沪教版二次函数的概念辅导讲义(概念较详细)
- 格式:doc
- 大小:502.00 KB
- 文档页数:7
教学内容—二次函数综合复习知识精要二次函数的概念:形如2(0)y ax bx c a =++≠的函数。
定义域是一切实数。
二次函数的图像函数 对称轴顶点 开口方向最值 ()20y ax a =≠ y 轴 (0,0)a>0,图像开口向上,顶点是最低点; a<0,图像开口向下,顶点是最高点.()20y ax c a =+≠ y 轴),0(cc()()20y a x m a =+≠m x -= ()0,m -)0()(2≠++=a k m x a y m x -=),(k m -k()02≠++=a c bx ax yabx 2-=⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22 ab ac 442-)0)()((1≠--=a x x x x a y x221x x x +=一、选择题典型例题1)有关二次函数图像与系数关系1.如果0k <(k 为常数),那么二次函数22y kx x k =-+的图像大致为 ( ).2. 已知二次函数)0(2≠++=a c bx ax y 的图像如图所示, 以下关于实数c b a ,,的符号判断中,正确的是( ) A.0,0,0>>>c b a B.0,0,0><>c b a C.0,0,0<>>c b a D.0,0,0<<>c b a第6题ABCDy O x y Ox yOxyOx2)二次函数性质的判断:对称轴,开口方向,顶点,增减性1. 已知点11()x y ,,22()x y ,均在抛物线21y x =-上,下列说法中正确的是 ( ) A. 若12y y =,则12x x = B. 若12x x =-,则12y y =- C. 若120x x <<,则12y y > D. 若120x x <<,则12y y > 2.关于抛物线4)1(32-+-=x y ,下列说法正确的是 ( )A .抛物线的对称轴是直线1=x ;B .抛物线在y 轴上的截距是4-;C .抛物线的顶点坐标是(41--,); D .抛物线的开口方向向上. 3.已知函数222y x x =--的图像如图所示,根据图像提供的信息,可得y ≤1时,x 的取值范围是 ( )A .3x -≥B .31x -≤≤C . 13x -≤≤D .1x -≤或3x ≥4.对于抛物线23y x =-,下列说法中正确的是( )A .抛物线的开口向下 ;B .顶点(0,-3)是抛物线的最低点 ;C .顶点(0,-3)是抛物线的最高点;D .抛物线在直线0x =右侧的部分下降的.3)二次函数的平移问题1.把抛物线22y x =--平移后得到抛物线2y x =-,平移的方法可以是( ). A. 沿y 轴向上平移2个单位; B. 沿y 轴向下平移2个单位; C. 沿x 轴向右平移2个单位; D. 沿x 轴向左平移2个单位.2. 把抛物线()216+=x y 平移后得到抛物线26x y = ,平移的方法可以是 ( ).A. 沿y 轴向上平移1个单位;B. 沿y 轴向下平移1个单位;C. 沿x 轴向左平移1个单位;D. 沿x 轴向右平移1个单位. 巩固练习1.已知抛物线解析式为243y x x =--,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是__________.2.二次函数322+=x y 图象的顶点坐标是 .3.如果二次函数()()21122+-++=x k x k y ,那么它的图象的开口向 .4. 如果)8,(x A ,),2(y B -是二次函数221x y =图像上的两个点,那么=+y x . 5.抛物线c bx x y ++=2经过点)3,0(和)0,1(-,那么抛物线的解析式是 . 6.如果二次函数a x x y ++=2与x 轴有交点,那么实数a 的取值范围是 .7. 抛物线12-=ax y 上有一点)2,2(P ,平移该抛物线,使其顶点落在点)1,1(A 处,这时,点P 落在点Q 处,则点Q 的坐标为 .二、 二次函数解答题典型例题例1.在直角坐标平面内,已知抛物线()()012>-=a x a y 顶点为A ,与y 轴交于点C ,点B 是抛物线上另一点,且横坐标为3,若⊿ABC 为直角三角形时,求a 的值.例2.如图,抛物线322++=ax ax y 与y 轴交于点C ,与x 轴交于A 、B 两点(点A 和点B 分别在x 轴的正、负半轴上),3cot =∠OCA . (1)求抛物线的解析式;(2)平行于x 轴的直线l 与抛物线交于点E 、F (点F 在点E 的左边),如果四边形OBFE 是平行四边形,求点E 的坐标.