分散染料在超临界CO2与聚酯纤维间平衡浓度分配关系
- 格式:pdf
- 大小:204.00 KB
- 文档页数:5
小议超临界二氧化碳在纺织中的应用摘要阐述了超临界二氧化碳流体的特性和染色原理,介绍了目前国内外的合成和天然纺织纤维应用超临界二氧化碳流体染色的研究近况,分析其在纺织印染工业中获得广阔的发展前景所需要解决的问题。
关键词超临界二氧化碳;染色原理;合成纤维;天然纤维1前言超临界染色,简称,也叫无水染色,于1989年由德国西北纤维研究中心的科学家等发明,从这时起,各国科学家投入大量人力、物力研究无水染色新技术。
无水染色在世界范围内被视为对传统印染业的革命,传统织物染色需大量用水和化学助染剂,属高耗能、高污染行业,而无水染色具有工艺简单、流程短,不用助剂、染色后不用清洗、染料利用率高,并从源头上杜绝废水的生成等优点。
超临界二氧化碳染色工艺的发展将给传统印染工业带来质的飞跃,从能源节约和生态环境的观点来看,这一革新的技术都是很有意义的。
2超临界流体的特性常规条件下物质一般有三态,即气、液、固三态。
这三种状态在常压条件下可相互转变,其转变可用相图加以说明图1图1纯净物质的相图当某一种物质被压缩到其临界压力和加热到临界温度之上时,其气相和液相就成为超临界。
临界点有温度和压力两个坐标,即分别为临界温度和临界压强。
在临界点之上物质将成为超临界流体,其性质位于典型气体和液体之间,并兼具两者的优点。
能形成超临界流体的化合物有多种,但考虑到达到超临界状态的难易,使用时的安全性、化合物的稳定性以及是否容易获得等因素,最常用的为二氧化碳。
二氧化碳是一种无色﹑无臭、不燃、不爆、无毒、无腐蚀性又容易获得的非极性气体,当超过二氧化碳的临界温度311℃和临界压力739时,即超过临界点后,二氧化碳转变到超临界流体状态。
超临界二氧化碳对物体具有很强的渗透作用,对物质的溶解能力比气体大得多,甚至超过液体,它的密度是气体的数百倍,接近于液体,但其粘度又同气体相等,它的扩散系数是气体的1左右,但又比液体大数百倍。
超临界流体对溶质的溶解度取决于其密度,密度越高,溶解度越大。
聚酯纤维茼子纱超临界CO2无水染色产业化关键技术与装备:茼子纱是一种具有良好功能特性的聚酯纤维,其染色过程中存在一些环境和健康隐患。
超临界CO2无水染色技术是一种新兴的染色方法,具有绿色环保、高效节能等优势。
本文将探讨超临界CO2无水染色在聚酯纤维茼子纱产业化中的关键技术与装备。
随着人们对环境保护和健康意识的提高,传统的染色方法在聚酯纤维茼子纱的应用中受到了限制。
传统染色方法中使用的大量水和化学药剂存在着废水污染、能源浪费等问题,同时染色过程中也会产生有害气体和废弃物,对工人的健康造成威胁。
因此,寻找一种绿色环保、高效节能的染色方法是产业升级的必然选择。
超临界CO2无水染色技术应运而生。
超临界CO2是指在高压和高温条件下,将CO2气体压缩至临界点以上,使其同时具备气态和液态的特性。
这种染色方法不需要水和化学药剂,可以最大程度地减少对环境的影响。
同时,超临界CO2具有较高的渗透能力和溶解能力,能够将染料均匀地渗透到纤维内部,使染色效果更加均匀和持久。
在聚酯纤维茼子纱超临界CO2无水染色产业化中,存在着一些关键技术与装备。
首先是染料的选择和配方的优化。
不同的染料对超临界CO2的溶解能力有所差异,需要选择合适的染料以及调整染料的配方,以获得理想的染色效果。
其次是染色工艺的控制。
超临界CO2无水染色的染色工艺与传统染色方法有所不同,需要控制好温度、压力和时间等参数,以确保染色效果的稳定性和一致性。
最后是装备的研发和优化。
