)﹣14﹣(﹣1)3﹣[2﹣(﹣3)2](6)﹣99×36.19.计算,能简算的要简算.(1)1+(﹣2)+|﹣2|﹣5(2)(+)+(﹣)﹣(+)﹣(﹣)﹣(+1)(3)(﹣81)÷×÷(﹣16)(4)﹣14﹣×[2﹣(﹣4)2](5)(﹣370)×(﹣)+0.25×24.5﹣5×(﹣25%)20.计算(1)[2﹣5×(﹣)2]÷(﹣)(2)(﹣24)×(﹣1﹣)(3)﹣14﹣(1﹣0.4)÷×[(﹣2)2﹣6].21.计算:(1)20+(﹣14)﹣(﹣18)﹣13;(2)﹣2;(3)(﹣7)×(﹣5)﹣90÷(﹣15)(4)(5)﹣14﹣(1﹣0.5)×22.计算(1)16﹣(﹣10+3)+(﹣2)(2)(﹣4)2×﹣27÷(﹣3)3(3)﹣12﹣()2×(﹣﹣)÷23.计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×24.计算下列各题.(1)99×(﹣7)(2)﹣24+(﹣2)2﹣(﹣1)11×(﹣)÷﹣|﹣2| (3)[(﹣+)×(﹣36)+2]÷(﹣14)25.(1)7+(﹣5)﹣(﹣3)+(6)(2)(﹣2)÷(2)×(﹣2.8)(3)25×+(﹣25)×+25×(﹣)(4)(﹣99)×99(5)﹣12017﹣[2﹣(1﹣×0.5)]×[32﹣(﹣2)2](6)|﹣|+[×22﹣(﹣)2].26.计算下列各式:(1)(2).27.计算(1)(﹣3)﹣(﹣2)﹣(﹣2)﹣(+1.75)﹣(﹣1)(2)﹣4×(﹣2)﹣6×(﹣2)+17×(﹣2)﹣19÷(3)﹣12+×[﹣22+(﹣3)2×(﹣2)+(﹣3)]÷(﹣)2 28.计算(1)5.02﹣1.37﹣2.63(2)72×(﹣+﹣)(3)×[÷(﹣)](4)[﹣(﹣)÷]÷.29.计算:(1)(2)(3).30.计算(1)1+(﹣2)+|﹣2﹣3|﹣5﹣(﹣9)(2)×()×(3)()×(﹣12)(4)﹣3﹣[﹣5+(1﹣2×)÷(﹣2)].31.计算:(1)﹣20+3+5﹣7(2)(﹣36)×(﹣+﹣);(3)(﹣4)﹣(﹣5)+(﹣4)﹣(+3)32.计算:(1)﹣0.5+(﹣15)﹣(﹣17)﹣|﹣12|;(2)[﹣22+(﹣2)3]﹣(﹣2)×(﹣3);(3)()÷();(4);(5)﹣14+[1﹣(1﹣0.5×2)]÷|2﹣(﹣3)2|;(6)[(﹣3)2﹣22﹣(﹣5)2]××(﹣2)4.33.计算:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)33.1﹣10.7﹣(﹣22.9)﹣;(3);(4);(5);(6)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2010.34.计算:(1)13+5×(﹣2)﹣(﹣4)÷(﹣8);(2)÷(﹣2)﹣×(﹣1)+0.75;(3)[1﹣(+﹣)×(﹣2)3]÷(﹣3);(4)﹣24﹣[3+0.4÷(﹣1)×(2)2]+(﹣1)2016×()2016.35.计算:(1)(﹣2)﹣(﹣5)﹣(+3)﹣(﹣);(2)﹣27÷×(﹣)+4﹣4×(﹣);(3)[(﹣1)2014+(1﹣)×]÷(﹣32+2);(4)[﹣﹣()3+﹣]÷(﹣).36.有理数计算题(1)12﹣(﹣5)﹣(﹣18)+(﹣5)(2)﹣6.5+4+8﹣3(3)(﹣3)×(﹣)÷(﹣1)(4)(+﹣)×(﹣12)(5)32﹣50÷22×(﹣)﹣1(6)﹣32÷[(﹣)2×(﹣3)3+(1﹣1÷)].37.(1)871﹣87.21+53﹣12.79+43.(2)4×(﹣3)2+6.(3)﹣0.52+(4).38.计算:(1)﹣3﹣7;(2)(﹣)+(﹣)﹣(﹣3);(3)﹣0.5+(﹣15.5)﹣(﹣17)﹣|﹣12|(4)(5)(﹣81)÷(6)〔1﹣(1﹣0.5×)〕×|2﹣(﹣3)2|﹣(﹣62).39.计算(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)(2)(3)﹣(3﹣5)+32×(﹣3)(4)(5)|(6).40.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣8)+4÷(﹣2);(3)(﹣10)÷(﹣)×5;(4)[1﹣(1﹣0.5×)]×[2﹣(﹣3)2].41.计算(1)23﹣17﹣(﹣7)+(﹣16)(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)(3)﹣24÷(2)2﹣3×(﹣)(4)0.25×(﹣2)3﹣[4÷(﹣)2+1]+(﹣1)2008.42.计算题.(1)﹣5+2﹣13+4(2)(﹣2)×(﹣8)﹣9÷(﹣3)(3)(﹣18)×(﹣)(4)﹣(﹣3)+12.5+(﹣16)+(﹣2.5)(5)(6)(7)(简便方法)(8)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2010.43.计算题(1)(﹣1)2013+(﹣4)÷(﹣5)×(﹣)(2)﹣42+3×(﹣2)2+(﹣6)÷(﹣)2(3)(﹣1)3﹣(0.5﹣1)×|2﹣(﹣3)2|(4)36×()(﹣)﹣4×.44.计算:(1)(﹣)+(﹣)+(﹣)+;(2)﹣7.2﹣0.8﹣5.6+11.6;(3)﹣20+(﹣14)﹣(﹣18)﹣13(4)3×(﹣4)+28÷(﹣7)(5)(﹣)×0.125×(﹣2)×(﹣8)(6)(7)(8)(﹣24)×(﹣﹣);(9)18×(﹣)+13×﹣4×.(10).45.耐心算一算:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣19);(2);(3)﹣3.5÷×(﹣)×|﹣|;(4).46.计算(1)﹣20﹣(+14)+(﹣18)﹣(﹣13);(2)﹣3﹣2.4﹣(﹣)+(﹣2);(3)18﹣6÷(﹣)×(﹣);(4)﹣48÷(﹣2)3×(﹣1)2016﹣22(5)[2﹣5×(﹣)2]÷(﹣);(6)﹣32﹣×[(﹣5)2×(﹣)﹣240÷(﹣4)×].47.计算(1)23+(+76)+(﹣36)+(﹣23)(2)﹣40﹣(﹣19)+(﹣24)(3)(﹣)×(﹣1)÷(﹣2)(4)﹣10+8÷(﹣2)3﹣(﹣2)2×(﹣3)(5)﹣14﹣(1﹣0.5)××[﹣(﹣2)2](6)30﹣(+﹣)×36(7)[25×+25×﹣25×]×[(﹣5)26﹣2﹣526].48.计算:(1)(﹣3)2﹣(﹣3)3﹣22+(﹣22)(2)3.25﹣[(﹣)﹣(﹣)+(﹣)+4](3)(﹣4)÷(﹣3)×45÷(﹣5)(4)(﹣)××.49.计算(1)(﹣10)+(+7)(2)12﹣(﹣18)+(﹣7)﹣15(3)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(4)|﹣22+(﹣3)2|﹣(﹣)3(5)2×(﹣3)2﹣33﹣6÷(﹣2)(6)﹣81÷×(﹣)(7)+(﹣)﹣(﹣)+(﹣)﹣(+)(8)(﹣1)2008+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣)(9)﹣32×(﹣)2+(﹣+)×(﹣24).50.认真计算,并写清解题过程(1)﹣10÷×÷(﹣2)(2)(﹣4)﹣(﹣3)﹣(﹣6)+(﹣2)(3)(4)(5)×(﹣36)(6).参考答案一、解答题(共50小题)1.计算(1)27﹣18+(﹣7)﹣32;(2);(3);(4).【分析】(1)先化简,再分类计算即可;(2)先判定符号,再化为连乘计算;(3)利用乘法分配律简算;(4)先算乘方,再算括号里面的减法,再算乘法,最后算括号外面的减法.【解答】解:(1)27﹣18+(﹣7)﹣32=27﹣18﹣7﹣32=27﹣57=﹣30;(2)=﹣7××=﹣;(3)=﹣×(﹣24)﹣×(﹣24)+×(﹣24)=18+20﹣21=17;(4)=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】此题考查有理数的混合运算,注意抓组运算顺序,根据数字特点灵活运用运算定律简算.2.(1)(﹣4)﹣(﹣3)﹣(﹣6)+(﹣2)(2)7×1÷(﹣9+19)(3)(﹣+﹣+)×(﹣24)(4)﹣13﹣(1﹣0.5)×[2﹣(﹣3)2](5)﹣22×|﹣3|+(﹣6)2×(﹣)﹣|+|÷(﹣)3.(6)[2﹣(+﹣)×24]÷5×(﹣1)2003.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算括号中的运算,再计算乘除运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣4+3+6﹣2=﹣1+4=2;(2)原式=7÷10=0.7;(3)原式=12﹣4+9﹣10=7;(4)原式=﹣1﹣××(﹣7)=﹣1+=;(5)原式=﹣12﹣15+1=﹣26;(6)原式=(2﹣9﹣4+18)×(﹣)=﹣﹣1=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(2)4﹣8×(﹣)3(3)(4)【分析】(1)减法转化为加法,计算可得;(2)先计算乘方,再计算乘法,最后计算加法即可得;(3)将除法转化为乘法,再利用乘方分配律计算可得;(4)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.(2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].【分析】(1)将减法转化为加法,再计算加法即可得;(2)将除法转化为乘法,再计算乘法即可得;(3)先计算括号内,再计算除法即可;(4)根据有理数的混合运算顺序和法则计算可得.【解答】解:(1)原式=﹣15+(﹣8)+11+(﹣12)=﹣35+11=﹣24;(2)原式=﹣×(﹣)××(﹣2)=﹣;(3)原式=(﹣)÷(﹣﹣)=(﹣)÷(﹣)=﹣×(﹣)=;(4)原式=﹣8+[16﹣(1﹣9)×3]=﹣8+[16﹣(﹣8)×3]=﹣8+(16+24)=﹣8+40=32.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和法则.5.计算(1)(﹣)÷×(﹣)÷(﹣)(2)﹣3﹣[﹣5+(1﹣0.2×)÷(﹣2)](3)(4﹣3)×(﹣2)﹣2÷(﹣)(4)[50﹣(﹣+)×(﹣6)2]÷(﹣7)2.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣×××=﹣;(2)原式=﹣3+5+(1﹣)×=﹣3+5+=2;(3)原式=﹣+7+=3;(4)原式=(50﹣28+33﹣6)×=49×=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.计算:(1);(2)﹣24+3﹣16﹣5;(3);(4);(5);(6);(7);(8);(9);(10);(11);(12)(﹣47.65)×2+(﹣37.15)×(﹣2)+10.5×(﹣7).【分析】(1)(2)(5)(8)可直接按照有理数的混合运算进行;(3)(7)(9)(10)(11)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)(6)可利用分配律计算;(12)可利用结合律进行运算,最后得出结果.【解答】解:(1)原式=﹣+﹣=﹣=3﹣6=﹣3;(2)原式=﹣21﹣16﹣5=﹣37﹣5=﹣42;(3)原式=﹣8××=﹣8;(4)原式=×8﹣×﹣×=6﹣1﹣=;(5)原式=﹣×﹣8÷2=﹣2﹣4=﹣6;(6)原式=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣8+9﹣2=1﹣2=﹣1;(7)原式=﹣9×﹣[25×(﹣)﹣240×(﹣)×﹣2]=﹣3﹣(﹣15+15﹣2)=﹣3+2=﹣1;(8)原式=×(﹣)﹣×(﹣)=﹣1+1=0;(9)原式=﹣1﹣××(2﹣9)=﹣1﹣×(﹣7)=﹣1+=;(10)原式=﹣9﹣125×﹣18÷9=﹣9﹣20﹣2=﹣31;(11)原式=﹣1﹣(﹣)×﹣8=﹣1+2﹣8=﹣7;(12)原式=(37.15﹣47.65)×2﹣10.5×7=﹣10.5×﹣10.5×=﹣10.5×(+)=﹣10.5×10=﹣105.【点评】本题考查的是有理数的运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.7.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(3)(4)(5).【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式变形后利用乘法分配律计算即可得到结果;(5)原式先计算乘方运算,以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=﹣32+21﹣4=﹣36+21=﹣15;(3)原式=18﹣20=﹣2;(4)原式=﹣(100﹣)×36=﹣(3600﹣)=﹣3599;(5)原式=﹣1﹣××(2﹣9)=﹣1+=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.8.计算:(1)5﹣(﹣2)+(﹣3)﹣(+4)(2)(﹣﹣+)×(﹣24)(3)(﹣3)÷××(﹣15)(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017.【分析】(1)将减法转化为加法,再利用加法的交换律和结合律简便计算可得;(2)运用乘法的分配律计算可得;(3)将除法转化为乘法,再计算乘法即可得;(4)根据有理数的混合运算顺序和法则计算可得.【解答】解:(1)原式=5+2﹣3﹣4=5﹣3+2﹣4=2﹣2=0;(2)原式=×24+×24﹣×24=18+15﹣18=15;(3)原式=(﹣3)×××(﹣15)=4×4×5=80;(4)原式=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1)=﹣1+18﹣3=14.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.9.计算:(1)1.78+3.64﹣5.25﹣0.2+0.3﹣0.33.(2)1﹣++﹣﹣3(3)(﹣+)÷(﹣)×+(﹣1)100(4)﹣102﹣[(1﹣)×][2﹣(﹣3)2](5)﹣2﹣{8+(﹣1)2﹣[(﹣4)×2÷(﹣2)+×(﹣6)]}(6)+|﹣(﹣)2﹣|÷﹣|﹣2﹣3|﹣.【分析】(1)直接将各数相加减即可;(2)将分母相等的项合并,将分母不等的项通分即可得出值;(3)先计算括号里的值,再去括号,再乘除,最后加减即可求值;(4)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(5)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(6)先乘方后乘除最后算加减,有绝对值的先算绝对值里面的.【解答】(1)原式=5.42﹣5.25﹣0.2+0.3﹣0.33=0.17﹣0.2+0.3﹣0.33=﹣0.03+0.3﹣0.33=0.27﹣0.33=﹣0.06;(2)原式=﹣++1﹣3+﹣=﹣﹣+﹣=+﹣=﹣﹣=﹣﹣=﹣=﹣;(3)原式=(﹣)÷(﹣)×+(﹣1)100=××+1=1+1=2;(4)原式=﹣102﹣[][2﹣32]=﹣100﹣×(2﹣9)=﹣100﹣×(﹣7)=﹣100+=﹣98;(5)原式=﹣2﹣{8+1﹣[﹣8÷(﹣2)﹣]}=﹣2﹣{9+1}=﹣2﹣10=﹣12;(6)原式=+||÷﹣|﹣5|﹣=﹣+×25﹣5﹣5=+﹣10=﹣=﹣.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.10.计算(1)(﹣2.48)+(+4.33)+(﹣7.52)+(﹣4.33)(2)(+3)+(﹣5)+(﹣2)+(﹣32)(3)﹣(+)﹣(+)+(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)原式结合后,相加即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式结合后,相加即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(﹣2.48﹣7.52)+[(+4.33)+(﹣4.33)]=﹣10;(2)原式=(3﹣2)+(﹣5﹣32)=1﹣38=﹣36;(3)原式=(﹣)+(﹣+)=﹣=﹣;(4)原式=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4).