沪教版二次函数的概念辅导讲义(概念较详细)
- 格式:doc
- 大小:600.22 KB
- 文档页数:7
教学内容—二次函数综合复习知识精要二次函数的概念:形如2(0)y ax bx c a =++≠的函数。
定义域是一切实数。
二次函数的图像函数 对称轴顶点 开口方向最值 ()20y ax a =≠ y 轴 (0,0)a>0,图像开口向上,顶点是最低点; a<0,图像开口向下,顶点是最高点.()20y ax c a =+≠ y 轴),0(cc()()20y a x m a =+≠m x -= ()0,m -)0()(2≠++=a k m x a y m x -=),(k m -k()02≠++=a c bx ax yabx 2-=⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22 ab ac 442-)0)()((1≠--=a x x x x a y x221x x x +=一、选择题典型例题1)有关二次函数图像与系数关系1.如果0k <(k 为常数),那么二次函数22y kx x k =-+的图像大致为 ( ).2. 已知二次函数)0(2≠++=a c bx ax y 的图像如图所示, 以下关于实数c b a ,,的符号判断中,正确的是( ) A.0,0,0>>>c b a B.0,0,0><>c b a C.0,0,0<>>c b a D.0,0,0<<>c b a第6题ABCDy O x y Ox yOxyOx2)二次函数性质的判断:对称轴,开口方向,顶点,增减性1. 已知点11()x y ,,22()x y ,均在抛物线21y x =-上,下列说法中正确的是 ( ) A. 若12y y =,则12x x = B. 若12x x =-,则12y y =- C. 若120x x <<,则12y y > D. 若120x x <<,则12y y > 2.关于抛物线4)1(32-+-=x y ,下列说法正确的是 ( )A .抛物线的对称轴是直线1=x ;B .抛物线在y 轴上的截距是4-;C .抛物线的顶点坐标是(41--,); D .抛物线的开口方向向上. 3.已知函数222y x x =--的图像如图所示,根据图像提供的信息,可得y ≤1时,x 的取值范围是 ( )A .3x -≥B .31x -≤≤C . 13x -≤≤D .1x -≤或3x ≥4.对于抛物线23y x =-,下列说法中正确的是( )A .抛物线的开口向下 ;B .顶点(0,-3)是抛物线的最低点 ;C .顶点(0,-3)是抛物线的最高点;D .抛物线在直线0x =右侧的部分下降的.3)二次函数的平移问题1.把抛物线22y x =--平移后得到抛物线2y x =-,平移的方法可以是( ). A. 沿y 轴向上平移2个单位; B. 沿y 轴向下平移2个单位; C. 沿x 轴向右平移2个单位; D. 沿x 轴向左平移2个单位.2. 把抛物线()216+=x y 平移后得到抛物线26x y = ,平移的方法可以是 ( ).A. 沿y 轴向上平移1个单位;B. 沿y 轴向下平移1个单位;C. 沿x 轴向左平移1个单位;D. 沿x 轴向右平移1个单位. 巩固练习1.已知抛物线解析式为243y x x =--,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是__________.2.二次函数322+=x y 图象的顶点坐标是 .3.如果二次函数()()21122+-++=x k x k y ,那么它的图象的开口向 .4. 如果)8,(x A ,),2(y B -是二次函数221x y =图像上的两个点,那么=+y x . 5.抛物线c bx x y ++=2经过点)3,0(和)0,1(-,那么抛物线的解析式是 . 6.如果二次函数a x x y ++=2与x 轴有交点,那么实数a 的取值范围是 .7. 抛物线12-=ax y 上有一点)2,2(P ,平移该抛物线,使其顶点落在点)1,1(A 处,这时,点P 落在点Q 处,则点Q 的坐标为 .二、 二次函数解答题典型例题例1.在直角坐标平面内,已知抛物线()()012>-=a x a y 顶点为A ,与y 轴交于点C ,点B 是抛物线上另一点,且横坐标为3,若⊿ABC 为直角三角形时,求a 的值.例2.如图,抛物线322++=ax ax y 与y 轴交于点C ,与x 轴交于A 、B 两点(点A 和点B 分别在x 轴的正、负半轴上),3cot =∠OCA . (1)求抛物线的解析式;(2)平行于x 轴的直线l 与抛物线交于点E 、F (点F 在点E 的左边),如果四边形OBFE 是平行四边形,求点E 的坐标.