有理数的意义
- 格式:doc
- 大小:1.96 MB
- 文档页数:5
第一节有理数的意义月 日 姓 名【知识要点】1.有理数的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0)1( (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 2.数轴:规定了原点、正方向和单位长度的直线叫数轴,数轴上右边的数大于左边的数. 3.相反数(1)代数意义:像3与-3这样只有符号不同的两个数,把其中一个叫做另一个的相反数,0的相反数是0.(2)几何意义:在数轴上原点的两旁,并且到原点的距离相等.(3)求一个数的相反数就是在这个数前添一个负号,如a 的相反数是-a . (4)a 与b 互为相反数等价于0=+b a4.绝对值:数轴上,一个数a 所对应的点与原点的距离为该数的绝对值,记作a .任何一个数的绝对值都是非负数,即0≥a .【典型例题】例1.把下列各数填入它所属的集合.-1、 -2、 0、 +3.4、 32-、 311、 5%、 。
.30-、 -(-4)自然数集:{ }负整数集:{ } 分数集: { } 正数集: { } 整数集: { } 有理数集:{ }例2.用数轴把下列各数表示出来,并用“〈”连接下列各数 -,43 1, 1.7, ,35- -0.04, ,54- 0.01, ,43 0例3.有一座三层楼房不幸起火,一位消防员搭梯子爬往三楼去抢救物品,当他爬到梯子正中间一级时,二楼的窗口喷出火来,他就往下退了三级,等到火过去了,他又爬上了七级;这时顶层有两块砖掉下来,他又退了二级;幸好没有打着他,他又爬上八级,这时他距离最高一层还有一级,问这个梯子有几级?例4.如图在数轴上有六个点,且AB=BC=CD=DE=EF ,求与点C 所表示的最接近的整数.例5.①已知()0342322=++-b b a ,则=a ,=b .②若1999-a 与2000+b 的互为相反数,则()3b a += .例6. 已知2-ab 与1-b 互为相反数,设法求代数式.)1999)(1999(1)2)(2(1)1)(1(11的值++++++++++b a b a b a ab思考:三个互不相等的有理数,既可以表示为1,,a b a +的形式,也可以表示为0,,bb a的形式,试求20082008ab +的值。
有理数单元教学目标1了解有理数的意义。
会用正数与负数表示相反意义的量,会按要求把给出的有理数归类。
2了解数轴、相反数、绝对值的概念。
会画数轴,会用数轴上的点表示整数或分数(以刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母)。
3掌握有理数大小比较的法则。
会用不等号连接两上或两个以上不同的有理数。
单元教学重点1有理数(特别是负数)和绝对值的意义。
2数形结合的思想方法。
单元教学策略有理数是根据学生熟悉的实际需要,对小学学过的数的进一步护展。
对于本单元的学习,学生已有一定的知识基础和生活体验。
教学时教师应注意避免多讲,要从学生已有的知识和熟知的实例出发,引导学生认真阅读、思考、讨论,形成新的认知结构。
同时还要注意为后面的学习做好准备。
教学手段和方法1引导学生把学过的知识和熟悉的事例与新的学习内容联系起来2指导学生阅读、讨论、练习、总结。
3使用投影仪。
第1、2课时正数与负数一、学习目标1了解正数与负数是由于实际需要而产生的,会初步应用正负数表示实际生活中的有关量。
2了解有理数的概念,会判断一个数是正数还是负数,是整数还是分数。
二、教学过程师:同学们先回顾一下我们在小学学过哪些数(小学六年级就接触了负数)填空1在数物体时,物体的个数用 ___________________________ 示;一个物体也没有,就用_________________________ 示。
2测量和计算有时得不到整数的结果,就要用 ______________________________ 示。
3北京冬季里的一天,白天最高气温比0C高10C,记作10C ;夜晚最低气温比0C低5C,记作_______________________________________ 。