【分析】(1)先化简,再计算加减法;(2)按照有理数混合运算的顺序,先乘除后算加减,有括号的先算括号里面的;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4),先将乘法变为乘法,再运用乘法的分配律计算.【解答】解:(1)原式=﹣4+1﹣3=﹣6;(2)原式=﹣3﹣(﹣2﹣1)=﹣3+3=0;(3)===2﹣12=﹣10;(4)======﹣3.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.12.计算题(1)﹣3+8﹣15﹣6(2)(﹣)×(﹣1)÷(﹣2)(3)(﹣+﹣)÷(﹣)(4)(﹣6)÷(﹣)2﹣72+2×(﹣3)2【分析】(1)利用加法的交换律和结合律,依据法则计算可得;(2)将除法转化为乘法,再进一步计算可得;(3)将除法转化为乘法,再利用乘法分配律计算可得;(4)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣24+8=﹣16;(2)原式=(﹣)×(﹣)÷(﹣)=×(﹣)=﹣;(3)原式=(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=12﹣18+8=2;(4)原式=(﹣6)×9﹣49+2×9=﹣54﹣49+18=﹣85.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.13.计算:(1)25×﹣(﹣25)×+25÷(﹣);(2)2﹣23÷[()2﹣(﹣3+0.75)]×5.【分析】(1)根据有理数的乘除法和乘法分配律可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.【解答】解:(1)25×﹣(﹣25)×+25÷(﹣)=25×+25×+25×(﹣4)=25×()=25×(﹣)=﹣;(2)2﹣23÷[()2﹣(﹣3+0.75)]×5=====﹣13.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.14.计算下列各题(1)﹣28﹣(﹣15)+(﹣17)﹣(+5)(2)(﹣1)2017+(﹣3)2×|﹣|﹣42÷(﹣2)4【分析】(1)根据减去一个数等于加上这个数的相反数的减法法则,将有理数减法变成有理数加法进行运算即可(2)根据有理数的运算法则,先乘方,后乘除,最后加减,有括号先算括号里的运算顺序即可【解答】解:(1)原式=﹣28+15﹣17﹣5=﹣35(2)原式=﹣1+9×﹣16÷16=﹣1+2﹣1=0【点评】本题考查有理数的运算法则和运算顺序,熟练掌握有理数的法则和运算顺序是本题的关键15.计算(1)(﹣1)﹣(+6)﹣2.25+(2)﹣9×(﹣11)﹣3÷(﹣3)(3)8×(﹣)﹣(﹣4)×(﹣)+(﹣8)×(4)(﹣24)×(+﹣).【分析】(1)先全部化为假分数,再计算同分母分数加减,最后计算减法;(2)先计算乘除运算,再计算加法;(3)先计算乘法,再计算减法;(4)先用乘法分配律展开,再计算乘法,最后计算加减.【解答】解:(1)原式=﹣﹣﹣+=﹣4﹣3=﹣7;(2)原式=99+1=100;(3)原式=﹣﹣﹣=﹣8;(4)原式=﹣24×+(﹣24)×+(﹣24)×(﹣)=﹣12﹣20+14=﹣18.【点评】本题主要考查有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.16.计算:(1)(﹣28)÷(﹣6+4)+(﹣1)×5;(2)÷.【分析】(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算除法运算即可求出值.【解答】解:(1)原式=(﹣28)÷(﹣2)+(﹣5)=14﹣5=9;(2)原式=(﹣++)×36=9﹣30+12+54=45.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.有理数计算.(1)﹣2.8+(﹣3.6)+(+3)﹣(﹣3.6)+(﹣1)2013(2)(﹣12)×(﹣+)+(﹣32)÷2.【分析】(1)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.(2)运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【解答】解:(1)﹣2.8+(﹣3.6)+(+3)﹣(﹣3.6)+(﹣1)2013=﹣6.4+3+3.6﹣1=﹣3.4+3.6﹣1=0.2﹣1=﹣0.8(2)(﹣12)×(﹣+)+(﹣32)÷2=﹣12×+12×﹣12×+(﹣9)÷2=﹣4+9﹣10﹣=5﹣10﹣=﹣5﹣=﹣【点评】本题考查的是有理数的运算能力.解题过程中注意符号是关键.18.细心算一算(1)19+(﹣6)+(﹣5)+(﹣3)(2)(﹣81)÷×÷(﹣16)(3)(﹣24)×(﹣﹣)(4)﹣|﹣5|+(﹣3)3÷(﹣22)(5)﹣14﹣(﹣1)3﹣[2﹣(﹣3)2](6)﹣99×36.【分析】(1)省略加号,再加减;(2)先确定符号,再都化成乘法进行计算;(3)根据乘法分配律进行计算;(4)先计算绝对值和乘方,再加减;(5)先计算括号里的和乘方运算,再加减;(6)把﹣99化成﹣100+,再利用乘法分配律进行计算.【解答】解:(1)原式=19﹣6﹣5﹣3=19﹣14=5;(2)原式=81×××=1;(3)原式=﹣24×+24×+24×=﹣8+3+4=﹣1;(4)原式=﹣5+=;(5)原式=﹣1+1﹣[2﹣9]=﹣1+1﹣(﹣7)=7;(6)原式=(﹣100+)×36=﹣100×36+×36=﹣3600+=﹣3599.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键;同时对于数很大的情况,要进行适当变形再进行计算,如第(6)小题,有一个因数为带分数时,可以转化为一个整数与一个真分数的和的形式,利用乘法分配律进行计算,但要注意所化成的真分数的分母能和另一个因数进行约分才可以.19.计算,能简算的要简算.(1)1+(﹣2)+|﹣2|﹣5(2)(+)+(﹣)﹣(+)﹣(﹣)﹣(+1)(3)(﹣81)÷×÷(﹣16)(4)﹣14﹣×[2﹣(﹣4)2](5)(﹣370)×(﹣)+0.25×24.5﹣5×(﹣25%)【分析】根据有理数混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)1+(﹣2)+|﹣2|﹣5=﹣1+2﹣5=1﹣5=﹣4(2)(+)+(﹣)﹣(+)﹣(﹣)﹣(+1)=[(+)﹣(﹣)]+[(﹣)﹣(+)]﹣(+1)=1﹣1﹣1=﹣1(3)(﹣81)÷×÷(﹣16)=﹣36×÷(﹣16)=(﹣16)÷(﹣16)=1(4)﹣14﹣×[2﹣(﹣4)2]=﹣1﹣×[2﹣16]=﹣1﹣×[﹣14]=﹣1+2=1(5)(﹣370)×(﹣)+0.25×24.5﹣5×(﹣25%)=370×0.25+0.25×24.5+5.5×0.25=(370+24.5+5.5)×0.25=400×0.25=100【点评】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.计算(1)[2﹣5×(﹣)2]÷(﹣)(2)(﹣24)×(﹣1﹣)(3)﹣14﹣(1﹣0.4)÷×[(﹣2)2﹣6].【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(2﹣)×(﹣4)=﹣8+5=﹣3;(2)原=﹣12+40+9=37;(3)原式=﹣1﹣×3×(﹣2)=﹣1+=.【点评】此题考查了有理数的混合运算,以及运算律,熟练掌握运算法则是解本题的关键.21.计算:(1)20+(﹣14)﹣(﹣18)﹣13;(2)﹣2;(3)(﹣7)×(﹣5)﹣90÷(﹣15)(4)(5)﹣14﹣(1﹣0.5)×【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用减法法则变形,计算即可求出值;(3)原式先计算乘除运算,再计算加减运算即可求出值;(4)原式逆用乘法分配律计算即可求出值;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=20+18+(﹣14)+(﹣13)=11;(2)原式=﹣2﹣﹣3+1=﹣5;(3)原式=35+6=41;(4)原式=﹣3×(﹣120﹣7+37)=﹣×(﹣90)=350;(5)原式=﹣1﹣××(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.计算(1)16﹣(﹣10+3)+(﹣2)(2)(﹣4)2×﹣27÷(﹣3)3(3)﹣12﹣()2×(﹣﹣)÷【分析】(1)先计算括号内的,再计算加减可得;(2)先计算乘方,再计算乘除,最后计算加减可得;(3)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=16﹣(﹣7)+(﹣2)=16+7﹣2=21;(2)原式=16×﹣27÷(﹣27)=2﹣(﹣1)=2+1=3;(3)原式=﹣1﹣×(﹣1)×=﹣1+=﹣.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.23.计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×【分析】(1)根据有理数的加法可以解答本题;(2)根据有理数的除法和加减法可以解答本题;(3)根据有理数的乘法和加减法可以解答本题;(4)根据有理数的乘法和加减法可以解答本题.【解答】解:(1)25.7+(﹣7.3)+(﹣13.7)+7.3=[25.7+(﹣13.7)]+[(﹣7.3)+7.3]=12+0=12;(2)=(﹣)×(﹣36)=18+20+(﹣21)=17;(3)=(﹣1)+﹣1=﹣;(4)﹣14﹣(1﹣0.5)×=﹣1﹣=﹣1﹣=﹣1+=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.24.计算下列各题.(1)99×(﹣7)(2)﹣24+(﹣2)2﹣(﹣1)11×(﹣)÷﹣|﹣2|(3)[(﹣+)×(﹣36)+2]÷(﹣14)【分析】(1)原式变形后,利用乘法分配律计算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式中括号中利用乘法分配律计算,再利用除法法则变形,计算即可得到结果.【解答】解:(1)原式=(100﹣)×(﹣7)=﹣700+=﹣699;(2)原式=﹣16+4+2﹣3﹣2=﹣15;(3)原式=(﹣16+15﹣6+2)×(﹣)=﹣×(﹣)=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(1)7+(﹣5)﹣(﹣3)+(6)(2)(﹣2)÷(2)×(﹣2.8)(3)25×+(﹣25)×+25×(﹣)(4)(﹣99)×99(5)﹣12017﹣[2﹣(1﹣×0.5)]×[32﹣(﹣2)2](6)|﹣|+[×22﹣(﹣)2].【分析】(1)先算同分母分数,再算加减法;(2)将除法变为乘法,再约分计算即可求解;(3)(4)根据乘法分配律计算;(5)(6)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)7+(﹣5)﹣(﹣3)+(6)=(7+3)+(﹣5+6)=11+1=12;(2)(﹣2)÷(2)×(﹣2.8)=××=;(3)25×+(﹣25)×+25×(﹣)=25×(﹣﹣)=25×0=0;(4)(﹣99)×99=(﹣100+)×99=﹣100×99+×99=﹣9900+1=﹣9899;(5)﹣12017﹣[2﹣(1﹣×0.5)]×[32﹣(﹣2)2]=﹣1﹣[2﹣(1﹣)]×[9﹣4]=﹣1﹣×5=﹣1﹣5=﹣6;(6)|﹣|+[×22﹣(﹣)2]=+[×4﹣]=+[2﹣]=﹣=﹣.【点评】考查了有理数的混合运算,注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.26.计算下列各式:(1)(2).【分析】(1)根据有理数的混合运算顺序,先算乘方,再算乘除,最后算加减,进行计算即可得解;(2)根据有理数的混合运算顺序,先算乘方,再算乘除,最后算加减,后面的利用乘法分配律进行计算即可得解.【解答】解:(1)9××(﹣)+4+4×(﹣),=﹣6+4﹣6,=﹣12+4,=﹣8;(2)﹣0.25÷(﹣)2×(﹣1)3+(+﹣3.75)×24,=﹣×4×(﹣1)+×24+×24﹣×24,=1+33+56﹣90,=90﹣90,=0.【点评】本题考查了有理数的混合运算,熟记运算顺序是解题的关键,注意利用运算定律使运算更加简便.27.计算(1)(﹣3)﹣(﹣2)﹣(﹣2)﹣(+1.75)﹣(﹣1)(2)﹣4×(﹣2)﹣6×(﹣2)+17×(﹣2)﹣19÷(3)﹣12+×[﹣22+(﹣3)2×(﹣2)+(﹣3)]÷(﹣)2【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题;(3)根据有理数的乘除法和加减法可以解答本题.【解答】解:(1)(﹣3)﹣(﹣2)﹣(﹣2)﹣(+1.75)﹣(﹣1)=(﹣3)+2+2+(﹣1)+1=1;(2)﹣4×(﹣2)﹣6×(﹣2)+17×(﹣2)﹣19÷=(﹣4﹣6+17)×(﹣2)﹣(19+)×9=7×(﹣)﹣19×9﹣8=(﹣18)﹣171﹣8=﹣197;(3)﹣12+×[﹣22+(﹣3)2×(﹣2)+(﹣3)]÷(﹣)2=﹣1+=﹣1+=﹣1+=﹣1﹣=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.28.计算(1)5.02﹣1.37﹣2.63(2)72×(﹣+﹣)(3)×[÷(﹣)](4)[﹣(﹣)÷]÷.【分析】(1)根据减法的性质计算即可.(2)根据乘法分配律计算即可.(3)首先计算小括号里面的减法,然后计算中括号里面的除法,最后计算中括号外面的乘法即可.(4)首先计算小括号里面的减法,然后计算中括号里面的除法和减法,最后计算中括号外面的除法即可.【解答】解:(1)5.02﹣1.37﹣2.63=5.02﹣(1.37+2.63)=5.02﹣4=1.02(2)72×(﹣+﹣)=72×﹣72×+72×﹣72×=36﹣24+18﹣6=12+18﹣6=24(3)×[÷(﹣)]=×[÷]=×=4(4)[﹣(﹣)÷]÷=[﹣÷]×10=[﹣]×10=×10=1【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法分配律和减法的性质的应用.29.计算:(1)(2)(3).【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式从左到右依次计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=1+﹣=2﹣=1;(2)原式=﹣××=﹣;(3)原式=﹣8+﹣=﹣8.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.30.计算(1)1+(﹣2)+|﹣2﹣3|﹣5﹣(﹣9)(2)×()×(3)()×(﹣12)(4)﹣3﹣[﹣5+(1﹣2×)÷(﹣2)].【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算括号中的运算,再计算乘除运算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘除运算,再计算加减运算即可求出值.【解答】解:(1)原式=1﹣2+5﹣5+9=8;(2)原式=×(﹣)××=﹣;(3)原式=﹣5﹣8+9=﹣4;(4)原式=﹣3+5﹣=1.9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.31.