巩固练习1. 如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO =12,CO =BO ,AB =3,求这条抛物线的函数解析式.CyO A BxCxy oA 11-4B三、二次函数与相似结合题例1. 抛物线2y ax bx c =++的图象如图所示,已知该抛物线与x 轴交于A 、B 两点,顶点为C , (1)根据图象所给信息,求出抛物线的解析式; (2)求直线BC 与y 轴交点D 的坐标;(3)点P 是直线BC 上的一点,且APB ∆与DOB ∆相似,求点P 的坐标.例2.如图9,在平面直角坐标系中,O 为坐标原点,二次函数图像经过(1,2)A -、(3,2)B -和(0,1)C 三点,顶点为P .(1)求这个二次函数的解析式,并写出顶点P 的坐标; (2)联结PC 、BC ,求BCP ∠的正切值;(3)能否在第一象限内找到一点Q ,使得以Q 、C 、A 三点为顶点的三角形与以C 、P 、B 三点为顶点的三角形相似?若能,请确定符合条件的点Q 共有几个,并请直接写出它们的坐标;若不能,请说明理由.自我测试1.下列抛物线中,顶点在第一象限内的是 ( ) A.2)1(21-=x y B. 3212+=x y C. 3)1(212++=x y D. 3)1(212+-=x y . 2.若A (113,4y -),B (2,45y -),C (3,41y )为二次函数245y x x =--的图像上的三点,则1,y 2,y 3y 的大小关系是 ( ).A.123y y y <<B. 321y y y <<C. 312y y y <<D. 132y y y << 3.将抛物线y =2x 2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是( ) A. y=2(x+1)2 +3; B. y=2(x -1)2-3; C. y=2(x+1)2-3; D. y=2(x -1)2+3.4. 若二次函数k x x y +-=32的图像与x 轴有公共点,则实数k 的取值范围是 。
教学内容—二次函数的概念及特殊二次函数的图像知识精要1.二次函数的概念一般地,解析式形如2(,,0)y ax bx c a b c a =++≠其中是常数,且的函数叫做二次函数。
二次函数2y ax bx c =++的定义域为一切实数。
特殊二次函数的图像函数 对称轴顶点 开口方向最值 ()20y ax a =≠ y 轴 原点a>0,图像开口向上,顶点是最低点; a<0,图像开口向下,顶点是最高点.()20y ax c a =+≠ y 轴),0(cc()()20y a x m a =+≠m x -= ()0,m -)0()(2≠++=a k m x a y m x -=),(k m -k()02≠++=a c bx ax yabx 2-=⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22 ab ac 442-)0)()((1≠--=a x x x x a y x221x x x +=值函数的图象及性质>0⑴开口向上,并且向上无限伸展;⑵当x =时,函数有最小值;当x <时,y 随x 的增大而减小;当x >时,y 随x 的增大而增大.<0 ⑴开口向下,并且向下无限伸展;⑵当x =时,函数有最大值;当x <时,y 随x 的增大而增大;()20y ax bx c a =++≠当x >时,y 随x 的增大而减小.图像平移规律: 左加右减,上加下减。
2、一元二次方程的根与系数关系:如果一元二次方程20(0)ax bx c a ++=≠的两个实数根分别是1x 、2x ,那么1212,.b c x x x x a a+=-⋅= 两点之间距离公式:22()()A B A B AB x x y y =-+- 3、一元二次方程的根的情况与二次函数图像关系 一元二次方程有两个不同的实数根 ∆>0 抛物线与x 轴有两个不同的交点 一元二次方程有两个相同的实数根∆=0抛物线与x 轴只有一个交点,且这个交点为抛物线顶点一元二次方程无实数根∆<0抛物线与x 轴无交点 热身练习1. 正方体的棱长为x ,表面积为y ,y 关于x 的函数解析式是2. 圆的面积为S ,半径为R ,S 关于R 的函数解析式为 。
14.如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.