超临界CO2无水染色需要特殊的装备来实施,这些装备需要具备高压、高温和稳定的工作条件,同时还需要考虑能源消耗和安全性等因素。
在产业化过程中,关键技术与装备的研发是至关重要的。
只有通过持续的创新和优化,才能实现超临界CO2无水染色在聚酯纤维茼子纱产业中的广泛应用。
从长远来看,超临界CO2无水染色技术不仅可以满足环境保护的需求,还能够提高染色效率和产品质量,为产业的可持续发展做出贡献。
综上所述,聚酯纤维茼子纱超临界CO2无水染色产业化关键技术与装备的研发对于推动产业升级和实现可持续发展具有重要意义。
分散染料超临界二氧化碳流体染色上染涤纶的上染率和分配系数摘要我们用三种分散冰染料对分散染料超临界二氧化碳流体染色进行了检测,在同样的检测条件下我们发现相对于压力上染率改变对温度改变更加敏感。
根据以前的资料我对平衡时的分散系进行了评价[A. Ferri, M. Banchero, L.Manna, S. Sicardi, An experimental technique for measuring high solubilities of dyes in supercritical carbon dioxide, J. Supercrit. Fluids 30(2004) 41; A. Ferri, M. Banchero, L. Manna, S. Sicardi, A new correlation of solubilities of azoic compounds and anthraquinone derivativesin supercritical carbon dioxide, J. Supercrit. Fluids 32 (2004) 27].比较高的分配系数证明了流体与涤纶之间的分散比可作为重要参数评价超临界二氧化碳流体染色步骤的性能。
分配系数与三个公式有关;其一是有funazukuri和其他四个参数确定一个半经验公式,说的更精确一些就是一个朗缪尔吸附等温式,一个经验公式和三个实验参数。
这些都由实验数据得来。
最使用的是第二个,当然第三个也能得到较好的结果。
由经验方程和实验数据得到的结果比 funazukuri得到的结果更好。
即使它使用很少的试管参数。
关键字;超临界二氧化碳分配系数染料聚合物(四溴对苯二乙酸酯)1 前言在最近十年中利用超临界流体加工聚合物已引起了重视,在这个领域中,申请将添加剂加入聚合母体的也有很多,其中就有利用超临界二氧化碳染色。
这一过程的主要特点就是用超临界二氧化碳代替水作为传递染料的介质,因此可避免在短时间内产生可生物降解的废水。
超临界二氧化碳在染整加工中的应用前沿:进入二十一世纪环境保护越来越受到人们的重视.可持续发展问题成为当今世界经济发展的主题,任何工业的发展都必须符合这一主题的要求。
同时全球水资源环境问题日益尖锐,我国是严重缺水的国家,水污染使资源短缺问题变得更为突出,工业污染是造成水环境污染的主要污染源之一。
而在纺织品染整加工过程中,大量使用了污染环境和对人体有害的染整剂,这些助剂生物降解性差,毒性大,游离甲醛含量高,重金属离子的含量超标。
这些助剂大多以气体、液体、固体的形态排放而污染环境,严重危害人类的健康,因而,绿色染整加工技术成了近年来科研工作者追求的目标[16]近二十年来,超临界二氧化碳技术倍受青睐,它是采用二氧化碳来代替以水为介质的染整加工技术,工艺中无需清洗,无需烘干,二氧化碳可循环再利用。
该技术可避免大量废水对环保带来严重污染问题。
保护了水资源,省去还原清洗和烘干工序,降低了能源消耗,染色过程无有害气体排放,残余染料可循环使用,提高了染料利用率。