巩固练习1. 如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO =12,CO =BO ,AB =3,求这条抛物线的函数解析式.CyO A BxCxy oA 11-4B三、二次函数与相似结合题例1. 抛物线2y ax bx c =++的图象如图所示,已知该抛物线与x 轴交于A 、B 两点,顶点为C , (1)根据图象所给信息,求出抛物线的解析式; (2)求直线BC 与y 轴交点D 的坐标;(3)点P 是直线BC 上的一点,且APB ∆与DOB ∆相似,求点P 的坐标.例2.如图9,在平面直角坐标系中,O 为坐标原点,二次函数图像经过(1,2)A -、(3,2)B -和(0,1)C 三点,顶点为P .(1)求这个二次函数的解析式,并写出顶点P 的坐标; (2)联结PC 、BC ,求BCP ∠的正切值;(3)能否在第一象限内找到一点Q ,使得以Q 、C 、A 三点为顶点的三角形与以C 、P 、B 三点为顶点的三角形相似?若能,请确定符合条件的点Q 共有几个,并请直接写出它们的坐标;若不能,请说明理由.自我测试1.下列抛物线中,顶点在第一象限内的是 ( ) A.2)1(21-=x y B. 3212+=x y C. 3)1(212++=x y D. 3)1(212+-=x y . 2.若A (113,4y -),B (2,45y -),C (3,41y )为二次函数245y x x =--的图像上的三点,则1,y 2,y 3y 的大小关系是 ( ).A.123y y y <<B. 321y y y <<C. 312y y y <<D. 132y y y << 3.将抛物线y =2x 2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是( ) A. y=2(x+1)2 +3; B. y=2(x -1)2-3; C. y=2(x+1)2-3; D. y=2(x -1)2+3.4. 若二次函数k x x y +-=32的图像与x 轴有公共点,则实数k 的取值范围是 。
教学内容—二次函数的概念及特殊二次函数的图像知识精要1.二次函数的概念一般地,解析式形如2(,,0)y ax bx c a b c a =++≠其中是常数,且的函数叫做二次函数。
二次函数2y ax bx c =++的定义域为一切实数。
特殊二次函数的图像函数 对称轴顶点 开口方向最值 ()20y ax a =≠ y 轴 原点a>0,图像开口向上,顶点是最低点; a<0,图像开口向下,顶点是最高点.()20y ax c a =+≠ y 轴),0(cc()()20y a x m a =+≠m x -= ()0,m -)0()(2≠++=a k m x a y m x -=),(k m -k()02≠++=a c bx ax yabx 2-=⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22 ab ac 442-)0)()((1≠--=a x x x x a y x221x x x +=值函数的图象及性质>0⑴开口向上,并且向上无限伸展;⑵当x =时,函数有最小值;当x <时,y 随x 的增大而减小;当x >时,y 随x 的增大而增大.<0 ⑴开口向下,并且向下无限伸展;⑵当x =时,函数有最大值;当x <时,y 随x 的增大而增大;()20y ax bx c a =++≠当x >时,y 随x 的增大而减小.图像平移规律: 左加右减,上加下减。
2、一元二次方程的根与系数关系:如果一元二次方程20(0)ax bx c a ++=≠的两个实数根分别是1x 、2x ,那么1212,.b c x x x x a a+=-⋅= 两点之间距离公式:22()()A B A B AB x x y y =-+- 3、一元二次方程的根的情况与二次函数图像关系 一元二次方程有两个不同的实数根 ∆>0 抛物线与x 轴有两个不同的交点 一元二次方程有两个相同的实数根∆=0抛物线与x 轴只有一个交点,且这个交点为抛物线顶点一元二次方程无实数根∆<0抛物线与x 轴无交点 热身练习1. 正方体的棱长为x ,表面积为y ,y 关于x 的函数解析式是2. 圆的面积为S ,半径为R ,S 关于R 的函数解析式为 。
26.1 二次函数的概念【学习目标】1、知道二次函数的一般表达式;2、能够根据实际问题,熟练地列出二次函数关系式;3、能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量 的取值范围。
