第3章数值分析---最佳平方逼近
- 格式:ppt
- 大小:526.01 KB
- 文档页数:20
最佳平方逼近原理最佳平方逼近原理是数值分析中的一个经典原理,用于寻找函数在给定定义域上的最佳平方逼近曲线。
在实际应用中,我们经常需要通过已知的离散数据点来近似拟合一个函数,最佳平方逼近原理就是为了解决这个问题而提出的。
最佳平方逼近原理的核心思想是,通过最小化残差平方和来选择最佳的曲线拟合函数。
残差平方和是指每个数据点与拟合曲线之间的差值的平方和,通过最小化残差平方和,我们可以找到能够最好地拟合数据点的曲线。
为了更好地理解最佳平方逼近原理,我们可以通过一个简单的例子来说明。
假设我们有一组包含有N个点的数据集{(x1,y1),(x2,y2),...,(xn,yn)},我们需要找到一条曲线y=f(x)来拟合这些数据点。
首先,我们可以假设拟合曲线为一条直线y=ax+b,其中a为斜率,b为截距。
我们的目标是找到最佳的斜率a和截距b,使得拟合曲线能够最好地拟合数据点。
为了评估拟合曲线的好坏,我们可以定义残差ei为数据点yi与拟合曲线f(xi)之间的差值,即ei=yi-f(xi)。
然后,可以定义残差平方和E为所有残差的平方和,即E=∑(yi-f(xi))^2。
根据最佳平方逼近原理,我们需要选择最优的斜率a和截距b,使得E达到最小值。
这可以通过对E分别对a和b求偏导数,并令偏导数等于零来实现。
∂E/∂a=0和∂E/∂b=0的解可以分别表示为a=(N∑(xiyi)-∑xi∑yi)/(N∑(xi^2)-(∑xi)^2)和b=(∑yi-∑(xi/n)a))/N 通过求解这两个方程,我们可以得到最佳的斜率a和截距b,从而得到最佳的拟合曲线。
上述例子只是最佳平方逼近原理的一个简单应用,实际上,最佳平方逼近原理可以应用于更复杂的拟合曲线,如多项式拟合、指数拟合等。
在实际应用中,最佳平方逼近原理广泛应用于数据分析、信号处理、图像处理等领域。
通过最佳平方逼近原理,我们可以从大量的离散数据中提取有效的信息,利用拟合曲线来进行预测、分类、回归等操作。
25数值分析—最佳逼近━基于MATLAB的实现与分析§1 引 言所谓函数最佳逼近就是从指定的一类简单的函数中寻找一个和给定的函数“最贴近”的函数,从几何(空间)的角度看,函数最佳逼近就是从指定的一类简单的函数(点的集合)中寻找一个与给定的函数(定点)距离最短的函数(点)。
由于在函数空间中可以定义不同的距离,不同意义下的距离度量定义了不同的逼近准则。
令P 表示指定的一类简单的函数集合 1、函数最佳一致逼近: 基于的距离度量如下()[]()()d f P f x P x x a b ,,=-∈max (1)逼近准则:()[]()()x P x f P f d b a x P P -=∈P ∈P∈,max min ,min (2)2、函数最均方逼近:基于的距离度量如下()()()[][]d f P f x P x dx ab,=-⎰212(3)逼近准则()=P∈P f d P ,min minP ∈P()()[][]f x P x dx ab-⎰212(4)如果给定的是函数在若干点处的函数值:()()x f x i i ,,i =0,1,, n ,那么还有称为:3、最小二乘逼近: 基于的距离度量如下()()()[]d f P f x P x i i i n ,=-⎡⎣⎢⎤⎦⎥=∑012(5)逼近准则26()=P ∈P f d P ,min min P ∈P ()()[]f x P x i i i n-⎡⎣⎢⎤⎦⎥=∑012(6)4、插值逼近,其逼近准则为:()()i i x f x P =, ()n i x P ,,,, 10=P ∈ (7)对于函数最佳逼近问题而言,用于逼近的简单的函数集合一般选取次数不超过n 次的多项式函数全体()()()(){}P n k k x P x P x k n ==≤deg (8)即用多项式函数逼近给定的函数,其原因在于只需对自变量做加法、减法和乘法运算就能得到函数值是多项式函数显著的特点之一,因此,从计算的角度来说多项式函数是最简单的。