计算:(1)﹣20+3+5﹣7(2)(﹣36)×(﹣+﹣);(3)(﹣4)﹣(﹣5)+(﹣4)﹣(+3)【分析】(1)根据有理数的加法法则计算即可;(2)利用乘法分配律计算即可;(3)根据解法交换律以及结合律计算即可;【解答】解:(1)﹣20+3+5﹣7=﹣27+8=﹣19(2)(﹣36)×(﹣+﹣)=﹣36×(﹣)﹣36×﹣36×(﹣)=16﹣30+21=7(3)(﹣4)﹣(﹣5)+(﹣4)﹣(+3)=﹣4﹣3+5﹣4=﹣8+1=﹣6【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键,记住先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.32.计算:(1)﹣0.5+(﹣15)﹣(﹣17)﹣|﹣12|;(2)[﹣22+(﹣2)3]﹣(﹣2)×(﹣3);(3)()÷();(4);(5)﹣14+[1﹣(1﹣0.5×2)]÷|2﹣(﹣3)2|;(6)[(﹣3)2﹣22﹣(﹣5)2]××(﹣2)4.【分析】(1)先去括号,绝对值符号,再进行计算;(2)先去括号和乘方,再算乘,最后算减;(3)转换成乘法后,运用分配律进行计算;(4)有括号,先算括号里的,再算除法;(5)先算乘方,再算乘除,最后算加减,有括号,先算括号里的;(6)先算乘方,再算乘法,有括号,先算括号里的.【解答】解:(1)原式=﹣0.5﹣15+17﹣12=﹣27.5+17=﹣10.5;(2)原式=(﹣4﹣8)﹣6=﹣12﹣6=﹣18;(3)原式=﹣18+108﹣30+21=81;(4)原式=﹣1.6÷[×(﹣27)﹣4]=﹣1.6÷(﹣16)=0.1;(5)原式=﹣1+[1﹣(1﹣1)]÷7=﹣1+=﹣;(6)原式=(9﹣4﹣25)×××16=(﹣20)×××16=﹣600.【点评】本题考查的是有理数的运算能力,注意要正确掌握运算顺序:先算乘方,再算乘除,最后算加减,有括号,先算括号里的.使用分配律简便的要用分配律进行计算.时刻注意符号问题.33.计算:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)33.1﹣10.7﹣(﹣22.9)﹣;(3);(4);(5);(6)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2010.【分析】(1)利用减去一个数等于加上这个数的相反数将减法运算化为加法运算,再利用加法运算律将符合相同的数结合,利用同号两数相加的法则计算,再利用异号两数相加的法则计算,即可得到结果;(2)原式第三项利用减去一个数等于加上这个数的相反数化为加法运算,最后一项利用负数的绝对值等于它的相反数并将分数化为小数,利用同号及异号两数相加的法则计算,即可得到结果;(3)利用乘法分配律给括号中每一项都乘以﹣60,约分后相加,即可得到结果;(4)根据运算顺序从左到右依次计算,利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果;(5)原式第一项表示1三次幂的相反数,第二项第一个因式括号中两数相加,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,计算后相加即可得到结果;(6)原式第一项表示3个﹣2的乘积,第二项利用异号两数相乘的法则计算,第三项先利用减法法则计算,再利用负数的绝对值等于它的相反数计算,最后一项利用﹣1的偶次幂为1计算,将结果相加即可得到最后结果.【解答】解:(1)原式=[(﹣3)+(﹣4)+(﹣11)]+9=﹣18+9=﹣9;(2)原式=33.1﹣10.7+22.9﹣2.3=(33.1+22.9)﹣(10.7+2.3)=56﹣13=43;(3)原式=(﹣60)×﹣(﹣60)×﹣(﹣60)×=﹣40+5+4=﹣31;(4)原式=(﹣81)×××(﹣)=;(5)原式=﹣1﹣1.5××(﹣)=﹣1+0.125=﹣0.875;(6)原式=(﹣8)+6+3﹣1=﹣2+3﹣1=0.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.34.计算:(1)13+5×(﹣2)﹣(﹣4)÷(﹣8);(2)÷(﹣2)﹣×(﹣1)+0.75;(3)[1﹣(+﹣)×(﹣2)3]÷(﹣3);(4)﹣24﹣[3+0.4÷(﹣1)×(2)2]+(﹣1)2016×()2016.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=13﹣10﹣=2;(2)原式=﹣×+×+0.75=﹣++=;(3)原式=(1+6+3﹣)×(﹣)=﹣﹣3+=﹣3;(4)原式=﹣16﹣3﹣×(﹣)×+1=﹣16﹣3+3+1=﹣15.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.35.计算:(1)(﹣2)﹣(﹣5)﹣(+3)﹣(﹣);(2)﹣27÷×(﹣)+4﹣4×(﹣);(3)[(﹣1)2014+(1﹣)×]÷(﹣32+2);(4)[﹣﹣()3+﹣]÷(﹣).【分析】(1)根据有理数的加减运算法则计算;(2)根据有理数的混合运算法则计算;(3)根据有理数的混合运算法则计算;(4)根据有理数的混合运算法则计算.【解答】解:(1)(﹣2)﹣(﹣5)﹣(+3)﹣(﹣)=(﹣2+)+(5﹣3)=﹣2+2=0;(2)﹣27÷×(﹣)+4﹣4×(﹣)=27××+4+=+4+=;(3)[(﹣1)2014+(1﹣)×]÷(﹣32+2)=(1+×)÷(﹣7)=﹣×=﹣;(4)[﹣﹣()3+﹣]÷(﹣)=×48+×48﹣×48+×48=+6﹣36+4=﹣24.【点评】本题考查的是有理数的混合运算,掌握有理数的混合运算法则是解题的关键.36.有理数计算题(1)12﹣(﹣5)﹣(﹣18)+(﹣5)(2)﹣6.5+4+8﹣3(3)(﹣3)×(﹣)÷(﹣1)(4)(+﹣)×(﹣12)(5)32﹣50÷22×(﹣)﹣1(6)﹣32÷[(﹣)2×(﹣3)3+(1﹣1÷)].【分析】(1)(3)(5)(6)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.(2)应用加法交换律和加法结合律,求出算式的值是多少即可.(4)应用乘法分配律,求出算式的值是多少即可.【解答】解:(1)12﹣(﹣5)﹣(﹣18)+(﹣5)=17+18﹣5=35﹣5=30(2)﹣6.5+4+8﹣3=(﹣6.5﹣3)+(4+8)=﹣10+13=3(3)(﹣3)×(﹣)÷(﹣1)=÷(﹣1)=﹣2(4)(+﹣)×(﹣12)=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4(5)32﹣50÷22×(﹣)﹣1=9+1.25﹣1=9.25(6)﹣32÷[(﹣)2×(﹣3)3+(1﹣1÷)]=﹣9÷[﹣3﹣1]=﹣9÷[﹣4]=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.37.(1)871﹣87.21+53﹣12.79+43.(2)4×(﹣3)2+6.(3)﹣0.52+(4).【分析】(1)根据加法交换律和结合律,以及减法的性质简便计算;直接运用乘法的分配律计算;(2)(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)多次运用乘法的分配律计算.【解答】解:(1)871﹣87.21+53﹣12.79+43=871+(53+43)﹣(12.79+87.21)=871+97﹣100=868.(2)4×(﹣3)2+6=4×9+6=36+6=42.(3)﹣0.52+=﹣+﹣|﹣9﹣9|+×=﹣18+2=﹣16(4)=(﹣﹣)×60×(﹣﹣)=(﹣﹣)×60×(﹣1)=﹣×60+×60+×60=﹣36+30+35=29.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.38.计算:(1)﹣3﹣7;(2)(﹣)+(﹣)﹣(﹣3);(3)﹣0.5+(﹣15.5)﹣(﹣17)﹣|﹣12|(4)(5)(﹣81)÷(6)〔1﹣(1﹣0.5×)〕×|2﹣(﹣3)2|﹣(﹣62).【分析】(1)根据有理数的减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的加减法可以解答本题;(4)根据乘法分配律可以解答本题;(5)根据有理数的乘除法可以解答本题;(6)根据有理数的乘法和加减法可以解答本题;【解答】解:(1)﹣3﹣7=(﹣3)+(﹣7)=﹣10;(2)(﹣)+(﹣)﹣(﹣3)=﹣1+3=2;(3)﹣0.5+(﹣15.5)﹣(﹣17)﹣|﹣12|=﹣0.5+(﹣15.5)+17﹣12=﹣11;(4)=(﹣32)+21+(﹣4)=﹣15;(5)(﹣81)÷=81×=1;(6)〔1﹣(1﹣0.5×)〕×|2﹣(﹣3)2|﹣(﹣62)=[1﹣(1﹣)]×|2﹣9|﹣(﹣36)=[1﹣]×7+36=+36==.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.39.计算(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)(2)(3)﹣(3﹣5)+32×(﹣3)(4)(5)|(6).【分析】(1)先化简再计算加减法;根据有理数的加法法则计算即可求解;(2)将除法变为乘法,再约分计算即可求解;(3)(5)(6)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)直接运用乘法的分配律计算.【解答】解:(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)=﹣8+15﹣9+12=﹣17+27=10;(2)=﹣×××=﹣;(3)﹣(3﹣5)+32×(﹣3)=2+9×(﹣3)=2﹣27=﹣25;(4)=30﹣×36﹣×36+×36=30﹣28﹣30+33=5;(5)|=﹣9+×(﹣)+4=﹣9﹣1+4=﹣6;(6)=9﹣7÷7﹣×4=9﹣1﹣1=7.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.40.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣8)+4÷(﹣2);(3)(﹣10)÷(﹣)×5;(4)[1﹣(1﹣0.5×)]×[2﹣(﹣3)2].【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算除法运算,再计算加减运算即可得到结果;(3)原式从左到右依次计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=﹣8﹣2=﹣10;(3)原式=10×5×5=250;。
有理数的乘法——运算律(基础)一、单选题(共10道,每道9分)1.计算的结果是( )A.-50B.-200C.200D.答案:B解题思路:故选B.试题难度:三颗星知识点:有理数乘法运算2.计算的结果是( )A. B.C. D.答案:D解题思路:故选D.试题难度:三颗星知识点:有理数乘法运算3.计算的结果是( )A.-4B.-22C.6D.24答案:C解题思路:故选C.试题难度:三颗星知识点:有理数乘法运算4.计算的结果是( )A.0B.24C.40D.32答案:B解题思路:故选B.试题难度:三颗星知识点:有理数乘法运算5.计算的结果是( )A.-5B.-37C.1D.-1答案:D解题思路:故选D.试题难度:三颗星知识点:有理数乘法运算6.计算的结果是( )A.-22B.-10C.22D.14答案:A解题思路:故选A.试题难度:三颗星知识点:有理数乘法运算7.计算的结果是( )A.-7B.-14C.14D.7答案:C解题思路:故选C.试题难度:三颗星知识点:有理数乘法运算8.计算的结果是( )A. B.5C. D.-5答案:D解题思路:故选D.试题难度:三颗星知识点:有理数乘法运算9.计算的结果是( )A. B.C. D.答案:C故选C.试题难度:三颗星知识点:有理数乘法运算10.计算的结果是( )A. B.-27C. D.27答案:B解题思路:故选B.试题难度:三颗星知识点:有理数乘法运算二、填空题(共1道,每道10分)11.高度每增加1千米,气温就下降6℃,现在地面气温是10℃,那么7千米的高空的气温是____℃.解题思路:10+7×(﹣6)=10﹣42=﹣32℃.答:地面以上7千米的高空的气温是﹣32℃.试题难度:知识点:有理数乘法运算。
初一七年级有理数混合运算专题练习及答案1. 计算2. (1)(-4二)-(-社)-(-吐)+ (-2丄)(2) 7X 1-(- 9+19)(3) (-界4唏)x(-24)(4) - 13-( 1-)X 丄[2 -(-3) 2](5) - 22X | - 3|+ (-6),(-_)- |+丄| +(-丄)33. 计算:(1) - 20+ (- 14)-( - 18)- 13⑵ 4-8X(-_) 3(3) 击务吉2003(1) 27- 18+ (- 7)—32;(6) [2 亍-X 24] - 5X( - 1)OJ cn CDXTg +i—4[N T~~11A6crj| pT co• r\IOIp9COz*-x+T—• •z*-XCXI占I■I'coXOtL||GNLQ9(10) -3?—1(—5辽|X(半护-18三卜G 护 | ;7. 计算(1)— 20+ (- 14) — (— 18)— 13(5) —件⑴0.5)X^X [2-(-3)勺. 8. 计算:(1) 晋—(—兔)+ (—皆)—(+咅) (2) (—合—号哙)X(— 24)( — )x 2 '- + (-)X( —2 - ) +x(—7 1111]11各〔-小‘;(12) )•9. 计算:亠—+ L -^_14 21 14-102-[ (1-〒)X 亍[2 -( - 3) 2]10. 计算(1) (-) + (+) +(-2 丄)(4) - 14-吉 X [2 -( -3) 2].11. 计算题(1) (-4)-( - 1) + (-6)- 2 ⑵-3-[ - 2-(- 8)X(-)]⑷—14+| (-2) 3- 10| -(- 3)宁(—1)2017(1) + ----+ - (- 5 +2 )-( -4)X fl6 3122(5)-2-{8+ (- 1) 2- [ (- 4)X 2-(- 2)也 X( -6) ]}(6)+| -(-)-| - 2 - 3| -0. 2⑶、-100+ (- 1)(3) - 25m (_gx (专泸-12X (-15十2°)彳12. 计算题(1) - 3+8- 15-613. 计算:(1) 25X 备-(-25)X 寺+25宁(-月); (2) 2丄-23宁[(丄)2-( - 3+) ] X 5.14. 计算下列各题(1) - 28-( - 15) + (- 17)-( +5) (2) (- 1) 2017+ (- 3) 2X | -号 | - 42+(- 2)(2) - 9X( - 11)- 3-( - 3)(4)⑵(”(-1丄)7- 2;)(3)(-导3_11 24(4) (- 6)宁(2 2 2)-7+2X( - 3)15.计算(1) (-)16. 计算:(1) (- 28)-( - 6+4) + (- 1)X 5;17. 有理数计算.(1) 19+ (- 6) + (-5) + (-3) (2) (- 81)「X 节(-16) ⑶(-24)X(^-寺*)38632⑷-| - 5|+ (- 3) -(- 2)(5) - 14-( - 1) 3-[2 -( - 3) 2]19.计算,能简算的要简算.(1)1+ (-2) +| - 2| - 5⑶8X(-丄)⑷(-24)X(712)•2013⑹-99—X 36. (1)- + (-) + (+3)+ (- 1)18.细心算一算(2)( (乍)(+1)(3) (- 81)需X寻一(-16)(4)- 14-: X [2 -( -4) 2](5) (- 370)X(- 寺)+X-唔X( -25%20.计算(1) [2 - 5X(-丄)2]-(- 2.(2) (-24)X(4(3)-1 (1-) +护[(-2) 2-6].21.计算:(1)20+ (- 14)-( - 18)- 13;(2)(3) (-7)X( - 5)- 90-( - 15)(4) -120X (—皤"X (-3晋)+算X (—(5) -14(1-)X- :-22.