它不仅无毒、无污染,不易燃烧,而且价格便宜,要求的操作温度和压力都较低,具有许多奇特的性能,以前较多地应用于食品及医药工业上。
近几年来,超临界二氧化碳技术在高分子材料合成和加工以及纺织工业上的应用成为科技界关注的热点。
下面介绍超临界二氧化碳的性质以及超临界二氧碳技术在染整加工领域的一些应用。
1超临界二氧化碳的性质常压下,物质在液相和气相间成平衡时,两相的物理性质如粘度、密度、导电度和介电常数等存在显著差别。
当压力提高时,这种差别逐渐缩小,当达到某一温度和压力时,两相密度相等,气相和液相之间无明显的界限,而且仅有一相,称为临界状态。
此时的温度和压力均称为临界温度和临界压力。
超临界流体(SCF)是指在临界温度和临界压力以上的流体。
处于超临界状态时,气液两相性质非常接近,以至于无法分辨。
超临界流体本身具有如下特性[17]:①其扩散系数比气体小,但比流体高一个数量级;②粘度接近气体;③密度类似液体,压力的细微变化可导致其密度的显著变动;④压力或湿度的改变均可导致相变。
超临界二氧化碳在染整加工中的应用摘要:针对传统水染工艺不能从根本上解决印染行业水环境污染严重及资源消耗、浪费大的问题,介绍了一种全新的清洁生产技术——超临界二氧化碳染色过程。
文章综述了超临界二氧化碳应用于染整加工领域的研究进展,包括超临界二氧化碳的性质,其在前处理的应用、以超临界二氧化碳为介质染合技术的一般流程,染合成纤维及天然纤维相关内容等,并讨论了其利弊。
关键词:超临界流体:二氧化碳;染整;前沿:进入二十一世纪环境保护越来越受到人们的重视.可持续发展问题成为当今世界经济发展的主题,任何工业的发展都必须符合这一主题的要求。
同时全球水资源环境问题日益尖锐,我国是严重缺水的国家,水污染使资源短缺问题变得更为突出,工业污染是造成水环境污染的主要污染源之一。
而在纺织品染整加工过程中,大量使用了污染环境和对人体有害的染整剂,这些助剂生物降解性差,毒性大,游离甲醛含量高,重金属离子的含量超标。
这些助剂大多以气体、液体、固体的形态排放而污染环境,严重危害人类的健康,因而,绿色染整加工技术成了近年来科研工作者追求的目标[16]。
近二十年来,超临界二氧化碳技术倍受青睐,它是采用二氧化碳来代替以水为介质的染整加工技术,工艺中无需清洗,无需烘干,二氧化碳可循环再利用。
该技术可避免大量废水对环保带来严重污染问题。
保护了水资源,省去还原清洗和烘干工序,降低了能源消耗,染色过程无有害气体排放,残余染料可循环使用,提高了染料利用率。
它不仅无毒、无污染,不易燃烧,而且价格便宜,要求的操作温度和压力都较低,具有许多奇特的性能,以前较多地应用于食品及医药工业上。
近几年来,超临界二氧化碳技术在高分子材料合成和加工以及纺织工业上的应用成为科技界关注的热点。
下面介绍超临界二氧化碳的性质以及超临界二氧化碳技术在染整加工领域的一些应用。
1超临界二氧化碳的性质常压下,物质在液相和气相间成平衡时,两相的物理性质如粘度、密度、导电度和介电常数等存在显著差别。
论文题目:超临界二氧化碳染色姓名:崔志鹏学号:0810150201专业班级:轻化082班学院:纺织学部二零一零年十二月十二日超临界二氧化碳染色【摘要】超临界二氧化碳染色技术是一种新型环保的染色技术,本文通过对一些文献的查阅,简单地概述这种技术的特点以及发展前景。
【关键词】超临界二氧化碳;新型染色技术;环保【引言】利用超临界流体溶剂所具有的低粘度、高扩散性等等传统工艺中水溶剂所不具备的多种特性进行染整加工,而且加工工艺中不断体现出了新的优势,是目前值得探索的加工工艺之一。