【主要概念】1、二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零. 二次函数的定义域是全体实数。
2、 二次函数2y ax bx c =++的结构特征:(1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2;(2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项。
3、在实际问题中抽象出二次函数模型的步骤(1) 审清题意,找出实际问题中的已知量与未知量,并分析它们之间的关系,将文字或图形语言转化成数学符号语言(2) 根据实际问题中存在的等量关系建立二次函数解析式;应注意将解析式整理为:2(0)y ax bx c a =++≠的形式;(3) 根据实际意义,明确自变量的取值范围。
注意点:(1)列二次函数解析式的基本思路和列方程解应用题的思路是一样的。
(2)注意自变量的范围4、用待定系数法确定二次函数的解析式的步骤 (1) 设出二次函数解析式2y ax bx c =++(2) 把已知x ,y 的对应值代入所设解析式,得到关于a ,b ,c 的方程组; (3) 解方程组,求出系数a ,b ,c 的值 (4) 代入所求系数得到二次函数解析式 注意点:(1)有几个未知数列几个方程组 (2)代入时,注意对应代入【知识点填空】一般地,形如____________________________的函数,叫做二次函数。
其中x 是________,a 是__________,b 是___________,c 是_____________. 【经典例题】【例1】观察:①y =6x 2;②y =-32 x 2+30x ;③y =200x 2+400x +200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),那么y 叫做x 的_____________.【例2】函数y =(m -2)x 2+mx -3(m 为常数).(1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数.【例3】下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数.(1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2(4)y =3x 3+2x 2(5)y =x +1x(6)y=5x +1(7)y=4x 2-1 (8)y=2x 3-3x 2(9)y=5x 4-3x +1【例4】m 取何值时函数y=(m 2-m)x 2+mx+(m+1)是以x 为自变量的二次函数?【例5】n 支球队参加比赛,没两队之间进行一场比赛。
二次函数是九年级上学期第三章的内容.本讲首先讲解二次函数的概念,需学会判断一个函数是否是二次函数,重点是学会在实际问题中用二次函数描述两个变量之间的依赖关系,并确定函数定义域.其次,在理解了二次函数概念的基础上,本讲讲解了特殊二次函数2y ax=的图像,重点是学会利用描点法画出二次函数的图像,并通过观察和分析,归纳出抛物线2y ax=的特征,掌握其直观性质,为学习其他形式的二次函数的图像做好准备.1、二次函数一般地,解析式形如2y ax bx c=++(其中a、b、c是常数,且0a≠)的函数叫做二次函数.二次函数2y ax bx c=++的定义域为一切实数.而在具体问题中,函数的定义域根据实际意义来确定.二次函数的概念与特殊二次函数的图像1内容分析知识结构模块一:二次函数的概念知识精讲步同级年九2 / 19【例1】 判断下列函数是否是二次函数.(1)23y x =; (2)2112y x =-+; (3)21y x =;(4)()2y x x =-; (5)()212y x =+-;(6)()222y x x =+-.【答案】(1)不是;(2)是;(3)不是;(4)是;(5)是;(6)不是 【解析】(1)没有二次项;(2)符合()20y ax bx c a =++≠;(3)不是整式; (4)()222y x x x x =-=-+,符合()20y ax bx c a =++≠; (5)()221221y x x x =+-=+-,符合()20y ax bx c a =++≠;(6)()22244y x x x =+-=+,没有二次项.【总结】本题考察二次函数的概念,判断一个函数是否是二次函数,关键看是否符合()20y ax bx c a =++≠的形式.【例2】 ()()222231y m m x m x m =--+-+是关于x 的二次函数需要满足的条件是_____________.