计算(1) 16-(- 10+3) + (- 2)23.计算:(1) + (-) + (-) + (2) U 丄+—宀:-亠: (3) (T V 十 I 斗-(-y) X (―|-) (4) - 14-( 1 - )X 二• |_|⑶[(「十)X ( - 36) +咎]宁(-14) 25. (1) 7[-+ (- 5丄)-(-3十)+ ()(3) 25X 寸+( - 25)X 寺+25X(-壬)(5) - 12017- [2 -(1-二X) ] X [32-(- 2) 2]12- (耳)-2-1 )十 73 382 3⑶(2) (-4) 2X 丄—27宁(—3)⑵-24+ (- 2) 2-24.计算下列各题.(-1) 11X(寺(2)(6) |2-色|+[丄x 22—( —3) 2].32 2 226. 计算下列各式:(1 (―3)口時十(W)叶护X (今)2(2)-① 25^(士)乂(-1戸+(¥+卜3 75)><24.(1) -(2) 72x(— 丄+匚-土)(3)粧【舒黏却] (4呵-(肝帥胡吗.29. 计算:(1)(1)( :-4-(-午)-(2)- -4x(-2^) -6X(3)- —12+ x [ 6 L -22+ (-3)27. 计算28.计算(3) 十0.5-[寺(1—护0.6)号(切勺• 30. 计算(1) 1+ (- 2) +| - 2- 3| - 5—(— 9) (2) 二x(丄丄)x JL 亠§33 211 ' 4(3) (哥皤 X( - 12) (4) - 3-[ - 5+ (1-宁(-2)].31 .计算:(1) - 20+3+5-7(1) - + (- 15)-( - 17)-| - 12| ;23⑵[-2+ (-2) ] -( - 2)X( - 3); ⑶一); (4) -3界-护];(5) - 14+[1 -( 1-X 2)]宁|2 -(- 3) 2| ;⑵(-36)X(-9 6 122+旦-丄); 32.计算:2 2 2(6) [ (- 3) - 2-(- 5) ] X33. 计算:(-2) 3-2X(- 3) +|2 - 5| -(- 1) 2010 34.计算:13+5X(- 2)-(- 4) + (- 8);35. 计算:(1) (-2丄))+4 - 4X(-丄);(2)2-(- 2二)-—X(-1匚)+;5 - (—+亠- 」)X (V 4 8 16)(3) [1 3-2)]宁(-3); 5(4) -24- [3+ + (2016X2016•4)X( - 2) 4.(1) (-3) + (-4) (+11)(-9);(2) (3) (4)(5) 23io” g 4 ;—严—(1十0・ 5)Xj4- (-4);(6) (1)⑶[(―1) 2014+ (1—])X 丄]宁(—32+2); ⑷[-丄-(丄)3+3-丄]宁(-丄).36 2 4 12 4S 36. 有理数计算题(1) 12—(- 5) — (— 18) + (- 5)(5) 32- 50 + 2*(-右)-1⑶-+ (-)-(- 17)-| - 12|2 4X(- 3) 2+6.⑶-+-?- — 「二「丄(4) (普吕召)% (60X*-60X 号Y0X 辛).3&计算:(1)- 3 -7;(-3);--)X(- 12)(6)- 32+ [(-二)2X( - 3) (1-匸「)].37.(1) 871 - +5汁-+4—21⑷( 5 12(4)(知(罟吉 (5) (- 81)_— -2— _ p)〕x |2 -( -3) 2| -( -62). 39.计算(1) - 8-(- 15) + (- 9)-( - 12) (2) i 十.n 〒 1 (3) -( 3 - 5) +3 x( - 3)(1) 12-(- 18) + (-7)- 15;(2) (- 8) +4宁(-2); (3) (- 10)^(-丄)x 5;5(4) [1 -(1-x 丄)]x [2 -(-3) 2].41. 计算(1) 23- 17-(- 7) + (- 16)(6)〔 1-( 1-x40.计算:)23⑶(-1) 3(-1)x £x |2 -(-3) 2|⑵(-4) +| - 8|+ (- 3) 3-(- 3)(4)x( - 2)3-[4 宁(--)2+1]+(-1)200842. 计算题.(1) - 5+2 - 13+4(-2)x( - 8)- 9宁(-3)L 上1 9 ' 3 6|(5) (6) )2x (-14)』1 9-1 -(1-0. 5)X —x [辽―(—5)(7)厂+ :—(简便方法)(8) (-2)3- 2X( -3) +|2 - 5| -( - 1)201043. 计算题 (1) (- 1)2013+ (—4)宁(—5)x (」)(2) - 42+3X( - 2) 2+ (- 6)-(⑶—24^(2- A x(-18)x(-) ++ (- 1碑)(10) -1律(-护)%(-为十|工8-1|.45. 耐心算一算:(1) (— 3) + ( — 4) — ( +11) — (— 19);(2)寺X [2-(「3)勺;(3) -十(-” | -亠| ;7 11 丄9 12 '6(— 17 3)-4x v44. 计算:(1) (冷)+ (-尉 + (—鲁)普; (2) ——+;(3) — 20+(— 14)-( - 18)— 13(4) 3X(— 4) +28-(— 7) (5) (6)(7) (-冈磊)x (-1$) (8) (—24)X((9) 2丄)X( - 8)1|_1 _|1 );18X(-寻)+13x|■-4x|_.(4) 36 x■I iy)十;―厂⑷ 1 <i 1246 .计算47. 计算(1) 23+ (+76) + (- 36) + (- 23) (2) - 40-( - 19) + (- 24) (3) (-[)X(- 1丄)+ (- 2丄) 32(4) - 10+8+( - 2) -( - 2) X( -3) (5) -14-( 1-)X 丄 X [ -(-2) 2] (6) 30-冷+寻-挣 X 36(7) [25 X-+25X±- 25X 亍]X [ (- 5) 26 - 2 - 526]. 48. 计算:(1) -20- ⑵-霆--3⑶ 18-6 + ⑷ -48+⑸ [2 - 5X(6) -32-丄(+14) + (- 18)-( - 13); (—丄)(-2) 3X(- 1) 2016- 22)2]宁(-寺);X [ (- 5) 2X(-|_)- 240+(-4)x*].(1) (- 3) 2-(- 3) 3- 22+ (- 22)(2) 一[(冷-(详)+(-卽+停(3) (- 4)-( - 3)X 45+( - 5)49. 计算(1) (- 10) + (+7)(2) 12-(- 18) + (-7)- 15(3) + (-) ++ (-) + (-)(4) | - 22+ (- 3) 2| -(-*)3(5) 2X( -3) 2- 33- 6+( - 2)=-30;参考答案一、解答题(共50小题)1. 计算(2) 先判定符号,再化为连乘计算; (3) 利用乘法分配律简算;(4) 先算乘方,再算括号里面的减法,再算乘法,最后算括号 外面的减法.【解答】解:(1) 27- 18+ (- 7)- 32 =27 - 18 - 7 - 32 =27 -57(2) =-7X £X £3 3=_ I -;—;(3)得卡中XT ) =—(-24)-7 =18+20- 21=17;(4) -14*< [2- (-3)勺 =-1-护(2-9)=-1-丄x ( - 7)-1+丄 =1【点评】此题考查有理数的混合运算,注意抓组运算顺序,根 据数字特点灵活运用运算定律简算. 2. (1)(-岭)-(-4)-(- 4)+ (-号)X( - 24) +- X( - 24)8(2) 7X 1+(— 9+19)(4) - 13-( 1-)xg [2 -(-3) 2]J(5) - 22X | - 3|+ (-6) \(-一)- |+丄 | +(-丄)3【分析】(1)原式利用减法法则变形,计算即可得到结果;(2) 原式先计算括号中的运算,再计算乘除运算即可得到结果;(3) 原式利用乘法分配律计算即可得到结果;(4) 原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(5) 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6) 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式= -心+心斤-令-1―;(2) 原式=7+ 10=;(3) 原式=12-4+9 - 10 = 7;(4) 原式=—1—丄 xLx ( — 7)= — 1乜=—; 2 3 6 1 + 1 2 6x( - 24)2003(3)(- -3 +L 8 12X 24] - 5X( - 1)(5) 原式=-12—15+1= —26;(6) 原式=(—9 —4+18)X(-丄)=-丄-1 =—注.2 5 2 2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3. 计算:(1)—20+ (—14) — (—18)—13(2)4—8X(-丄)3(4)【分析】(1)减法转化为加法,计算可得;(2)先计算乘方,再计算乘法,最后计算加法即可得;(3)将除法转化为乘法,再利用乘方分配律计算可得;(4)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=-20 —14+18- 13=—47+18=—29;(2)原式=4-8X (-丄) 8=4+1=5;(3)原式=(^—+ 丄)X 36=-_x 36-卫x 36』X 36 4 g 12=-27 - 20+21=-26;1.1~3 【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.4. 计算:f X 15 7 516 3~3\ -亠 3(4)原式=-^15(1)—15+(—8) — (—11)- 12⑷-23+[ ( —4) 2—( 1 —32)X 3].【分析】(1)将减法转化为加法,再计算加法即可得;(2) 将除法转化为乘法,再计算乘法即可得;(3) 先计算括号内,再计算除法即可;(4) 根据有理数的混合运算顺序和法则计算可得. 【解答】解:(1)原式=-15+ (—8) +11+ (—12) =—35+11=—24;(2)原式= —72x(-(3)原式= (—1 36)=(-1)- 一(-—x(-36 '_ 18))x31834x(—2)=21S1S1 ;厂'(4) 原式=—8+[16 -(1-9)X 3]=-8+[16 -( - 8)x 3]=-8+ (16+24)=-8+40=32.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和法则.5. 计算(需)(2) - 3 -[ - 5+ (1-X-)^( - 2)]【分析】(1)原式从左到右依次计算即可得到结果;(2) 原式先计算乘除运算,再计算加减运算即可得到结果;(3) 原式先计算乘除运算,再计算加减运算即可得到结果; 14 3 X( - 2)-毎 +(-亍) (4) [50 -(#-2 2 )X( - 6)]宁(-7).x(- (1)(-令) (3)((4) 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=-(2) 原式=-3+5+ (1 -(3) 原式=-丄+7」=丄;(4)原式=(50- 28+33- 6)=49 X=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6•计算:(1)(冲)+(_2寺)_(—好)_(斗砖);(2) - 24+3- 16- 5;(3) —卫晋x G)';⑷丄;(5) (吒*〉x寻—£十|—244 |;⑹「一「一|- —;3 5 4(10) -3?T(-5)仏(-右'-酥 l-C-3)2 I ;(⑴-件(巧斗)><浄(-";(⑵(-)x 2_+ (-)X(-【分析】(1) (2) (5) (8)可直接按照有理数的混合运算进行;(3) (7) (9) (10) (11)按照有理数混合运算的顺序,先乘方 后乘除最后算加减,有括号的先算括号里面的;(4) (6)可利用分配律计算;-2= 1 - 2=- 1;(7) 原式=-9X 丄-[25 X(-亍)-240X(-丄)X 丄-2]=-3-( - 15+15- 2)=- 3+2=- 1;(2) (3) (4) (5) (6) (1) 原式= 1 - 7 — ' +凹 —11 12 11^ 4 \3 3 「4 3 21-16-5=- 37- 5=- 42;■ 8」x®x ia — 6 - 1 7 =3 . 4 区3 4 15 110原式=-—X 原式=舒(-36)-护(-36)寻X(-36)18 =-8+9(12)可利用结合律进行运算,最后得出结果.【解答】解: =3-6=- 3; 原式=- g-8+ 2=- 2- 4=- 6;原式= 原式=-Be x 丄 q =-8;=-X 10=-105.【点评】本题考查的是有理数的运算.注意:要正确掌握运算 顺序,即乘方运算(和以后学习的开方运算)叫做三级运算; 乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合 运算中要特别注意运算顺序:先三级,后二级,再一级;有括 号的先算括号里面的;同级运算按从左到右的顺序.7. 计算(1) - 20+ (- 14)-( - 18)- 13(3) 2><(-3)2-5十(丄以〔-2)(8)原式=护(-_)X(- )=-1 + 1 = 0; (9)原式=-1-丄X 丄X(2- 9) -1-^X (- 7)=- 1+L 6 I .一;(10) 原式=-9 - 125 X-18- 9=- 9 - 20- 2=- 31; (11) 原式=-1- (-口 f - 8=- 1+2- 8=- 7; (12) (-)X 2-X 7-- 11 11=-X=-X七=) 11 11 2 原式=(4)…(5)(1-Q・5)x*x [2-(-3)勺•【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式变形后利用乘法分配律计算即可得到结果;(5)原式先计算乘方运算,以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=-20 - 14+18- 13=- 47+18=- 29;(2) 原式=-32+21 - 4=- 36+21 =- 15;(3) 原式=18- 20=- 2;(4) 原式=-(100-寺)X 36=-( 3600-*)=- 359% ;(5) 原式=-1-丄X_X( 2-9)=- 1+二=--【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次计算,然后利用各种运算=0;法则计算,有时可以利用运算律来简化运算.8. 计算:旦-5+2) x( - 24) 4 3 12⑷-14+| (-2) 3- 10| -(- 3)宁(-1) 【分析】(1)将减法转化为加法,再利用加法的交换律和结合 律简便计算可得;(2) 运用乘法的分配律计算可得;(3) 将除法转化为乘法,再计算乘法即可得;(4) 根据有理数的混合运算顺序和法则计算可得.【解答】解:(1)原式= 畤璀-畤-普=5T -专+2一-弓=2-2 (2) 原式=|x 24晋x 24-吉x 242017⑵(—=18+15- 18=15;(3) 原式=(-3)x ”x 丄x(— 15)=4X 4X 5=80;(4) 原式=-1+| - 8 - 10| -( - 3)-( - 1)=-1 + 18- 3=14.【点评】本题主要考查有理数的混合运算,解题的关键是熟练 掌握有理数的混合运算顺序和运算法则.9. 计算:(4)- 102-[ (1-*)x (2)(3)(1) +-- +--+ (- 1) 100 (-3) 2](5)- 2-{8+ (- 1)3-[ (-4)X 2宁(—2)归X(-6) ]}(6)宀+| -(-吉)2-吉| 宁芒-I - 2-3| -料.-0,. 32§2252【分析】(1)直接将各数相加减即可;(2)将分母相等的项合并,将分母不等的项通分即可得出值;(3)先计算括号里的值,再去括号,再乘除,最后加减即可求值;(4)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(5)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(6)先乘方后乘除最后算加减,有绝对值的先算绝对值里面的. 