(1)在第n 个图中,第一横行共 _________ 块瓷砖,第一竖列共有 _________ 块瓷砖;(均用含n 的代数式表示) (2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数; (3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值;
15.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y=kx+b ,且x =65时,y =55;x =75时,y =45. (1)求一次函数b kx y +=的表达式;
(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
16.如图,在ABC ∆,︒=∠90B ,点P 从点A 开始沿AB 边向点B 以s cm /1的速度移动,点Q 以B
点开始沿BC 边向点C 以s cm /2的速度移动.(1)如果P 、Q 分别从A 、B 同时出发,经过几秒钟,使PBQ ∆的面积等于82
cm ?(2)如果P 、Q 分别从A 、B 同时出发,并且P 到B 后又继续在BC 边上前进,Q 到C 后又继续在CA 边上前进,经过几秒钟,使PCQ ∆的面积等于12.62
cm ?。
第一讲二次函数的图像和性质(一)课时一二次函数的定义学习目标根据二次函数定义解决问题.课前预习感悟新知一般地,形如y=ax²+bx+c(a,b,c是常数, a≠0)的函数叫做二次函数,其中x是自变量,y是因变量,a,b,c分别是二次项系数、一次项系数和常数项.温馨提示:(1)等号左边是变量y,右边是关于自变量x的整式;(2)a,b,c为常数,且a≠0;(3)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项.例题精讲理解新知1.下列函数是二次函数的是()A. y=3x+1B. y=ax2+bx+cC. y=x2+3D. y=(x−1)2−x22.在下列y关于x的函数中,一定是二次函数的是()A. y=2x2B. y=2x−2C. y=ax2D. y=ax3.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A. −2B. 2C. ±2D. 04.二次函数y=-x2-2x+1的二次项系数是()A. 1B. −1C. 2D. −25. 如果函数y=(k-3)x k2−3k+2+kx+1是二次函数,那么k的值一定是______.课时二y=ax²、y=ax²+k、y=a(x+h)²的图像和性质学习目标利用y=ax²、y=ax²+k、y=a(x+h)²的图像和性质解决问题课前预习感悟新知(1)y=ax²的图像和性质y=ax²+k的平移方式:抛物线y=ax²+k与y=ax²的形状、开口大小和开口方向相同,只是图像位置不同。
抛物线y=ax²+k可由抛物线y=ax²沿y轴方向平移 |k|个单位得到。
当k>0时,向上平移;k<0时,向下平移。
(3)y=a(x+h)²的图像和性质y=a(x+h)²的平移方式:抛物线y=a(x+h)²与y=ax²的形状、开口大小和开口方向相同,只是图像位置不同。
14.如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.
(1)在第n 个图中,第一横行共 _________ 块瓷砖,第一竖列共有 _________ 块瓷砖;(均用含n 的代数式表示) (2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数; (3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值;
15.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y=kx+b ,且x =65时,y =55;x =75时,y =45. (1)求一次函数b kx y +=的表达式;
(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
16.如图,在ABC ∆,︒=∠90B ,点P 从点A 开始沿AB 边向点B 以s cm /1的速度移动,点Q 以B
点开始沿BC 边向点C 以s cm /2的速度移动.(1)如果P 、Q 分别从A 、B 同时出发,经过几秒钟,使PBQ ∆的面积等于82
cm (2)如果P 、Q 分别从A 、B 同时出发,并且P 到B 后又继续在BC 边上前进,Q 到C 后又继续在CA 边上前进,经过几秒钟,使PCQ ∆的面积等于12.62
cm。