【答案】3m ≠且1m ≠-.【解析】2230m m --≠,解得3m ≠且1m ≠-.【总结】本题考察二次函数的概念,二次函数需满足二次项系数不为零.【例3】 二次函数()22y x =-+的二次项系数为a ,一次项系数为b ,常数项为c ,则24b ac -=_____.【答案】0.【解析】()22244y x x x =-+=-+,所以1a =,4b =-,4c =,代入得240b ac -=. 【总结】本题考察二次项系数、一次项系数、常数项的概念,做题的关键是把函数化为一般式.【例4】 已知二次函数2253y x x =-+.(1)当12x =-时,求函数值;例题解析(2)当x 取何值时,函数值为0?【答案】(1)6;(2)1或32.【解析】(1)把12x =-代入2253y x x =-+得6y =;(2)把0y =代入22530x x -+=得11x =,232x =. 【总结】本题一方面考察了函数值求解问题,已知自变量的值代入函数解析式即可,另一方面考察了已知函数值求自变量的值的问题.【例5】 下列函数中(x ,t 为自变量),哪些是二次函数?如果是二次函数,请指出二次项、一次项系数及常数项.(1)2132y x =-+;(2)()()23422y x x x =--+;(3)23s t =++;(4)26y x =-.【答案】(1)是,二次项是23x 、一次项系数是0、常数项是12-; (2)不是;(32、一次项系数是1、常数项是3; (4)不是【解析】形如2y ax bx c =++(0a ≠)的函数叫做二次函数,其中2ax 叫做二次项、b 叫 做一次项系数、c 是常数项.【总结】本题考察二次函数的概念,二次项系数、一次项系数、常数项的概念.【例6】 已知函数()()22932y m x m x =---+. (1)当m 为何值时,这个函数是二次函数? (2)当m 为何值时,这个函数是一次函数?【答案】(1)3m ≠±;(2)3m =-.【解析】(1)当函数()()22932y m x m x=---+为二次函数时,则290m-≠时,即3m≠±.(2)当函数()()22932y m x m x=---+为一次函数时,则()29030mm⎧-=⎪⎨--≠⎪⎩,得3m=-.【总结】本题考察了二次函数与一次函数的概念.【例7】如图,有一矩形纸片,长、宽分别为8厘米和6厘米,现在长宽上分别剪去宽为x厘米(6x<)的纸条,则剩余部分(图中阴影部分)的面积y关于x的函数关系式为【答案】()2144806y x x x=-+<<.【解析】阴影部分的长方形的的长为()8x cm-,宽为()6x cm-,所以面积()()()286144806y x x x x x=--=-+<<.【总结】此题主要利用长方形的面积公式列出函数关系式,其中根据题意,找到所求量的等量关系是解决问题的关键.【例8】某公司4月份的营收为80万元,设每个月营收的增长率相同,且为x (0x>),6月份的营收为y万元,写出y关于x的函数解析.【答案】()2801y x=+【解析】因为4月份的营收为80万元,5月份起,每月增长率都为x,所以5月份的营收为()801x+万元,12月份的营收为()2801x+万元.【总结】本题是平均增长率的问题,可用公式()21a x b+=来解题.【例9】用长为15米的篱笆,一面靠墙(墙的长度超过15米),围成一个矩形花圃.设花圃的宽为x米,面积为y平方米,求y与x的函数解析式及函数的定义域.【答案】21521502y x x x⎛⎫=-+<<⎪⎝⎭.【解析】设花圃的宽为x米,则长为()152x-米,∴面积()2152215y x x x x=-=-+152x⎛⎫<<⎪⎝⎭.【总结】此题主要利用长方形的面积公式列出函数关系式,其中根据题意,找到所求量 的等量关系是解决问题的关键.【例10】 三角形的两边长的和为10厘米,它们的夹角为30°,设其中一条边长为x 厘米,三角形的面积为y 平方厘米,试写出y 与x 之间的函数解析式及定义域. 【答案】()21501042y x x x =-+<<.【解析】如图,过点A 作AH ⊥BC 于点H .设AB x =厘米,则()10BC x =-厘米,∵30B ∠=︒,∴1122AH AB x ==, 三角形面积()()211151001022242x y BC AH x x x x =⋅⋅=⋅-⋅=-+<<.【总结】此题主要利用三角形的面积公式列出函数关系式,其中根据题意,找到所求量 的等量关系是解决问题的关键.【例11】 设12y y y =-,1y 与1x成反比例,2y 与2x 成正比例,则y 与x 的函数关系是( )A .正比例函数B .