在中国地形图上,珠穆朗玛峰处标着8848,表示不打珠穆朗玛峰比海平面高8848米;叶鲁番盆地处标着-155,表示叶鲁番盆地比海平面低21 2 8848、-155,21师:在黑板上写出11、2、3、0、-5、21、1.5、-1、1.5、2请同学们认真观察教师写出的数,以四个小组为单位,讨论下面的问题1哪些数是我们在小学已经学过的?自然数包括0吗?2哪些数我们还没有学过?试说明它们都是在实际需要中产生的。
课后作业1.如果规定支出120元记作-120元,那么收入200元记作。
2.一种零件的长在图纸上标出为:20±0.01(单位:mm),表示这种零件的长应是20mm,加工要求最大不超过,最小不大于。
3.非负数为和,非正数为和4.在有理数中,是整数而不是正数的是,是负数而不是分数的是.5.下列说法中错误的是()A 正整数、负整数、零统称为整数B 正分数、负分数统称为分数C 没有最大的有理数D π是有理数6.文具店、书店、玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店在书店东边100米处,小明从书店沿街向东行40米,又向东行-60米,此时小明的位置在()A 玩具店B 玩具店东-60米C 文具店D 文具店西40米7.在小于正数的整数中,最大的整数是()A -1B 0C 1D 不存在8.零是()A 最小的整数B 最小的正数 C最小的有理数 D 偶数9.下列说法中,正确的是()A 存在最小的有理数B 存在最大的负有理数C存在最小的正有理数 D 存在最大的负整数10.在下列的说法中,正确的是()A 带“+”号的数是正数 B.带“-”号的数是负数C自然数都大于零 D.负数一定小于正数二、解答题1.7筐苹果,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,-1,-2,+1,+3,-4,-3.这七筐苹果实际各重多少千克?2.判断正确或错误,分别用“√”或“×”填在各题后面的括号内:(1)零是自然数:()(2)零是正数;()(3)零是非负数;()(4)零是整数;()(5)零是偶数.()想一想:正整数中有没有最小的数? ____ 正整数中有没有最大的数?______ _负整数中有没有最小的数?负整数中有没有最大的数?正数中有没有最大的数?正数中有没有最小的数?负数中有没有最大的数?负数中有没有最小的数?_________________。
有理数剖析1.什么是有理数有理数是整数和分数的统称,除了无限不循环小数以外的数都统称有理数。
它可分为整数和分数,也可分为正有理数,零,负有理数。
有理数是整数和分数的集合,但是一切有理数又都可以化成分数的形式,因为整数也可看做是分母为一的分数。
有理数的小数部分是有限或者无限循环的数。
不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
2.有理数例子以下都是有理数:(1)自然数:数0,1,2,3,……叫做自然数.(2)正整数:+1,+2,+3,……叫做正整数.(3)整数:正整数、0、负整数统称为整数.(4)分数:正分数、负分数统称为分数.(5)奇数:不能被2整除的整数叫做奇数.如-3,-1,1,5等.所有的奇数都可用2n-1或2n+1表示,n为整数.(6)偶数:能被2整除的整数叫做偶数.如-2,2,4,8等.所有的偶数都可用2n表示,n为整数.(7)质数:如果一个大于1的整数,除了1和它本身外,没有其他因数,这个数就称为质数,又称素数,如2,3,11,13等.2是最小的质数.(8)合数:如果一个大于1的整数,除了1和它本身外,还有其他因数,这个数就称为合数,如4,6,9,15等.4是最小的合数.一个合数至少有3个因数.如3,-98.11,5.72727272……,7/22都是有理数.全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示.有理数集是实数集的子集,即Q?R.相关的内容见数系的扩张.有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):①加法的交换律 a+b=b+a;②加法的结合律 a+(b+c)=(a+b)+c;③存在数0,使 0+a=a+0=a;④乘法的交换律 ab=ba;⑤乘法的结合律 a(bc)=(ab)c;⑥乘法的分配律 a(b+c)=ab+ac.0a=0 一个数乘0还等于0.此外,有理数是一个序域,即在其上存在一个次序关系≤.0的绝对值还是0.有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a.