【解答】(1)原式= +-=—+ --=—+ --.3原式=-亠常+1-3—-3 --20 .+ ---17 14 1 21 3564 2173S4X 5 21X517X335X3320- -51105 105—— —371 105(3)原式+(- 1)=丄—1 6 7 2=1+1=2;(4) 原式=-102 -[——][2 -32]=-100-护(2-9)=-100,( - 7)=-100+- 6 丄+亠 7 21(5) 原式=—2 -{8+1 - [ - 8 宁(—2)——,]}|6=-2 - {9+1}=-2- 10= -12;(6) 原式=+1丄丄I +丄-| - 5| -0.09 125 4125 1 1二-ML+竺x 25- 5 - 5 9 100二二+二-109 436【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序: 先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法贝卩:得+,- +得-,++得+, +-得-.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.(1) (-) + (+) + (-) + (-)10. 计算(2) (+智)+ (-需)+ (-辛)+ (-3今)(3) 令-(堆)-(1)琴(4) - 1-X [2 -( - 3) 2].【分析】(1)原式结合后,相加即可得到结果;(2) 原式结合后,相加即可得到结果;(3) 原式结合后,相加即可得到结果;(4) 原式先计算乘方运算,再计算乘法运算,最后算加减运算 即可得到结果.(2)原式=(【点评】此题考查了有理数的混合运算,熟练掌握运算法则是 解本题的关键.11. 计算题【解答】解:(1)原式=()+[ (+) +)]=-10;(3)原式二冷音+ (41)15 (4)原式=-1 -lx (2-9) 6 -1--X (- 7) 「+—(1)(-4) —(—1) + (-6)宁2⑵—3-[ - 2-(- 8)X(-)](3)- 25— j 丄;:丄—」J【分析】(1)先化简,再计算加减法;(2)按照有理数混合运算的顺序,先乘除后算加减,有括号的先算括号里面的;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4),先将乘法变为乘法,再运用乘法的分配律计算.【解答】解:(1)原式=-4+1-36;(2)原式=-3-(- 2- 1)=-3+3(3)-25H- M)X(y)2-1.2X (-15+24)3-3" C-4)X^-12X (-15+16) J=0;1 I o-32x )x—-12X (-15+1^)=2- 12-10;(4)-一十丄=-3.【点评】本题考查的是有理数的运算能力.注意:(1) 要正确掌握运算顺序,在混合运算中要特别注意运算顺序: 先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2) 去括号法贝卩:得+,- +得-,++得+ , +-得-.2 3(3)整式中如果有多重括号应按照先去小括号,再去中括号, 最后大括号的顺序进行.12. 计算题【分析】(1)利用加法的交换律和结合律,依据法则计算可得;(2)将除法转化为乘法,再进一步计算可得;(3) 将除法转化为乘法,再利用乘法分配律计算可得;(4) 根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=-24+8=- 16;―丄)=-丄•(3)原式= 1+3 2 4⑷(-6)宁(-3)(2)原式=(-)X (-_) (1)- 3+8 - 15- 6) ⑶(- 2 2 -7+2X=12- 18+8 _ _ 275 . 4=2; (4) 原式=(-6)x 9 -49+2X 9=-54 - 49+18=-85.【点评】本题主要考查有理数的混合运算,解题的关键是熟练 掌握有理数的混合运算顺序和运算法则.13. 计算:(1) 25X#- (- 25)X 寺+25宁(-咼);(2) 2丄-2_[(丄)2-( - 3+) ] X 5.【分析】(1)根据有理数的乘除法和乘法分配律可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.【解答】解:(1) 25X —-(- 25)X 二 +25宁(-丁)=25X 二+25X 丄+25X( - 4) 4 2=25X(卑手4)=25X(-」)x( - 24) x( - 24) x( - 24)(2) 2丄-2—[ Q) 2- (- 3+) ] X 5 3 2=「二-"丄「二 7=--f【点评】本题考查有理数的混合运算,解答本题的关键是明确 有理数混合运算的计算方法.14. 计算下列各题(1) - 28-( - 15) + (- 17)-( +5)(2) (- 1) 2017+ (- 3) 2X | -二 | - 42宁(-2) 4【分析】(1)根据减去一个数等于加上这个数的相反数的减法 法则,将有理数减法变成有理数加法进行运算即可(2)根据有理数的运算法则,先乘方,后乘除,最后加减,有 括号先算括号里的运算顺序即可【解答】解:(1)原式=-28+15- 17-5=-35⑵原式-1+9心—心16【解答】解:(1)原式=-右-寻-[=- 4- 3=- 7;=-1+2- 1【点评】本题考查有理数的运算法则和运算顺序,熟练掌握有 理数的法则和运算顺序是本题的关键(2) - 9X( - 11)- 3+( - 3)【分析】(1)先全部化为假分数,再计算同分母分数加减,最 后计算减法;(2) 先计算乘除运算,再计算加法;(3) 先计算乘法,再计算减法;(4) 先用乘法分配律展开,再计算乘法,最后计算加减.(2) 原式=99+1= 100;(-4)X(-_) +(-8)X 「 1 + 5 2 6(4) (-24)X(16 _ 8 _ 24 _ _ 恵;=-12 - 20+14=-18.【点评】本题主要考查有理数的混合运算,有理数混合运算顺 序:先算乘方,再算乘除,最后算加减;同级运算,应按从左 到右的顺序进行计算;如果有括号,要先做括号内的运算.进 行有理数的混合运算时,注意各个运算律的运用,使运算过程 得到简化.16. 计算:(1) (- 28) + (- 6+4) + (- 1)X 5;【分析】(1)原式先计算乘除运算,再计算加减运算即可求出 值;(2) 原式先计算乘方运算,再计算除法运算即可求出值.【解答】解:(1)原式=(-28) + (- 2) + ( - 5)= 14 - 5 =9;(2) 原式=(〒-碍)X 36= 9-30+12+54= 45. 4 6 3 2二+(一 -24)X 丄 + (- 24)X( 2 6 12g 5) (4)原式=-24X (3)原式=-【点评】此题考查了有理数的混合运算,熟练掌握运算法则是 解本题的关键.17. 有理数计算.【分析】(1)按照有理数混合运算的顺序,先乘方后乘除最后 算加减,有括号的先算括号里面的.(2)运用乘法的分配律去括号,再按有理数混合运算的顺序计 算.【解答】解:(1)- + (-) + (+3)-(-) + ( - 1)=-+3+- 1=—+ - 1=-1=-4+9- 10 -—(1)— + (-) + (+3)2013(-9)- 2+ (- 1) =-12 洼+12 闾2+ (- 3)-2-I.【点评】本题考查的是有理数的运算能力.解题过程中注意符号是关键.18. 细心算一算(1) 19+ (- 6) + (-5) + (-3)⑵(-81)- 2X44g-(- 16)⑶(-24)X(3—1 ― 1石)⑷-I - 5|+(-3) 3-( -22)(5)-14-(-1) 3[2 - (-3) 2](6) - 99亠X 36.【分析】(1)省略加号,再加减;(2) 先确定符号,再都化成乘法进行计算;(3) 根据乘法分配律进行计算;(4) 先计算绝对值和乘方,再加减;(5) 先计算括号里的和乘方运算,再加减;(6)把-91化成-100丄,再利用乘法分配律进行计算.【解答】解:(1)原式=19- 6-5 - 3= 19- 14= 5;⑵原式=8心小〜=1;(3) 原式=-24X_+24X_+24X了=-8+3+4=- 1;(4)原式=-5~=-;4 4(5)原式=-1 + 1- [2 - 9] = - 1 + 1-( - 7)= 7;(6)原式=(-100+L) x 36=- 100X 36+ x 36=- 3600+72 72 2 =-3599】一.2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键;同时对于数很大的情况,要进行适当变形再进行计算,如第(6)小题,有一个因数为带分数时,可以转化为一个整数与一个真分数的和的形式,利用乘法分配律进行计算, 但要注意所化成的真分数的分母能和另一个因数进行约分才可以.19. 计算,能简算的要简算.(1)1+ (-2) +| - 2| - 5(2)(+二)+ (-首)-(土)-(-丄)-(+1)(3)(- 81)宁寸乂£宁(-16)=1(4)—14—寺X [2 -( -4) 2](5)(- 37O)X(-寺)+X-号X(- 25%【分析】根据有理数混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解: (1) 1+(- 2) +| - 2| - 5=-1+2- 5=1 - 5=-4(2)(4) +(-早)-(v)-(-£)-(+1) abb □=[(垮)-(冷】+【(-即-(昭)】-(+1)=1 -1 - 1=-1(3)(-81)3a g-(-16)=-36 X(--16)=(-16)-( - 16)(4)—14—亍X [2 -( -4) 2]=-1 -二X [2 - 16]7=-1 --X [ - 14]7=-1+2(5) (- 370)X(- I)+X-X(- 25%=370X + X +X=(370++)X=400X=100【点评】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算; 如果有括号,要先做括号内的运算.20. 计算=1(1) [2 - 5X(-丄)2]宁(- 寺)⑵(-24)X(⑶-14-( 1-)宁丄X [ (-2) 2-6].【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(2-旦)X( - 4)= - 8+5=- 3;4(2)原=-12+40+9= 37;(3)原式=-1-^X 3X(- 2)=- 1半=学.5 5 5【点评】此题考查了有理数的混合运算,以及运算律,熟练掌握运算法则是解本题的关键.21. 计算:(1) 20+ ( -14)-(- -18)- -13;⑵ -2二- 5(十诸)+(岭 )-禺 -; ⑶ (-7) X( - 5) -90 - (-15)。
初中数学:有理数乘除法混合运算计算(含答案)1.1) (-)×(-3)/(-1)/3;2) (-8)/(-1)/(-9).2.1) -0.75×(-0.4)×1;2) 0.6×(-)×(-)×(-2).3.1) -0.75×(-0.4)×1;2) 0.6×(-)×(-)×(-2).4.25×(?missing number?)5.missing number?)6.1) -0.75×(-0.4)×1;2) 0.6×(-)×(-)×(-2).7.1) (-36)/9/(-?missing number?);2) (-)×(-3)/(-1)/3.8.9.missing number?).10.4×(?missing number?)11.1) (-48)×0.125+48×(?missing number?);2) (?)×(-36)+(-3)×(-3)-6×3.12.1) (?missing number?);2) (?missing number?).13.1) (?missing number?);2) (?missing number?).14.36)××(-?missing number?).15.3)/3×(?missing number?).16.1) (-9)×31;2) 99-(-8)×(-31)-(-16)×31;36).17.1) (-48)×0.125+48×+(-48)×(?missing number?);2) (?missing number?)×(-36).18.1) (-3)×(-9)-8×(-5);2) -63/7+45/(-9);3) (-)×1/(-1);4) (1-+)/(-48).19.1) 10×(?missing number?);2) (?)×12;3) 19×(-11)+(?missing number?).20.missing number?).21.1) (-8)×(-12)×(-0.125)×(-)×(-0.001);2) (-1)×/(-)×2/(-)+(-2.5)/(-0.25)×(?missing number?).22.1) 10/(-)×6;2) (?missing number?)×(-6);3) -3/(-)+36/(-).23.1) -3/(-?missing number?);2) (-?missing number?)/(-?missing number?)-(-6). 24.missing number?)×(-72).25.missing number?)×(-72).26.8)×(-8)+(-7)×(-8)-15×8.27.1) (-32)/4×(-8);2) -0.75/(-1)/(-2).28.32×(-)+(-11)×(-)-21×(-).29.54×(-54)+54×(-).30.missing number?)2)(﹣2.5)÷(﹣0.5)÷(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.75×(﹣0.4)×1=0.3;(2)(﹣2.5)÷(﹣0.5)÷(﹣2)=2.5.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.3.计算:1)(﹣7)×(﹣5)÷(﹣4)×(﹣2);2)﹣3×﹣0.5×﹣2.5.分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)(﹣7)×(﹣5)÷(﹣4)×(﹣2)=﹣17.5;(2)﹣3×﹣0.5×﹣2.5=3.75.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.4.计算:1)(﹣)÷(﹣0.5)×(﹣6);2)﹣1.5÷(﹣0.75)×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)(﹣)÷(﹣0.5)×(﹣6)=72;(2)﹣1.5÷(﹣0.75)×(﹣2)=4.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.5.计算:1)﹣4.5÷(﹣0.9)×(﹣2);2)(﹣0.8)÷0.2×(﹣)×2.分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣4.5÷(﹣0.9)×(﹣2)=20;(2)(﹣0.8)÷0.2×(﹣)×2=﹣8.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.6.计算:1)﹣0.4×(﹣)÷(﹣0.2);2)(﹣0.2)÷0.05×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.4×(﹣)÷(﹣0.2)=2;(2)(﹣0.2)÷0.05×(﹣2)=﹣8.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.7.计算:1)﹣0.6×(﹣)÷(﹣0.3);2)(﹣0.4)÷0.1×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.6×(﹣)÷(﹣0.3)=4;(2)(﹣0.4)÷0.1×(﹣2)=﹣8.