反比例函数C .二次函数D .一次函数【答案】C . 【解析】∵1y 与1x成反比例,∴设1111k y k x x==,∵2y 与2x 成正比例,∴设222y k x =,∴21212y y y k x k x =-=-,∴y 与x 的函数关系是二次函数.【总结】本题主要考察反比例、正比例和二次函数的定义,属于基础题.【例12】 已知正方形的周长是C 厘米,面积是S 平方厘米.(1)求S 关于C 的函数关系式;(2)当S =1平方厘米,求正方形的边长.【答案】(1)216C S =;(2)1cm .【解析】(1)因为正方形的周长是C 厘米,所以边长为4Ca =厘米,所以216C S =;(2)当S =1平方厘米,代入216C S =得正方形的边长为1a =厘米.【总结】此题主要利用正方形的面积公式列出函数关系式,其中根据题意,找到面积与周长之间的等量关系是解决问题的关键.步同级年九6 / 191、 2y x =的图像在平面直角坐标系xOy 中,按照下列步骤画二次函数2y x =的图像. (1)列表:取自变量x 的一些值,计算相应的函数值y ,如下表所示:x … -2112--112- 012 11122 …2y x = (4)1241 140 1411244 …(2)描点:分别以所取的x 的值和相应的函数值y 作为点的横坐标和纵坐标,描出这些坐标所对应的各点,如图1所示.模块二:二次函数y = ax 2的图像知识精讲(3)连线:用光滑的曲线把所描出的这些点顺次联结起来,得到函数2y x =的图像,如图2所示.二次函数2y x =的图像是一条曲线,分别向左上方和右上方无限伸展.它属于一类特殊的曲线,这类曲线称为抛物线.二次函数2y x =的图像就称为抛物线2y x =. 2、 二次函数2y ax =的图像抛物线2y ax =(0a ≠)的对称轴是y 轴,即直线x = 0;顶点是原点.当0a >时,抛物线开口向上,顶点为最低点;当0a <时,抛物线开口向下,顶点为最高点.【例13】 (1)在同一平面直角坐标系中,画出函数212y x =、22y x =的图像;(2)函数212y x =、22y x =的图像与函数2y x =的图像,有何异同?【答案】(1)如图:(2)相同点:开口方向都向上;顶点都是()0,0点;对称轴都是y 轴;不同点:开口大小不同.【解析】(1)略;(2)()20y ax a =≠图像顶点为坐标原点;对称轴为y 轴;例题解析0a >,开口向上,0a <,开口向下;a 决定开口大小,a 越大,开口越小.【总结】本题考察特殊二次函数的图像画法及二次函数图像的性质.【例14】 (1)在同一平面直角坐标系中,画出函数2y x =-、212y x =-、22y x =-的图像;(2)函数2y x =-、212y x =-、22y x =-的图像与函数2y x =、212y x =、22y x =的图像有何异同? 【答案】(1)如图:(2)相同点:a 相同的开口大小一样;顶点都是原点;对称轴都是y 轴;不同点:开口方向不同.【解析】(1)略;(2)()20y ax a =≠图像顶点坐标为()0,0;对称轴为y 轴;0a >,开口向上,0a <,开口向下;a 决定开口大小,a 越大,开口越小.【总结】本题考察特殊二次函数的图像画法及二次函数的性质.【例15】 二次函数223y x =-的图像是______,它的对称轴是______,顶点坐标是______,开口方向是______.【答案】抛物线;y 轴;()0,0;向下.【解析】()20y ax a =≠图像为抛物线,顶点坐标为()0,0;对称轴为y 轴; 0a >,开口向上,0a <,开口向下 【总结】本题考察二次函数的性质.【例16】 抛物线22y x =除了点______以外,都位于______上方.【答案】()0,0;x 轴.【解析】抛物线22y x =的图像为顶点是()0,0点,开口向上的抛物线,∴只有()0,0点在x 轴上,其余的都位于x 轴上方.【总结】本题考察了二次函数的图像.【例17】 抛物线2y ax =与225y x =的形状相同,则a 的值为______. 【答案】25±.【解析】∵抛物线2y ax =与225y x =的形状相同,∴25a =,得25a =±. 【总结】本题考察二次函数的性质.【例18】 已知点P (32,6)在抛物线2y ax =上,那么a 的值为______. 【答案】83.【解析】把P (32,6)代入2y ax =得83a =. 【总结】本题考察待定系数法确定函数关系式,直接把点的坐标代入解析式即可.【例19】 抛物线23y x =经过点A (3,n ),则n = ______,且点A 关于抛物线对称轴的对称点A 1的坐标是______.