由此不难推知,不存在最大的有理数.值得一提的是有理数的名称.“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”.事实上,这似乎是一个翻译上的失误.有理数一词是从西方传来,在英语中是(rational number),而(rational)通常的意义是“理性的”.中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”.但是,这个词来源于古希腊,其英文词根为(ratio),就是比率的意思(这里的词根是英语中的,希腊语意义与之相同).所以这个词的意义也很显豁,就是整数的“比”.与之相对,而“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理(无理数就是无限不循环小数,π也是其中一个无理数).。
第一讲 有理数的意义一、 情境引入:有理数最初叫数,古希腊毕达哥拉斯学派主张万物皆数的理论,却也知道勾股定理(直角三角形的两直角边的平方和等于斜边的平方这一特性)。
可是有人发现当三角形两条直角边都是1时候,斜边不能表示,结果引发了一次恐慌。
学派为了消除恐慌,把发现这个秘密的人投海喂鱼。
可是纸包不住火,无理数最终仍是不可抗拒地随着数学的进步应运而生了。
为了和无理数区别,所以把整数和分数(这里的分数包括小数)统称为有理数,而无穷不循二、课程标准一、借助生活中的实例理解负数,有理数的意义,体会负数引入的必要性和有理数的普遍性;二、会判断一个数是正数仍是负数,能应用正负数表示生活中具有相反意义的量,体会数学知识与现实世界的联系;3、在负数概念的形成进程中,养成观察,归纳与归纳的能力。
三、知识精讲知识点1:数的形成进程(1)由记数,排序,产生数(2)由表示“没有”、“空位”产生数;(3)由分派,测量产生数(4)问题:生活中如何表示两个具有相反意义的量呢?知识点2:具有相反意义的量(重点)12 3......,,01123,观察下面给出的每一对数量,指出各对数量有什么一路特点?(1)零上和零下 (2)收入元和支出元(3)增加和减少 (4)水位上升和降低归纳总结:像这样别离由具有相反意义的词表示的两个数量,就是具有相反意义的量。
【例1】将下列具有相反意义的量有线连接起来向南走米 失球个进球个 亏损元高于海平面 运出吨粮食盈利元 向北走运进吨粮食 低于海平面方式点拨:先找出叙述的是不是是同一事物,再看其是不是具有相反意义知识点3:正数、、负数的意义(难点)归纳总结:对“”的理解:零既不是正数,也不是负数,它是正数和负数的分界数,但它是整数;零的意义不仅是表示“没有”,而且表示一个肯定的量,例如不是没有温度,而是表示在标准大气压下纯水结成冰的一个肯定的温度。
【例2】填空(1)若是收入元记作元,那么支出元记作 ,元表示 ;(2)腕表的指针顺时针旋转记作,那么逆时针旋转记作 , 表示 ;3C ︒3C ︒8005005kg 2kg 0.5m 1.3m 625500960m 200100030m 500300m 000C ︒5050+5080-90︒90-︒60︒0︒(3)海边的一段堤岸高出海平面,周围的一建筑物高出海平面,海里一潜艇在海平下,现以海边堤岸高度为标准,将其记为,那么周围建筑物的高度应表示为 ,潜艇的高度应表示为 。
有理数的意义、数轴、绝对值第一部分:有理数1、正负数的概念:比0大的数是正数,比0小的数是负数。
“—”用正数和负数表示相反意义的量Ⅰ. 相反意义的量必须包含两个因素:1、它们的意义相反;2、它们都具有数量,而且一定是同类量。
Ⅱ.相反意义的量可以人为的规定其正负。
在实际生活中,习惯把零以上的温度、上升的高度、收入、买入物品等规定为正数,而把它们相反意义的量规定为负的,用负数表示。
2、对“0”的理解:0不在正、负数的范围内,它是正数和负数的分水岭。
它的意义非常特殊,它既可以表示无意义,也可以表示其他特殊的意义。
3、有理数的概念:整数和分数统称为有理数;正数、负数、零都是有理数。
4、有理数的分类:例1:(1)如果把收入50元记做50元,那么下列各数分别表示什么意义?20元 2.5元 -80元 0元(2)如果6摄氏度用6C︒表示,那么零下4摄氏度如何表示?例2:把13121271 2.80734%0.67247--、、、、、、、、、、、、、、-、、分别填在表示正数和负数的圈内。