超临界二氧化碳的概念二氧化碳(CO2)是一种无色、无臭和不燃的气体,其相对密度是空气的1. 5倍。
它的分子呈直线型,两个氧原子分别在碳的两侧,呈对称分布,故不显极性。
所以,它的相对分子质量虽比水大。
但沸点很低,在常温时为气体。
它的临界温度为31.10C?加压易液化。
由于其分子是非极性的,液态的二氧化碳对极性物质的溶解能力不高,对低极性和非极性物质都有较高的溶解能力,因而对非极性或疏水性纤维具有较强的溶胀能力。
如果把二氧化碳置于密封体系中升温和加压,当超过C02的临界温度(31.10C)和临界压力〔7.39MPa)时,即超过临界点后,则C02转变到超临界流体状态。
此时,它具有许多独特的性质。
在临界温度以上,不管如何加热,它也不能变为气体;同时,在临界压力下,即使加很大的压力也不能变为液体和固体。
由于它不同于气体、液体和固体,故将这种状态的流体状态称为超临界流体。
超临界CO2流体(SCF)是指处于临界温度和临界压力(31.2。
C,7.31MPa)以上,具有良好溶解性和扩散性质的流体。
i超临界二氧化碳流体染色具有以下一些优点(1)染色时不用水,无废水污染;(2)染色结束后可降低压力,此时CO2气化,不需要进行染后供干,既可縮短工艺流程,又可縮短染色时间、节省烘干能源;(3)上染速度快,匀染和透染性好,染色重现性也很好;(4)CO2本身无毒,不燃,可重复回用;(5)染料可重复利用,染色时不需要添加分散剂、匀染剂、缓冲剂等助剂,不仅可降低成本,提高染料的利用率,还有利于环境保护,减少污染;(6)适用的纤维品种较广,一些难染的合成纤维(如丙纶、芳纶等)也可染色。
超临界CO2流体染色技术河北科技大学纺织服装学院张晏铭二氧化碳是一种无色、无臭和不燃,非极性的气体,沸点很低,在常温下为气体。
如果在封闭体系中升温和加压,当温度和压力超过二氧化碳的临界温度31·1℃和临界压力7·39MPa,二氧化碳即转变到超临界流体状态。
在临界温度以上,即使这样加热,他也不能变成气体。
同理在临界压力以上,即使怎样加压,也不能变为液体和固体。
1、背景和发展历史1988年,纺织物的超临界流体染色的首项专利提出。
1989年,德国Bochum的Ruhr大学的理科硕士论文课题与GMSchneider教授密切合作,采用此新技术进行了首次实验室规模的聚酯染色。
继首次成功试验[12]以后,由德国Krefeld的德国西北纺织研究中心(DTNW)继续这项工作。
1991年,基于最佳的实验室规模的染色条件[19~25],德国Velen的Jasper公司与德国西北纺织研究中心紧密合作,制造了首台半工业规模的染色机。
1994年,Jasper公司的其中一台CO2染色机安装在德国B ǒnnigheim的Amann&Sǒhne公司,用于聚酯缝纫线染色,以试验该技术用于纺织工业的可能性。
1995年初,在德国Hagen的UHDEHochdrucktechnik公司开始了新的探讨,德国西北纺织研究中心终于建造了一台新的CO2染色试验设备。
自1995年,国际上对这一技术的兴趣越来越高,最初在美国和亚洲,以后又在欧洲。
2、该技术的原理染色时,只有分子状态的染料可以上染纤维,随着分子状态染料上染纤维,胶团中和晶粒中的染料分子会不断溶解到水中,直到上染结束;由于染料溶解度低,因此在低温时大大限制了上染速度。
又由于大部分染料是以悬浮体存在,因此,染液的分散稳定性不高,容易发生晶粒的凝聚、晶型转变和晶粒增长,严重时还会出现沉淀,引起染色困难或不匀。
分散剂的存在虽然提高了染料悬浮体的分散稳定性,但是它的存在不仅增加了生产成本,也会污染水质,有的还会降低染料的平衡上染量。