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.8.计算:1)﹣1.2÷(﹣0.3)×(﹣2);2)(﹣0.6)÷0.2×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣1.2÷(﹣0.3)×(﹣2)=﹣8;(2)(﹣0.6)÷0.2×(﹣3)=﹣9.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.9.计算:1)﹣0.5×(﹣)÷(﹣0.25);2)(﹣0.8)÷0.4×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.5×(﹣)÷(﹣0.25)=4;(2)(﹣0.8)÷0.4×(﹣2)=﹣4.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.10.计算:1)﹣1.5÷(﹣0.75)×(﹣2);2)(﹣0.6)÷0.3×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣1.5÷(﹣0.75)×(﹣2)=4;(2)(﹣0.6)÷0.3×(﹣3)=﹣6.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.11.计算:1)﹣0.8×(﹣)÷(﹣0.4);2)(﹣0.5)÷0.25×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.8×(﹣)÷(﹣0.4)=4;(2)(﹣0.5)÷0.25×(﹣2)=﹣4.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.12.计算:1)﹣1.6÷(﹣0.4)×(﹣2);2)(﹣0.4)÷0.2×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣1.6÷(﹣0.4)×(﹣2)=8;(2)(﹣0.4)÷0.2×(﹣3)=﹣6.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.13.计算:1)﹣1.8×(﹣)÷(﹣0.6);2)(﹣0.3)÷0.15×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣1.8×(﹣)÷(﹣0.6)=3;(2)(﹣0.3)÷0.15×(﹣2)=﹣4.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.14.计算:1)﹣2.4÷(﹣0.6)×(﹣2);2)(﹣0.2)÷0.1×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣2.4÷(﹣0.6)×(﹣2)=8;(2)(﹣0.2)÷0.1×(﹣3)=﹣6.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.15.计算:1)﹣3÷(﹣0.6)×(﹣2);2)(﹣0.1)÷0.05×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣3÷(﹣0.6)×(﹣2)=10;(2)(﹣0.1)÷0.05×(﹣3)=﹣6.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.16.计算:1)(﹣8)×2÷(﹣0.4)×(﹣2);2)(﹣0.2)÷0.1×(﹣4).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)(﹣8)×2÷(﹣0.4)×(﹣2)=80;(2)(﹣0.2)÷0.1×(﹣4)=﹣8.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.17.计算:1)(﹣)×(﹣2)÷(﹣0.4)×(﹣2);2)(﹣0.1)÷0.05×(﹣5).分8.计算:(-8+9)÷(-1)分析:将除法变为乘法,再根据乘法分配律计算即可求解。
有理数的运算中考要求重难点1. 理解并掌握加减法法则且能熟练运用法则计算2. 理解并掌握乘除法法则且能熟练运用法则计算3. 能利用有理数的运算法则简化运算4. 能借助数轴比较有理数的大小课前故事古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷了下棋。
为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。
大臣说:“就在这个棋盘上放一些米粒吧。
第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒、......一直到第64格。
”“你真傻!就要这么一点米粒?!”国王哈哈大笑。
大臣说:”就怕您的国库里没有这么多米!“后等于:+++210222……+632=642-1 =18446744073709551615粒 约2200多吨例题精讲模块一、有理数加法运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. 有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤: ①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差. 有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.()()a b c a b c++=++(加法结合律)有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.【例1】同号两数相加某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:(1)某人向东走5米,再向东走3米,两次一共走了多少米?(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?总结:__________________________________________________.异号两数相加(3)某人向东走5米,再向西走5米,两次一共向东走了多少米?(4)某人向东走5米,再向西走3米,两次一共向东走了多少米?(5)某人向东走3米,再向西走5米,两次一共向东走了多少米?总结:_______________________________________________________.【难度】1星【解析】利用实际情境来推导加法法则,强调和的符号及和与绝对值的关系,进而总结出加法法则【例2】计算下列各题:(1) (一11)+(一9); (2) (一3.5)+(+7);(3)(一1.08)+0; (4)(23+)+(23-)(5)[(-22)+(-27)]+(+27); (6)(-22)+[(-27)+(+27)].【难度】1星【解析】利用加法法则计算。
有理数加减混合计算题100道【含答案】(七年级数学)92267(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--有理数运算练习(一) 【加减混合运算】一、有理数加法.1、【基础题】计算:(1) 2+(-3); (2)(-5)+(-8); (3)6+(-4); (4)5+(-5); (5)0+(-2); (6)(-10)+(-1); (7)180+(-10); (8)(-23)+9;(9)(-25)+(-7); (10)(-13)+5; (11)(-23)+0; (12)45+(-45).2、【基础题】计算:(1)(-8)+(-9); (2)(-17)+21; (3)(-12)+25; (4)45+(-23);(5)(-45)+23; (6)(-29)+(-31); (7)(-39)+(-45); (8)(-28)+37.3、【基础题】计算,能简便的要用简便算法:(1)(-25)+34+156+(-65); (2)(-64)+17+(-23)+68; (3)(-42)+57+(-84)+(-23); (4)63+72+(-96)+(-37); (5)(-301)+125+301+(-75); (6)(-52)+24+(-74)+12; (7)41+(-23)+(-31)+0; (8)(-26)+52+16+(-72).4、【综合Ⅰ】计算:(1))43(31-+; (2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (3)()⎪⎭⎫⎝⎛++-5112.1; (4))432()413(-+-;(5))752()723(-+; (6)(—152)+8.0; (7)(—561)+0; (8)314+(—561).5、【综合Ⅰ】计算:(1))127()65()411()310(-++-+; (2)75.9)219()29()5.0(+-++-;(3))539()518()23()52()21(++++-+-; (4))37(75.0)27()43()34()5.3(-++++-+-+-二、有理数减法.6、【基础题】计算:(1)9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0; (5)3-5; (6)3-(-5);(7)(-3)-5 (8)(-3)-(-5); (9)(-6)-(-6); (10)(-6)-6.、【综合Ⅰ】计算:(1)(-52)-(-53); (2)(-1)-211; (3)(-32)-52; (4)521-(-7.2);(5)0-(-74); (6)(-21)-(-21); (7)525413- ; (8)-64-丨-64丨7、【基础题】填空:(1)(-7)+( )=21; (2)31+( )=-85;(3)( )-(-21)=37; (4)( )-56=-408、【基础题】计算:(1)(-72)-(-37)-(-22)-17; (2)(-16)-(-12)-24-(-18); (3)23-(-76)-36-(-105); (4)(-32)-(-27)-(-72)-87.(5)(-32)-21-(-65)-(-31); (6)(-2112)-[ --(-)-516 ] .三、有理数加减混合运算9、【综合Ⅰ】计算(1)-7+13-6+20; (2)-+-+10; (3)(-53)+51-54;(4)(-5)-(-21)+7-37; (5)31+(-65)-(-21)-32; (6)-41+65+32-21;10、【综合Ⅰ】计算,能简便的要用简便算法:(1)-+(-); (2)(-)-21+(-51); (3)21-(-)-61; (4)(-31)-15+(-32); (5)32+(-51)-1+31; (6)(-12)-(-56)+(-8)-10711、【综合Ⅰ】计算:(1)-(-)+(-); (2)(-8)-(-15)+(-9)-(-12);(3)+(-41)-(-)+21; (4)(-32)+(-61)-(-41)-21;(5)21+(-32)-(-54)+(-21); (6)310+(-411)-(-65)+(-127)12、【综合Ⅰ】计算:(1)7+(-2)-; (2)(-)+3-+(-52); (3)31+(-45)+; (4)7-(-21)+; (5)49-(-)-53; (6)(-56)-7-(-)+(-1);(7)11512+丨-11611丨-(-53)+丨212丨; (8)(- )+ 1098 + +(- 1098)13、【综合Ⅰ】计算:(1)()()()()-+-+++-+-++12345678; (2)-+++(-)(3)-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪13123423; (4)5146162341456+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪;(5)--(-413)+-(+217); (6)3745124139257526+-+有理数运算练习(一) 答案1、【答案】 (1)-1; (2)-13; (3)2; (4)0; (5)-2; (6)-11; (7)170;(8)-14; (9)-32; (10)-8; (11)-23; (12)0.2、【答案】 (1)-17; (2)4; (3)13; (4)22; (5)-22;(6)-60; (7)-84; (8)9.3、【答案】(1)100; (2)-2; (3)-92; (4)2; (5)50; (6)-90; (7)-13; (8)-30.4、【答案】 (1)125-; (2)65-; (3)0; (4)-6; (5)74; (6)32; (7)615-; (8)65-.5、【答案】 (1)65 (2) (3)12 (4)311-6、【答案】 (1)14; (2)-4; (3)-8; (4)-5; (5)-2; (6)8; (7)-8;(8)2; (9)0; (10)-12、【答案】 (1)51; (2)-25; (3)-1516; (4); (5)74; (6)0;(7)-2043(8)-1287、【答案】 (1)28; (2)-116; (3)16; (4)168、【答案】 (1)-30; (2)-10; (3)168; (4)-20; (5)0; (6)-或-1016 9、【答案】 (1)20; (2); (3)-56; (4)61; (5)-32; (6)4310、【答案】 (1)-7; (2)-; (3)127; (4)-16; (5)-51; (6)-23911、【答案】 (1); (2)10; (3)27; (4)-1213; (5)152; (6)65;12、【答案】 (1); (2)-; (3)30; (4)9; (5)69; (6)-6; (7); (8)013、【答案】 (1)8; (2)-3; (3)41; (4)-13; (5)-2; (6)902313。