正数负数巩固练习:1、如果规定向南走为正,那么﹣100米表示向________走100米。
2、某公司股票上周五的收盘价是27元,下表为本周内每日该股票的涨跌情况(上涨为正):由上表知,星期一收盘时,每股价格是元,星期四收盘时,每股价格是元。
3、下列说法正确的是()A.一个有理数不是正数就是负数B.一个有理数不是正数就是分数C.有理数是指整数、分数(正有理数、0、负有理数)D.以上说法都正确4、把下列各数填入相应的大括号内:-7,3.01,300%,-0.142,0.1,0,5/3,-355/113,12 (1)正整数集:{ };(2)分数集:{ } (3)负数集:{ };(4)非负整数集:{ }5、下列判断正确的是( )A.所有的整数都是正数B.正整数,负整数统称为整数C.分数一定是有理数D.有理数包括小数和整数6、某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A.-10℃ B.-6℃ C.6℃ D.10℃第二部分:数轴的再认识与相反数1、数轴的再认识(1)数轴的三要素:原点、正方向、长度单位。
有理数的意义及运算有理数是数学中一个重要的概念,是在数轴上广泛应用的基本数类之一。
它们不只是简单的数字,还在我们生活的方方面面扮演着重要角色。
从日常的购物算账到工程设计,有理数都显得尤为重要。
有理数的定义是非常明确的。
一个数如果可以表示为两个整数之比(即在形式上为a/b,a和b是整数且b不为零),那么这个数就属于有理数的范畴。
比如,3(可以写成3/1)、-1/2、0都是有理数。
而平方根2、π等则不属于有理数,因为它们无法用整数字表示。
在我们的学习中,对有理数的理解不仅限于其定义。
还需掌握它们的性质和运算。
有理数的集合不仅包括正数和负数,还涵盖了零。
在数轴上,有理数通过分数和小数的方式表现出来,令其在实际问题中更易于使用。
有理数自身具备几个重要的性质。
有理数是稠密的,这意味着在任意两个有理数之间,总是可以找到另一个有理数。
例如,在1和2之间,有1.5、1.25等;在-1和0之间,有-0.5、-0.75等。
这一性质使得有理数能够精准地表示一些功能的变化,尤其在科学和工程中,需对数据进行细致分析时,这一优势极为显著。
在我们实际应用有理数时,运算是不可或缺的一环。
加法、减法、乘法和除法四种基本的数学运算是处理有理数的主要方式。
对于两个有理数进行加法运算,首先需要找到共同的分母,然后再合并分子。
而减法运算与加法类似,通常也是需要统一分母后再进行操作。
乘法和除法相对简单,直接将分子乘以分子,分母乘以分母。
值得注意的是,当进行除法运算时,除数不能为零,因为零在数学中是无法作为分母的。
运算过程中的简化同样重要。
比如,当我们有一项表达式,例如(3/4)+(1/2),要想简化成一个更直接的形式,需要把1/2转换成相同的分母。
1/2可以写成2/4,如此一来,两者相加后的结果就是5/4。
类似地,在减法和乘法时,简化步骤能够提高计算速度并减少错误。
当面对负数时,计算的过程同样适用。
有理数的负数与正数在运算中同样可以灵活应用。
数学中各种数的意义数学是一门研究数量、结构、变化和空间的学科,涉及到各种数的概念和意义。
在数学中,不同种类的数具有不同的数学意义,本文将对整数、有理数、无理数、实数和复数这五种数的意义进行论述。
整数是最基本的数,它包括正整数、负整数和零。
整数的数学意义在于表示计数和排序。
正整数用于计算和表示物体的数量,例如1个苹果、2个橘子等;负整数用于表示欠债或亏损的数量,例如-3美元、-5公斤等;零则表示没有数量或不存在的数量。
整数在数学中广泛运用于代数运算、数论、组合数学等多个领域。
有理数是可以表示为两个整数之比的数,包括整数和分数。
有理数的数学意义在于表示精确的比例关系,它用于测量、计算和表示分数数量。
有理数在分数运算、方程求解、概率统计等领域中发挥重要作用。
同时,有理数的运算规则和性质也是数学中的重要基础。
无理数是不能表示为两个整数之比的数,它们的十进制表示是无限不循环小数。
无理数的数学意义在于表示那些无法精确表示为有理数的量。
最著名的无理数是圆周率π和自然对数的底数e,它们在几何、分析和物理学中具有广泛的应用。
无理数的研究涉及到数学分析中的极限理论和数值计算方法。
实数是整数、有理数和无理数的总称,它包括所有可以在数轴上表示的数。
实数的数学意义在于表示连续和无缝的数量。
实数广泛运用于微积分、函数分析、数学物理等领域,它是现代数学的基础之一。