【答案】27;()3,27-.【解析】把A (3,n )代入23y x =得27n =;∵抛物线23y x =的对称轴为y 轴, ∴()13,27A -.【总结】本题考察了二次函数图像上点的坐标特征,解题的关键是熟练掌握抛物线上关于对称轴的对称点到对称轴的距离相等的性质.【例20】 已知关于x 的二次函数()21y k x =+,当k 为何值时,它的图像开口向上?当k 为何值时,它的图像开口向下?【答案】1k >-时,图像开口向上;1k <-时,图像开口向下. 【解析】当10k +>,即1k >-,抛物线图像开口向上;当10k +<,即1k <-,抛物线图像开口向下.【总结】本题考察二次函数的开口方向与二次项系数a 的关系.【例21】 已知直线423y x =+上有两个点A 、B ,它们的横坐标分别是3和-2,若抛物线2y ax =也经过点A ,试求该抛物线的表达式.该抛物线也经过点B 吗?请说出你的理由.【答案】223y x =;抛物线不经过B 点. 【解析】把3和-2分别代入423y x =+得()3,6A 、22,3B ⎛⎫-- ⎪⎝⎭,把()3,6A 代入2y ax =得23a =,∴抛物线的表达式为223y x =;把2x =-代入223y x =得83y =,与B 点纵坐标不同,∴抛物线不经过点B .【总结】本题考察利用待定系数法确定函数关系式.【例22】 抛物线212y x =上一点到x 轴的距离为8,求该点的坐标.【答案】()4,8、()4,8-. 【解析】∵抛物线212y x =上一点P 到x 轴的距离为8,则P 点纵坐标为8, 把8y =代入212y x =得()14,8P 、()24,8P -.【总结】本题考察了二次函数图像上点的坐标特征.【例23】 抛物线2y ax =与直线23y x =-交于点(1,b ). (1)求a 和b 的值;(2)求抛物线的解析式,并求顶点坐标和对称轴; (3)当x 取何值时,二次函数的y 值随x 的增大而增大.【答案】(1)1a =-,1b =-;(2)2y x =-,顶点坐标为()0,0,对称轴为y 轴; (3)当0x <时,二次函数的y 值随x 的增大而增大.【解析】(1)把(1,b )代入23y x =-得1b =-,∴交点坐标为()1,1-.把()1,1-代入2y ax =得1a =-,∴2y x =-;(2)由(1)得抛物线的解析式为2y x =-,顶点坐标为()0,0,对称轴为y 轴; (3)∵抛物线开口向下,在对称轴的左侧二次函数的y 值随x 的增大而增大,即当0x <时,二次函数的y 值随x 的增大而增大.【总结】本题考察了待定系数法确定函数关系式及二次函数的性质.【例24】 函数2y ax =-与y ax b =+的图像可能是( )【答案】D .【解析】当0a >时,抛物线开口向下,一次函数一定过第一、三象限,当0a <时,抛物线开口向上,一次函数一定过第二、四象限.步同级年九12 / 19【总结】本题考察抛物线和直线的性质,用假设法来解决这种数形结合是一种很好的方法.【例25】 若把抛物线2y ax =(0a ≠)沿着顶点旋转180°,所得抛物线的表达式是__________;若把抛物线2y ax =(0a ≠)沿着x 轴翻折,所得的抛物线的表达式是__________;由这样的旋转与翻折分别得到的两条抛物线______重合的(选填“是”或“不是”).【答案】2y ax =-;2y ax =-;是.【解析】若把抛物线2y ax =(0a ≠)沿着顶点旋转180°,则新的抛物线顶点和对称轴不变,方向相反,∴新的抛物线的表达式为2y ax =-; 若抛物线2y ax =(0a ≠)沿着x 轴翻折, 则新的抛物线顶点和对称轴不变,方向相反, ∴新的抛物线的表达式为2y ax =-.【总结】本题主要考察了二次函数图像与几何变换.【习题1】 下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,请指出a 、b 、c .(1)21y x =-; (2)21y x x =--; (3)20.3y x =; (4)()()212y x x x =+--; (5)221x x y π--=;(6)2y x =.【难度】★随堂检测【答案】(1)不是;(2)是,1a =,1b =-,1c =-;(3)是,0.3a =,0b =,0c =;(4)不是;(5)是,1a π=,2b π=-,1c π=-;(6)不是.【解析】形如2y ax bx c =++(0a ≠)的函数叫做二次函数,其中a 叫做二次项系数、 b 叫做一次项系数、c 是常数项,如果不是一般式,先整理成一般式再确定a 、b 、c . 