WORD 完美格式有理数运算练习(一)【加减混合运算】一、有理数加法 .1、【基础题】计算:( 1) 2 +(- 3);( 2)(- 5)+(- 8);( 3)6+(- 4);( 4) 5+(- 5);( 5) 0+(- 2);( 6)(- 10)+(- 1);( 7)180+(- 10);( 8)(- 23)+ 9;( 9)(- 25)+(- 7);( 10)(- 13)+ 5;( 11)(- 23)+0;( 12) 45+(- 45) .2、【基础题】计算:( 1)(- 8)+(- 9);( 2)(- 17)+ 21;( 3)(- 12)+ 25;( 4) 45+(- 23);( 5)(- 45)+ 23;(6)(- 29)+(- 31);( 7)(- 39)+(-45);( 8)(- 28)+ 37.3、【基础题】计算,能简便的要用简便算法:( 1)(- 25)+ 34+156+(- 65);(2)(-64)+17+(-23)+68;( 3)(- 42)+ 57+(- 84)+(- 23);(4)63+72+(-96)+(-37);( 5)(- 301)+ 125+ 301+(- 75);(6)(-52)+24+(-74)+12;( 7) 41+(- 23)+(- 31)+ 0;(8)(-26)+52+16+(-72).WORD 完美格式4、【综合Ⅰ】计算:(1)1( 3); ( 2) 11 ; ( 3) 1.211;(4)( 31)( 23);342 35 44(5) (32)( 25); ( 6)(— 2)+ 0.8;(7)(— 51)+0;(8)41+(— 5 1 ).7715 6 3 65、【综合Ⅰ】计算:(10) (11) (5) ( 7 ) ( 0.5) ( 9)(19) 9.75(1)34612 ;( 2)22;( 1 )( 2) ( 3) (18) (39)( 3.5) ( 4)( 3)( 7)0.75 ( 7)( 3)2 52 55 ;( 4)3423二、有理数减法 .6、【基础题】计算:( 1) 9-(- 5); ( 2)(- 3)- 1; ( 3) 0-8; ( 4)(- 5)- 0; (5) 3- 5; ( 6)3-(- 5);( 7)(- 3)- 5( 8)(- 3)-(- 5); (9)(- 6)-(- 6); (10)(- 6)- 6.WORD 完美格式6.1 、【综合Ⅰ】计算:( 1)(-2)-(-3); ( 2)(- 1)- 1 1;( 3)(-2)- 2 ;(4)1 2-(- 2.7 );5 5235 5( 5) 0-(-4); (6)(-1)-(-1);(7)31-52;( 8)- 64-丨- 64 丨72 24 57、【基础题】填空:( 1)(- 7)+()= 21; ( 2) 31+( )=- 85;( 3)()-(- 21)= 37; ( 4)( )- 56=- 408、【基础题】计算:( 1)(- 72)-(- 37)-(- 22)- 17;( 2)(- 16)-(- 12)- 24-(- 18);( 3) 23-(- 76)- 36-(- 105);( 4)(- 32)-(- 27)-(- 72)- 87.( 5)(-2)- 1 -(-5)-(-1);( 6)(- 12 1 )- [- 6.5 -(- 6.3 )- 61] .3 2 632 5三、有理数加减混合运算9、【综合Ⅰ】计算WORD 完美格式( 1)- 7+13- 6+ 20;( 2)- 4.2 + 5.7 -8.4 + 10;( 3)(-3)+1-4;555( 4)(- 5)-(-1)+7-7;(5)1+(-5)-(-1)- 2;(6)-1+5+2-1;233623463210、【综合Ⅰ】计算,能简便的要用简便算法:( 1) 4.7 -3.4 +(- 8.3 );( 2)(- 2.5 )-1+(-1);(3)1-(- 0.25 )-1;2526( 4)(-1)- 15+(-2);(5)2+(-1)-1+1;( 6)(- 12)-(-6)+(- 8)-7 3335351011、【综合Ⅰ】计算:( 1) 33.1 -(- 22.9 )+(- 10.5 );(2)(-8)-(-15)+(-9)-(-12);( 3) 0.5 +(-1)-(- 2.75 )+1;( 4)(-2)+(-1)-(-1)- 1;423642(5)1+(-2)-(-4)+(-1);( 6)10+(-11)-(-5)+(-7 )235234612WORD 完美格式12、【综合Ⅰ】计算:( 1) 7+(- 2)- 3.4 ;( 2)(- 21.6 )+ 3- 7.4 +(-2);( 3) 31+(-5)+ 0.25 ;54( 4) 7-(-12)+ 1.5 ;(5)49-(-20.6)-3;(6)(-655)- 7-(- 3.2 )+(- 1);(7)125+丨- 116丨-(-3)+丨 21丨;( 8)(- 9.9)+ 108+9.9+(- 108)1111529913、【综合Ⅰ】计算:(1)12 3 45 6 7 8 ;(2)-0.5+1.75+3.25+(-7.5)( 3)113 2 ;(4)516123145;32434646( 5)- 0.5 -(-31)+ 2.75-(+ 71);(6)371249275 424513526WORD 完美格式有理数运算练习(一)答案1、【答案】 ( 1)- 1; (2)- 13;( 3)2;(4) 0; (5)- 2;( 6)- 11; ( 7) 170;( 8)- 14; (9)- 32; ( 10)- 8;( 11)- 23;(12) 0.2、【答案】 ( 1)- 17; (2) 4;( 3) 13;( 4) 22; ( 5)- 22;( 6)- 60; ( 7)- 84; ( 8) 9.3、【答案】( 1) 100; ( 2)- 2; (3)- 92; ( 4)2; ( 5) 50; (6)- 90; ( 7)- 13; ( 8)- 30.4、【答案】 (1)- 5;(2)125、【答案】( 1)5; (3)0; (4)- 6; (5) 4 ; (6) 2; (7)51; (8) 5 . 6 736 65116 ( 2)4.25(3)12(4)36、【答案】 ( 1) 14; ( 2)- 4; (3)- 8; ( 4)- 5; ( 5)- 2; ( 6) 8; ( 7)- 8;( 8) 2; ( 9)0; (10)- 126.1 、【答案】 (1)1;(2)- 5;(3)-16; (4)4.1 ;(5) 4; ( 6)0;52157( 7)-43( 8)- 128207、【答案】 ( 1) 28; (2)- 116;( 3)16; ( 4)168、【答案】 ( 1)- 30;( 2)- 10;( 3) 168; ( 4)- 20;(5) 0; ( 6)- 6.1 或- 61109、【答案】 ( 1) 20;(2) 3.1 ;(3)-6;(4)1;(5)- 2;(6)3563 410、【答案】( 1)- 7;( 2)- 3.2 ;(3) 7 ;( 4)- 16;(5)- 1 ; ( 6)-39WORD 完美格式11、【答案】( 1) 45.5 ;( 2) 10;(3)7;(4)-13;( 5) 2 ;(6)5;21215612、【答案】( 1) 1.6 ;(2)- 26.4 ;( 3) 30;( 4) 9;(5) 69;( 6)- 6;(7) 27.1 ;( 8)013、【答案】(1)8;( 2)- 3;(3)1;( 4)- 13;( 5)- 2;(6)1323 490。
有理数的混合运算一、以考查知识为主的试题【容易题】1.下列说法中,正确的是( )A .一个有理数的平方一定是正数B .一个负数的偶次幂一定大于这个数的相反数C .﹣32表示3的平方的相反数D .小于0的有理数的平方一定小于这个数本身2.下列各组运算中结果相等的是( )A .﹣24与(﹣2)4B .(﹣1)4与(﹣1)2020C .﹣(﹣8)与﹣|﹣8|D .52与253.下列各组中,两个式子的值相等的是( ) A .6÷(3×2)与6÷3×2 B .(﹣3+4)3与(﹣3)3+(﹣4)3C .﹣3×(5﹣8)与﹣3×5﹣8D .(﹣4×3)2与(﹣4)2×324.计算20212﹣2020×2022的结果是( )A .0B .﹣1C .1D .2×20212﹣15.如图,是一个简单的运算程序.若输入x 的值为﹣2,则输出的数值为( ) .6.在算式1﹣|﹣2□3|中的□里,填入运算符号 ,使得算式的值最小(在符号+,﹣,×,÷中选择一个).7.计算 ()32022311212236⎡⎤--⨯-+-⎣⎦ (2)()()32215;-÷-⨯-8.简便运算 (1)÷+--)1279543(361; (2) 4531136864⎛⎫⎛⎫⎛⎫--÷-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭二、以考查技能为主的试题【中等题】9.测得某小组10位同学身高如下(单位:厘米):162,160,157,161,156,153,165,157,162,158.请用简便方法计算10位同学的平均身高.10.刘校长准备在国庆长假期间带领该校的“优秀学生”外出旅游、学习,分别与甲、乙两个旅行社联系有关事宜.甲旅行社承诺:如果校长买一张全票,那么其余学生可以享受半价优惠;乙旅行社承诺:包括校长在内,全部按照票价的6折优惠.已知全票价为240元,优秀学生共5人,请你帮助刘校长判断一下,应该选择哪一家旅行社更优惠.11.(1)小明与同学一起玩“24点”扑克游戏,即从一副扑克千牌(去掉大、小王)中任意抽取四张,根据牌面上的数字进行有理数的混合运算(每张牌只能用一次,其中红色扑克牌代表负数,黑色扑克代表正数,J ,Q ,K 分别代表11,12,13,使得运算结果为24或﹣24.小明抽到黑1,黑2,花3,花4,他的算式是 .(2)假设你抽到的是:红6,黑3,花4,花10,用算式给出你的运算: .(3)你确信游戏总是能进行下去吗?12.如果“!”是一种数学运算符号,并且知道:1!=1,2!=2x1=2,3!=3x2x1=6,…,那么,!!20212022=( )【较难题】13.某球迷协会组织36名球迷拟租乘汽车赴比赛场地,为中国国家男子足球队呐喊助威,可利用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不留空座,也不超载.(1)请你给出三种不同的租车方案;(2)若8个座位的车子租金是300元/天,4个座位的车子租金是200元/天,请你设计费用最小的租车方案,并简述你的理由.14.有数组(1,1,1),(2,4,8),(3,9,27),…,则第100组的三个数之和为 ______.15.某商场国庆搞促销活动,购物不超过200元不给优惠:超过200元某商场国庆节搞促销活动,购物不超过200元不给优惠,超过200元而不足500元的优惠10%,超过500元的,其中500元按九折优惠,超过的部分按八折优惠,某人两次购物分别用了134元,466元.(1)此人两次购物其物品实际值多少元?(2)在这次活动中他节省了多少钱?(3)若两人将这两次的钱合起来一起购物是更节省还是亏损?说明理由有理数的混合运算(含答案)三、以考查知识为主的试题【容易题】1.下列说法中,正确的是( )A .一个有理数的平方一定是正数B .一个负数的偶次幂一定大于这个数的相反数C .﹣32表示3的平方的相反数D .小于0的有理数的平方一定小于这个数本身【答案】C2.下列各组运算中结果相等的是( )B .﹣24与(﹣2)4 B .(﹣1)4与(﹣1)2020C .﹣(﹣8)与﹣|﹣8|D .52与25【答案】B3.下列各组中,两个式子的值相等的是( ) A .6÷(3×2)与6÷3×2 B .(﹣3+4)3与(﹣3)3+(﹣4)3C .﹣3×(5﹣8)与﹣3×5﹣8D .(﹣4×3)2与(﹣4)2×32【答案】D4.计算20212﹣2020×2022的结果是( )A .0B .﹣1C .1D .2×20212﹣1【答案】C5.如图,是一个简单的运算程序.若输入x 的值为﹣2,则输出的数值为( ) .【答案】896.在算式1﹣|﹣2□3|中的□里,填入运算符号 ,使得算式的值最小(在符号+,﹣,×,÷中选择一个).【答案】×7.计算 ()32022311212236⎡⎤--⨯-+-⎣⎦ (2)()()32215;-÷-⨯-【答案】 23- 20-8.简便运算 (1)÷+--)1279543(361; (2) 4531136864⎛⎫⎛⎫⎛⎫--÷-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】-6 1- 四、以考查技能为主的试题【中等题】9.测得某小组10位同学身高如下(单位:厘米):162,160,157,161,156,153,165,157,162,158.请用简便方法计算10位同学的平均身高.【答案】159.110.刘校长准备在国庆长假期间带领该校的“优秀学生”外出旅游、学习,分别与甲、乙两个旅行社联系有关事宜.甲旅行社承诺:如果校长买一张全票,那么其余学生可以享受半价优惠;乙旅行社承诺:包括校长在内,全部按照票价的6折优惠.已知全票价为240元,优秀学生共5人,请你帮助刘校长判断一下,应该选择哪一家旅行社更优惠.【答案】应该选择甲旅行社优惠11.(1)小明与同学一起玩“24点”扑克游戏,即从一副扑克千牌(去掉大、小王)中任意抽取四张,根据牌面上的数字进行有理数的混合运算(每张牌只能用一次,其中红色扑克牌代表负数,黑色扑克代表正数,J ,Q ,K 分别代表11,12,13,使得运算结果为24或﹣24.小明抽到黑1,黑2,花3,花4,他的算式是 .(2)假设你抽到的是:红6,黑3,花4,花10,用算式给出你的运算: .(3)你确信游戏总是能进行下去吗?【答案】(1)1×2×3×4=24;(2)3×(10﹣6+4)=2412.如果“!”是一种数学运算符号,并且知道:1!=1,2!=2x1=2,3!=3x2x1=6,…,那么,!!20212022=( )【答案】2022【较难题】13.某球迷协会组织36名球迷拟租乘汽车赴比赛场地,为中国国家男子足球队呐喊助威,可利用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不留空座,也不超载.(1)请你给出三种不同的租车方案;(2)若8个座位的车子租金是300元/天,4个座位的车子租金是200元/天,请你设计费用最小的租车方案,并简述你的理由.【答案】(1)8座车4辆,4座车1辆;8座车3辆,4座车3辆,8座车2辆,4座车5辆等.(2)140014.有数组(1,1,1),(2,4,8),(3,9,27),…,则第100组的三个数之和为______.【答案】101010015.某商场国庆搞促销活动,购物不超过200元不给优惠:超过200元某商场国庆节搞促销活动,购物不超过200元不给优惠,超过200元而不足500元的优惠10%,超过500元的,其中500元按九折优惠,超过的部分按八折优惠,某人两次购物分别用了134元,466元.(1)此人两次购物其物品实际值多少元?(2)在这次活动中他节省了多少钱?(3)若两人将这两次的钱合起来一起购物是更节省还是亏损?说明理由【答案】134,518;52;70。
有理数的运算中考要求重难点1. 理解并掌握加减法法则且能熟练运用法则计算2. 理解并掌握乘除法法则且能熟练运用法则计算3. 能利用有理数的运算法则简化运算4. 能借助数轴比较有理数的大小课前故事古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷了下棋。
为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。
大臣说:“就在这个棋盘上放一些米粒吧。
第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒、......一直到第64格。
”“你真傻!就要这么一点米粒?!”国王哈哈大笑。
大臣说:”就怕您的国库里没有这么多米!“后等于:+++210222……+632=642-1 =18446744073709551615粒 约2200多吨例题精讲模块一、有理数加法运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. 有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤: ①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差. 有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.()()a b c a b c++=++(加法结合律)有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.【例1】同号两数相加某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:(1)某人向东走5米,再向东走3米,两次一共走了多少米?(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?总结:__________________________________________________.异号两数相加(3)某人向东走5米,再向西走5米,两次一共向东走了多少米?(4)某人向东走5米,再向西走3米,两次一共向东走了多少米?(5)某人向东走3米,再向西走5米,两次一共向东走了多少米?总结:_______________________________________________________.【难度】1星【解析】利用实际情境来推导加法法则,强调和的符号及和与绝对值的关系,进而总结出加法法则【例2】计算下列各题:(1) (一11)+(一9); (2) (一3.5)+(+7);(3)(一1.08)+0; (4)(23+)+(23-)(5)[(-22)+(-27)]+(+27); (6)(-22)+[(-27)+(+27)].【难度】1星【解析】利用加法法则计算。
【答案】()()()()209119111-=+-=-+- ()()()()5.35.3775.32=-+=++- ()()()08.1008.1008.13-=--=+- ()0323232324=⎪⎭⎫⎝⎛-+=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+()()()[]()()()22274927492722272727225-=--=+-=++-=++-+- ()()()()[]()22222727226-=+-=++-+-【巩固】计算:(1)()()()()()-+++-+-++36475()2()()-⎛⎝ ⎫⎭⎪+-+-⎛⎝ ⎫⎭⎪++++⎛⎝ ⎫⎭⎪234025*********..()3+⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪5751432527225914【难度】2星【解析】利用加法交换律把同分母的分数相加,如果有分数的先化为分数再计算。