实数的特性包括有序性、完备性和稠密性,这些性质使得实数具有丰富的数学结构和性质。
复数是由实数和虚数部分组成的数,虚数部分以字母i表示。
复数的数学意义在于表示平面上的点或向量,它在代数、几何和电磁学等领域中广泛使用。
复数的运算规则和性质由复数代数定义,它们包括加法、减法、乘法和除法等运算。
复数具有特殊的性质,例如共轭、模长和辐角等,这些性质使得复数具有广泛的应用和研究价值。
综上所述,数学中的整数、有理数、无理数、实数和复数分别表示了数量、比例、近似、连续以及平面上的点或向量等概念。
第5章第1讲:有理数的意义在以前的学习中,我们已经学习了整数、分数、正数、负数等一些知识。
这节课我们再学习一个新的知识:有理数。
那么什么是有理数呢?有理数:整数和分数,统称有理数。
这是从分类上对有理数的定义,也就是说整数和分数这两类数共同组成了有理数,即:有理数分数整数所以,凡是属于整数和分数的数,都是有理数。
我们知道整数有正负之分,可以分为正整数、负整数和零。
同样分数也有正负之分,可分为正分数和负分数。
所以我们还可以对有理数按照正负进一步细分,主要有以下两种分法:有理数负分数正分数分数负整数正整数整数0这样,我们对有理数又进行了具体分类,在判断时就更加方便。
例题:将下列各数分别写在相应的横线上。
1,—3,0,21,43 ,213,52 ,6正整数:_________________________________;负整数:_________________________________;正分数:_________________________________;负分数:_________________________________;整数:___________________________________;分数:___________________________________;►习题:将下列各数分别写在相应的横线上。
1.352132.0,0,6961217,38 ,,,,,整数:_________________________________;分数:_________________________________;正数:_________________________________;负数:_________________________________;有理数:_______________________________;正整数负分数负整数正分数负有理数正有理数数有理数在有理数中,我们提到了正整数、正分数,它们都是正数;我们还提到了负整数、负分数,它们都是负数。
1.有理数
一、学生起点分析
学生的知识技能基础:学生在小学已经学习过整数、分数、小数的概念及运算;对负数的概念有所了解,知道正数、负数和零的区别。
学生活动经验基础:学生在小学通过对温度计的认识活动,学习了用负数解
决一些简单的比较大小的问题。
刚进入初中的学生掌握正数、负数的概念程度参差不齐,结合实际正确的表
示具有相反意义的量,建立有理数的概念是学习的难点。
二、学习任务分析
“有理数”是初中数学学习的重要基础。
本节课的内容是正、负数的概念和
有理数的分类。
通过和学生生活贴近的实例引入负数激发学生对数学学习的兴趣;通过让学生了解“中国是世界上最早使用负数的国家”,培养学生爱国主义
情操,增强民族自豪感。
为此,本节课的学习任务是:
1.在具体情境中,进一步认识负数,理解有理数的意义。
2.经历用正负数表示具有相反意义的量的过程,体会负数是实际生活的需要。
3.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类。
三、教学过程设计
本节课设计了五个教学环节:第一环节:复习回顾,引入新课,第二环节:创设情境,探索新知,第三环节:实际应用,巩固提高,第四环节:合作交流,能力提升,第五环节:小结反思,布置作业。
第一环节:复习回顾,引入新课
活动内容
观察中国地图,珠穆朗玛峰高出海平面8844.43米,记作:+8844.43米;
吐鲁番盆地地狱海平面155米,记作-155米.
教师出示上图,提出问题:
(1)生活中我们会遇到用负数表示的量,你能说出一些例子吗?
(2)你对负数有什么样的认识?
(3)有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解
决哪些实际问题?