【总结】本题考察二次函数的概念,二次项系数、一次项系数、常数项的概念.【习题2】 已知二次函数2y ax =的图像经过点Q (-1,-2),求a的值,并写出它的解析式.在平面直角坐标系中,画出它的图像.【难度】★【答案】2a =-,22y x =-.图像如图所示:【解析】把Q (-1,-2)代入2y ax =得2a =-,解析式为22y x =-. 【总结】本题考查待定系数法确定函数关系式及二次函数图像画法.【习题3】 函数226mm y mx --=是y 关于x 的二次函数.当m = ______时,其图像开口向上;当m = ______ 时,其图像开口向下.【答案】4m =;2m =-. 【解析】∵函数226mm y mx --=为二次函数,∴2262m m --=,解得14m =,22m =-;当0m >,即4m =时,其图像开口向上;当0m <,即2m =-时,其图像开口向下. 【总结】本题考察二次函数的概念和性质.【习题4】求直线y x=与抛物线22y x=-的交点坐标.【答案】()0,0,11,22⎛⎫--⎪⎝⎭.【解析】联立方程得22y xy x=⎧⎨=-⎩,解得11xy=⎧⎨=⎩,221212xy⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线与抛物线的交点坐标为()0,0、11,22⎛⎫--⎪⎝⎭.【总结】本题考察了直线与抛物线的交点坐标求法.【习题5】如图所示,在同一坐标系中,作出①23y x=;②212y x=;③2y x=的图像,则图像从里到外的三条抛物线对应的函数依次是____________(填序号).【答案】①③②【解析】()20y ax a=≠图像开口大小由a决定,a越大,开口越小.【总结】本题考察二次函数的图像及性质.【习题6】自由下落的物体的高度h(米)与下落的时间t(秒)的关系为24.9h t=.现有一铁球从离地面19.6米高的建筑物的顶部自由下落,到达地面需要的时间是______秒.【答案】2秒.【解析】把19.6h=代入24.9h t=得219.6 4.9t=,解得12t=,22t=-(舍).【总结】本题考查二次函数的实际应用.【习题7】如图,桥拱是抛物线形状,其函数解析式为214y x=-,当水位线在AB位置时,水面的宽为12米,此时水面离桥顶的高度h是______米.【答案】9米.【解析】由题意知:()6,A h--,把()6,A h--代入214y x=-得9h=.【总结】本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.【习题8】如图,园林工人要在一块长24米,宽12米的矩形土地中砌一个小矩形花坛,四周铺上草,其宽都相等,如果设草地的宽为x,花坛的面积为S平方米,求出S关于x的函数解析式及其定义域.【答案】()2=47228806S x x x-+<<.【解析】∵花坛的长为()242x-米,宽为()122x-米,∴()()()224212247228806S x x x x x=--=-+<<【总结】此题主要利用长方形的面积公式列出函数关系式,其中根据题意,找到所求量的等量关系是解决问题的关键..步同级年九16 / 19【作业1】下列函数,不属于二次函数的是( )A .()()12y x x =-+B .()2112y x =+C .213y x =-D .()22232y x x =+-【难度】★ 【答案】D .【解析】∵()222321218y x x x =+-=+,二次项系数为0,∴不是二次函数. 【总结】本题考查二次函数的概念.【作业2】在同一平面直角坐标系中,作2y x =,212y x =-,213y x =的图像,它们的共同特点是( )A .抛物线的开口方向向上B .抛物线的开口方向向下C .都是关于x 轴对称的抛物线D .都是关于y 轴对称的抛物线【答案】D .【解析】二次函数()20y ax a =≠的图像,对称轴为y 轴;顶点为坐标原点;当0a >时,开口向上,当0a <时,开口向下.【总结】本题考察二次函数的图像.【作业3】二次函数23y x bx =++中,当x = 3时,y = 0,则b 的值为______.【答案】4b =-.【解析】把3x =,0y =代入得:9330b ++=,解得4b =-. 【总结】本题考察了待定系数法确定函数关系式.【作业4】如果抛物线2y ax =过点(cos60°,sin30°),那么a = ______,它的函数表课后作业达式是______.【答案】2a =,22y x =. 