【答案】(1)()()()()()-+++-+-++36475 ()2()()-⎛⎝ ⎫⎭⎪+-+-⎛⎝ ⎫⎭⎪++++⎛⎝ ⎫⎭⎪234025*********..()()31114111456743-=--=+-=++++-=)( 8138138133813041432813818141432=⎪⎭⎫ ⎝⎛-+=+-=++⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=()()5151112522531491451252253149145727514925272253145753-=⎪⎭⎫⎝⎛-+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+【例3】(2011•乐山)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( ) A 、4℃ B 、9℃ C 、-1℃ D 、-9℃ 【难度】1星【解析】原来的温度为-5℃,调高4℃,实际就是转换成有理数的加法运算. 【答案】解:-5+4=-1 故选C .点评:本题主要考查从实际问题抽象出有理数的加法运算.【例4】绝对值不大于10的所有整数的和等于( )A 、-10 B 、0 C 、10 D 、20【难度】2星【解析】根据绝对值的意义,结合数轴找到所有符合条件的数,再进一步根据数的运算法则进行计算.互为相反数的两个数的和为0.【答案】解:绝对值不大于10的所有整数有±10,±9,±8,±7,…±1,0.共有21个.再根据互为相反数的两个数的和为0,得它们的和是0.故选B.点评:此类题中,符合条件的数一般是成对相反数出现的,根据互为相反数的两个数的和是0,进行计算.【例5】已知a,b,c的位置如图,化简:|a-b|+|b+c|+|c-a|= ______________【难度】3星【解析】先根据数轴上的大小关系确定绝对值符号内代数式的正负情况a-b<0,b+c<0,c-a>0,再根据绝对值的性质去掉绝对值符号进行有理数运算即可求解.注意:数轴上的点右边的总比左边的大.【答案】解:由数轴可知a<c<0<b,所以a-b<0,b+c<0,c-a>0,则|a-b|+|b+c|+|c-a|=b-a-b-c+c-a=-2a.点评:此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.要注意先确定绝对值符号内代数式的正负情况,再根据绝对值的性质去掉绝对值符号进行有理数运算.模块二、有理数减法运算有理数减法法则:减去一个数,等于加这个数的相反数.()a b a b-=+-有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.【例6】 计算 ()()()531+-- ()702- ()()()953--+ ()()()1264---【难度】1星 【解析】()()()()()853531-=-+-=+-- ()()770702-=-+=- ()()()()()1495953=+++=--+ ()()()()()()66121261264=-+=++-=---【巩固】 ⑴21(4)(3)33-+-⑵21(6)(9)|3|7.49.2(4)55-+-+-+++-⑶17(14)(5)( 1.25)88-+++-⑷111(8.5)3(6)11332-++-+【难度】1星()()()()0101432.92.94.74.6=-++=-+++-++-=⑶17(14)(5)( 1.25)88-+++-⑷111(8.5)3(6)11332-++-+8-=【例7】对于任何有理数a,下列各式中一定为负数的是()A、-(-3+a)B、-aC、-|a+1|D、-|a|-1【难度】2星【解析】负数一定小于0,可将各项化简,然后再进行判断.【答案】解:A、-(-3+a)=3-a,a≤3时,原式不是负数,故A错误;B、-a,当a≤0时,原式不是负数,故B错误;C、∵-|a+1|≤0,∴当a≠-1时,原式才符合负数的要求,故C错误;D、∵-|a|≤0,∴-|a|-1≤-1<0,所以原式一定是负数,故D正确.故选D.点评:掌握负数的定义以及绝对值的性质是解答此题的关键.【例8】a,b在数轴上的位置如图所示,则a,b,a+b,a-b中,负数的个数是()A、1个B、2个C、3个D、4个【难度】2星【解析】在数轴上右边的数总是大于左边的数,即可确定a,b的符号,再根据有理数的加法与减法法则确定a+b,a-b的符号,从而确定负数的个数.【答案】解:根据数轴可得:a<0,b>0,且|a|>|b|,∴a+b<0,a-b<0.则在这四个数中的负数有:a,a+b,a-b,共3个.故选C.点评:本题主要考查了数轴上的点的特点,右边的数总是大于左边的数,以及有理数的加法与减法法则.【例9】两个数的差是负数,则这两个数一定是()A、被减数是正数,减数是负数B、被减数是负数,减数是正数C、被减数是负数,减数也是负数D、被减数比减数小【难度】2星【解析】两个数的差是负数,说明是较小的数减较大的数的结果,应该是被减数比减数小.【答案】解:如果两个数的差是负数,则这两个数一定是被减数比减数小.故选D.点评:考查有理数的运算方法.有理数减法法则:减去一个数等于加上这个数的相反数.【例10】如果a,b均为有理数,且b<0,则a,a-b,a+b的大小关系是()A、a<a+b<a-bB、a<a-b<a+bC、a+b<a<a-bD、a-b<a+b<a【难度】2星【解析】首先根据b<0来判定-b>0,a-b>a,a+b<a.据此,很容易比较a,a-b,a+b的大小.【答案】解:∵b<0∴-b>0∴a-b>a>a+b.故选C.点评:实数运算性质与大小顺序关系它是比较两实数大小的依据,也是求差法的依据:(1)a>b时,则a-b>0;(2)a=b时,则a-b=0;(3)a<b时,则a-b<0.模块三、有理数的乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数乘法运算律:①两个数相乘,交换因数的位置,积相等. ab ba=(乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. ()=(乘法结合律)abc a bc③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a b c ab ac+=+(乘法分配律)()有理数乘法法则的推广:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.②几个数相乘,如果有一个因数为0,则积为0.③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数.【例11】下面计算正确的是()A、-5×(-4)×(-2)×(-2)=5×4×2×2=80B、12×(-5)=-50C、(-9)×5×(-4)×0=9×5×4=180D、(-36)×(-1)=-36【难度】1星【解析】①两数相乘,同号为正,异号为负,并把绝对值相乘;②任何数同0相乘,都得0.【答案】解:A 、-5×(-4)×(-2)×(-2)=5×4×2×2=80,故本选项正确;B 、12×(-5)=-60,故本项错误;C 、(-9)×5×(-4)×0=0,故本项错误;D 、(-36)×(-1)=36,故本项错误; 故选A .点评:(1)几个不等于零的数相乘,积的符号由负因数的个数决定:①当负因数有奇数个数,积为负;②当负因数的个数为偶数个时,积为正;(2)几个数相乘,有一个因数为0时,积为0.【巩固】(- )× =________ (-)×(-)=___________分析:根据乘法算式的特点,先将符号放在一边计算两个正数的乘法,最后再加上符号,计算出结果.符号规则:--=+,++=+,+-=-,-+=-. 【难度】1星【解析】解:(- )× =- × =- ;(-)×(-)=×= .故答案为:- , .点评:在进行有理数的乘法运算时,要灵活运用运算律.【巩固】4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11171113()71113⨯⨯⨯++;()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 111112211142612⎛⎫-⨯-+- ⎪⎝⎭【难度】1星【解析】4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11171113()71113⨯⨯⨯++;9113211910593-=⎪⎭⎫⎝⎛⨯⨯⨯⨯-= 3117791143117137131113113117111131177113117=++=⨯+⨯+⨯=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 111112211142612⎛⎫-⨯-+- ⎪⎝⎭()1691211691245816912-=⨯⎪⎭⎫ ⎝⎛-=++-⨯⎪⎭⎫ ⎝⎛-= ()()()()1013141827121312671223124912-=+-+-=⨯--⨯-+⨯--⨯-=【例12】若两个有理数的和与积都是正数,则这两个有理数( )A 、都是负数B 、一正一负且正数的绝对值大C 、都是正数D 、无法确定 【难度】2星【解析】根据有理数的乘法法则,可知负因数为偶数个.由有理数的加法法则知,两个数相加,其中的负数是0个或1个,且负数的绝对值小于正数的绝对值.【答案】解:因为两个数的积是正数,所以负因数为偶数个,是0个或2个;又∵两个有理数的和是正数,所以负数为0个或1个; 所以,这两个有理数的负数是0个,即两个数都是正数. 故选C .点评:本题主要考查了有理数的乘法与加法.几个不等于零的数相乘,积的符号由负因数的个数决定:当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正. 【例13】 a 、b 、c 为非零有理数,它们的积必为正数的是( ) A .0a >,b 、c 同号 B .0b >,a 、c 异号 C .0c >,a 、b 异号 D .a 、b 、c 同号 【难度】2星 【答案】A【例14】已知|x|=3,|y|=2,且x•y<0,则x+y的值等于()A、5或-5B、1或-1C、5或1D、-5或-1【难度】2星【解析】先根据绝对值的性质,求出x、y的值,然后根据x•y<0,进一步确定x、y的值,再代值求解即可.【答案】解:∵|x|=3,|y|=2,x•y<0,∴x=3时,y=-2,则x+y=3-2=1;x=-3时,y=2,则x+y=-3+2=-1.故选B.点评:此题主要考查了绝对值的性质,能够根据已知条件正确的判断出x、y的值是解答此题的关键.【例15】有理数a,b,c在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc<0 (2)|a-b|+|b-c|=|a-c|(3)(a-b)(b-c)(c-a)>0 (4)|a|<1-bc其中正确的命题有()A、4个B、3个C、2个D、1个【难度】3星【解析】对于命题①②③,先确定a、b、c的正负情况,以及a-b、b-c、a-c、c-a的正负情况就可以判断;而在命题④中要分别判断|a|与1和1-bc与1的大小情况.【答案】解:由图可知a<-1<0,0<b<c<1,(1)命题abc<0正确;(2)在命题中a-b<0,b-c<0,所以|a-b|+|b-c|=-(a-b)+[-(b-c)]=-a+b-b+c=-a+c.又因为a-c<0,所以|a-c|=-(a-c)=-a+c.左边=右边,故正确;(3)在该命题中,因为a-b<0,b-c<0,c-a>0,所以(a-b)(b-c)(c-a)>0,故正确;(4)在命题中,|a|>1,0<bc<1,1-bc<1,所以|a|>1-bc,故该命题不正确.所以正确的有命题①②③这三个,故选B.点评:本题主要考查了数轴、去绝对值以及有理数的乘法等知识点;解答本题的关键是掌握绝对值的意义:|a|= .模块四、有理数的除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.1a b ab÷=⋅,(0b≠)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.【例16】下列关于0的说法中,正确的个数是()①0既不是正数,也不是负数;②0既是整数也是有理数;③0没有倒数;④0没有绝对值.A、1B、2C、3D、4【难度】1星【解析】根据正负数,有理数,倒数,绝对值的定义作答.【答案】A、由正数、负数的定义可知0既不是正数,也不是负数,正确;B、由有理数的定义可知0既是整数也是有理数,正确;C、由倒数的定义可知0没有倒数,正确;D、由绝对值的定义可知0的绝对值还是0,错误.所以有3个正确.故选C.点评:此题考查了正负数,有理数,倒数,绝对值的定义,学生要做好这类题必须对其定义理解透彻.【例17】-8的倒数的绝对值是()A、8 B、 C、-8 D、【难度】1星【解析】根据倒数的定义,两数的乘积为1,这两个数互为倒数,先求出-8的倒数,然后根据负数的绝对值等于它的相反数即可求出所求的值.【答案】∵-8的倒数是- ,∴|- |= ,则-8的倒数的绝对值是.故选B点评:此题考查了倒数的求法及绝对值的代数意义,其中求倒数的方法就是用“1”除以这个数得到商即为这个数的倒数(0除外),绝对值的代数意义是:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0.【例17】下列运算有错误的是()A 、 ÷(-3)=3×(-3)B 、C 、8-(-2)=8+2D 、2-7=(+2)+(-7)【难度】1星【解析】根据有理数的运算法则判断各选项的计算过程.减去一个数等于加上这个数的相反数;除以一个数等于乘以这个数的倒数.【答案】只有A 中的计算是错误的,理由: ÷(-3)= ×(- )=- ,3×(-3)=-9. 故选A .点评:本题主要考查了有理数的减法与除法法则.注意,乘法是除法的逆运算,加法是减法的逆运算. 【巩固】计算:111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭231(4)()324+÷⨯÷-; 71()2(3)93-÷⨯+;【难度】1星【答案】111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭7125673310=⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-= 615131010125-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-=231(4)()324+÷⨯÷-; 71()2(3)93-÷⨯+;()()36423234-=-⨯⨯⨯+= 91317397-=⨯⨯⎪⎭⎫ ⎝⎛-=【例18】两个有理数的商为正,则( )A 、和为正B 、和为负C 、至少一个为正D 、积为正数【解析】本题可根据有理数的除法规则进行解题,两个有理数的商为正,说明这两个有理数同正同负,从而得出正确的结果.【答案】∵两个有理数的商为正,∴这两个有理数有两种情况:①都为正;②都为负; 所以C 错误;当它们都为负时,它们的和为负,所以A 错误; 当它们都为正时,它们的和为正,所以B 错误;但是不管它们同正还是同负,它们的积都为正,所以D 正确. 故选D .点评:主要考查了有理数的除法,商为正,则两个有理数的符号相同.【例19】用“>”或“<”填空⑴如果0ab c >,0ac <那么b _____ 0 ;⑵如果0a b >,0b c <那么ac _______0 .【难度】2星【解析】根据乘除法确定符合口诀“同号得正,异号得负” 【答案】< <模块五、有理数的乘方求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在na 中,a 叫做底数,n 叫做指数,读作a 的n 次幂。