本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题。
活动目的:
通过提供学生熟悉的情景引导学生回顾小学有关负数的知识,三个问题不仅为本节课温故引入,也为本章的学习做了铺垫。
活动效果:
学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了学习本章内容的兴趣。
第二环节:创设情境,探索新知
活动内容
问题:
答对
答错
不回答
某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个代表队答题情况如下表:如果答对题所得的分用正数表示,那么你能用正负数表示每个代表队答题得分的情况吗?试完成下表:
练习:1.把消费价格比上年上涨4.8%记为+4.8%,那么下跌0.6%记为.
2.零上温度1℃记为+1℃,零下温度5℃记为.
3.生活中你见过其他用负数表示的量吗?与同伴进行交流
活动目的:
用知识竞赛得分的情景启发学生用正负数表示相反意义的量。
通过练习引导学生举一反三地找出身边可以用正负数表示的量,从而体会学习负数的必要性。
活动效果:
由于从学生熟悉的情景讨论问题,学生参与积极,在教师的引导下寻找生活实例的过程中充分体会学习负数是生活的需要。
第三环节:实际应用,巩固提高
活动内容
例1 (1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?
(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么﹣0.03克表示什么?
(3)某大米包装袋上标注着:“净重量:10kg±150g”,这里的“10kg±150g”表示什么?
解:(1)沿顺时针方向转了12圈记作-12圈;
(2)-0.03克表示乒乓球的质量低于标准质量0.03克;
(3)每袋大米的标准质量应为10kg,但实际每袋大米可能有150g的误差,即最多超出标准质量150g,最少少于标准质量150g。
练习:
(1)在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么?
议一议
你能选定一个高度为标准,用正负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.
活动目的:
通过对实例的分析,让学生知道用正负数表示相反意义的量时要明确“基准”。
例1中各题的基准分别是“转盘静止不动”“一只乒乓球标准质量”“10kg”。
“议一议”则联系生活实际让学生学会如何选定“基准”。
活动效果:
学生认识当用正负数表示相反意义的量时要考虑“基准”。
“0”是常用的基准,但不是所有的基准都必须为0。
第四环节:合作交流,能力提升
活动内容
我们把正整数、0和负整数统称为整数;正分数和负分数统称为分数。
如2是整数,而且是正整数;2/3是分数,而且是正分数,-2是负整数,-2/3是负分数。
整数和分数统称为有理数。
(1)将学过的数进行分类,并与同伴交流。
(2)把下列各数填入相应的集合中:
3,-7,32-,.
6.5,0,418-, 15,91 正数集合:{ … }
负数集合:{ … }
整数集合:{ … }
分数集合:{ … }
活动目的:
使学生在原有认知结构的基础上,将数扩充到了有理数的范围。
通过练习使学生加深理解有理数的意义。
活动效果:
在将学过的数分类时,学生有很多不同的分法,通过同伴交流,教师引导,学生知道分类得有标准,有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类。
学生在领会数学分类思想的同时对有理数有了整体的认识。
第五环节:小结反思,布置作业
活动内容
1.用一句话“我知道了……我学会了……我还想知道……”小结本课。
(先小组同学互相小结,然后小组汇报)
2.作业:习题2.1
活动目的:
通过小结整理,培养学生归纳、总结能力。
活动效果:
学生将所学知识纳入已有的知识结构,建构新的知识体系。
四、教学反思
本节课的内容是在学生小学认识负数的基础上学习有理数,是后续学习数轴、相反数、绝对值以及有理数运算的基础。
在教学设计中注意结合学生熟悉的生活情境,唤起学生已有的生活经验,以“知识回顾”---“正负数表示相反意义的量”---“明确基准”---“有理数的分类”为线索让学生掌握有理数的意义。
《数学课程标准》指出,数学课程不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的知识和生活经验出发。
这就要求数学教学活动必须关注学生的个人知识和生活经验,引入贴近学生生活实际的问题情境。
教学中从学生熟悉的海拔高度作为教学起点,让学生在生活实际背景中学习和感受正负数的意义。
又通过设计大量具有生活实际背景的练习活动,让学生学会用正负数表示一些具有相反意义的量。
再从“明确基准”的活动中,尽可能让学生自己列举生活中正负数应用的实例,体会“基准”的不唯一,进而理解有理数的意义,建立新的数系。
教学中创设的问题情景让学生思考、交流、质疑较好地激发学生应用数学思维方法观察和解决生活中的实际问题。