【解析】∵1cos602︒=,1sin302︒=,∴抛物线2y ax =过点11,22⎛⎫ ⎪⎝⎭, 把11,22⎛⎫⎪⎝⎭代入2y ax =得2a =,∴函数表达式是22y x =. 【总结】本题考查待定系数法确定函数关系式.【作业5】如图,四个二次函数图像,分别对应的是12y ax =;22y bx =;32y cx =;42y dx =,则a 、b 、c 、d 的大小关系为( )A .a b c d >>>B .a b d c >>>C .b a c d >>>D .b a d c >>>【答案】A .【解析】∵①、②函数图像开口向上,∴0a >,0b >;∵③、④函数图像开口向下,∴0c <,0d <;∵二次函数()20y ax a =≠中,a 越大,开口越小,∴a b c d >>>.【总结】本题考查了二次函数的图像及性质.【作业6】若函数()2221mm y m m x --=+是二次函数,则m = ______,它的图像开口______,顶点是它的最______点,它的对称轴是______.【答案】3;向上;低;y 轴. 【解析】∵函数()2221mm y m m x --=+是二次函数,∴2212m m --=,解得13m =,21m =-,∵20m m +≠,∴1m ≠-,∴3m =,∴函数解析式为212y x =. ∴图像开口向上,顶点是它的最低点,对称轴是y 轴.【总结】本题考查了二次函数的概念、图像及性质.步同级年九18 / 19【作业7】求直线21y x =+与抛物线23y x =的交点坐标.【答案】()1,3,11,33⎛⎫- ⎪⎝⎭.【解析】将21y x =+代入23y x =得:2213x x +=,解得11x =,213x =-.当1x =时,3y =;当13x =-,13y =,∴线21y x =+与抛物线23y x =的交点坐标()1,3,11,33⎛⎫- ⎪⎝⎭.【总结】本题考察了直线与抛物线的交点坐标求法.【作业8】一个正方形的面积为16平方厘米,当把边长增加x 厘米时,正方形的面积为y 平方厘米,则y 关于x 的函数关系式为____________.【答案】2816y x x =++.【解析】∵正方形的面积为16平方厘米,∴原正方形边长为4厘米,∴现在正方形的边长为()4x +厘米,∴()224816y x x x =+=++.【总结】此题主要利用正方形的面积公式列出函数关系式,其中根据题意,找到所求量的等量关系是解决问题的关键.【作业9】抛物线的顶点为原点,以y 轴为对称轴,且经过点A (-2,8).(1)求这个函数的解析式;(2)写出抛物线上与点A 关于y 轴对称的点B 的坐标,并计算OAB ∆的面积.【答案】(1)22y x =;(2)()2,8B ,16OAB S ∆=.【解析】(1)设函数解析式为2y ax =,把A (-2,8)代入2y ax =得2a =,∴函数的解析式为22y x =. (2)∵点B 与点A 关于y 轴对称,∴B 与A 横坐标互为相反数,纵坐标相等,即()2,8B ∴4AB =,设AB 与y 轴交于点D ,则()0,8D ,11481622OAB S AB OD ∆=⋅⋅=⨯⨯=.【总结】本题考察了待定系数法确定函数关系式,二次函数的图像及性质.。
14.如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.
(1)在第n 个图中,第一横行共 _________ 块瓷砖,第一竖列共有 _________ 块瓷砖;(均用含n 的代数式表示) (2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数; (3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值;
15.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y=kx+b ,且x =65时,y =55;x =75时,y =45. (1)求一次函数b kx y +=的表达式;
(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
16.如图,在ABC ∆,︒=∠90B ,点P 从点A 开始沿AB 边向点B 以s cm /1的速度移动,点Q 以B
点开始沿BC 边向点C 以s cm /2的速度移动.(1)如果P 、Q 分别从A 、B 同时出发,经过几秒钟,使PBQ ∆的面积等于82
cm ?(2)如果P 、Q 分别从A 、B 同时出发,并且P 到B 后又继续在BC 边上前进,Q 到C 后又继续在CA 边上前进,经过几秒钟,使PCQ ∆的面积等于12.62
cm ?。