万有引力定律与天体运动
- 格式:doc
- 大小:145.00 KB
- 文档页数:8
万有引力定律解释了天体运动规律天体运动是天文学中非常重要的研究内容之一。
在古代,人们对于天空中星体的运动规律产生了浓厚的兴趣,但缺乏科学知识,无法准确解释天体的运动规律。
直到 Isaac Newton 在17世纪提出了万有引力定律,才给天体运动规律的解释提供了关键的理论基础。
万有引力定律不仅解释了太阳系内行星的运动规律,而且对于更远的恒星、星团和星系的运动规律也有着重要的作用。
万有引力定律是 Isaac Newton 在1687年提出的,它是他著作《自然哲学的数学原理》中的一个重要内容。
该定律描述了任意两个物体之间存在的引力的大小和方向。
具体而言,万有引力定律表明,两个物体之间的引力与它们的质量成正比,与它们的距离的平方成反比。
换句话说,两个物体的质量越大,它们之间的引力就越强;两个物体之间的距离越近,它们之间的引力也越强。
根据万有引力定律,我们可以解释天体运动的规律。
首先,让我们来看看太阳系内行星的运动。
太阳位于太阳系的中心,并以巨大的质量成为整个太阳系的重心。
行星在太阳的引力作用下沿着椭圆轨道围绕太阳运动。
根据万有引力定律,太阳对行星的引力与它们的质量和距离有关。
行星的质量越大,它们受到的引力就越大;行星距离太阳越近,它们受到的引力也越大。
因此,太阳对行星的引力会不断改变行星的运动轨道,使其保持相对稳定的轨道。
除了解释行星的运动外,万有引力定律还可以帮助我们理解更远的天体的运动规律。
事实上,根据万有引力定律,恒星、星团和星系之间的引力相互作用也可以解释它们的运动。
恒星间的引力会影响它们相对的位置和运动轨迹。
有时候,恒星之间的引力甚至可以造成它们的相互碰撞,形成新的恒星或星系。
在星系中,数以亿计的星体也受到相互引力的影响,导致星系整体的形态和结构发生变化。
除了解释天体的运动规律外,万有引力定律还对宇宙的演化起着重要的作用。
根据该定律,宇宙中的物体不断相互吸引,使得宇宙的结构在漫长的时间尺度上逐渐形成。
高中物理天体运动公式大全1. 万有引力定律公式。
- F = G(Mm)/(r^2)- 其中F是两个物体间的万有引力,G = 6.67×10^-11N· m^2/kg^2(引力常量),M和m分别是两个物体的质量,r是两个物体质心之间的距离。
2. 天体做圆周运动的基本公式(以中心天体质量为M,环绕天体质量为m,轨道半径为r)- 向心力公式。
- 根据万有引力提供向心力F = F_向- G(Mm)/(r^2)=mfrac{v^2}{r}(可用于求线速度v=√(frac{GM){r}})- G(Mm)/(r^2) = mω^2r(可用于求角速度ω=√(frac{GM){r^3}})- G(Mm)/(r^2)=m((2π)/(T))^2r(可用于求周期T = 2π√((r^3))/(GM))- G(Mm)/(r^2)=ma(a=(GM)/(r^2),这里的a是向心加速度)3. 黄金代换公式。
- 在地球表面附近(r = R,R为地球半径),mg = G(Mm)/(R^2),可得GM = gR^2。
这个公式可以将GM用gR^2替换,方便计算。
4. 第一宇宙速度公式(近地卫星速度)- 方法一:根据G(Mm)/(R^2) = mfrac{v^2}{R},且mg = G(Mm)/(R^2),可得v=√(frac{GM){R}}=√(gR)(R为地球半径,g为地球表面重力加速度),v≈7.9km/s。
- 第一宇宙速度是卫星绕地球做匀速圆周运动的最大环绕速度,也是卫星发射的最小速度。
5. 第二宇宙速度公式(脱离速度)- v_2=√(frac{2GM){R}},v_2≈11.2km/s,当卫星的发射速度大于等于v_2时,卫星将脱离地球的引力束缚,成为绕太阳运动的人造行星。
6. 第三宇宙速度公式(逃逸速度)- v_3=√((2GM_日))/(r_{地日) + v_地^2}(其中M_日是太阳质量,r_地日是日地距离,v_地是地球绕太阳的公转速度),v_3≈16.7km/s,当卫星的发射速度大于等于v_3时,卫星将脱离太阳的引力束缚,飞出太阳系。
万有引力定律在天体运动中的应用天体之间的作用力,主要是万有引力。
行星和卫星的运动,可近似看作是匀速圆周运动,而万有引力是行星、卫星作匀速圆周运动的向心力。
万有引力定律主要有以下几种应用:一、测中心天体的质量如果已知绕中心天体M 作匀速圆周运动的星体,圆周运动的半径R 的运行周期T ,则: r T4πm r Mm G 222⋅⋅= 所以232G T r 4πM = 其中M 为中心天体质量。
二、测中心天体的密度测出绕中心天体M 作匀速圆周运动的星体的半径R ,周期T 和中心天体半径R ,则由上可知M=232G T r 4π ① ρ=VM ② V=334R π ③ 由①②③得ρ=3233R GT r π 若卫星绕中心天体作近地轨道运动时,由于r ≈R ,则ρ=23GTπ。
三、测重力加速度在地球表面上的物体受到的重力和随地球自转的向心力,是物体所受万有引力的两个分力。
由于F 向跟重力相比很小,可忽略,所以F 引≈mg ,即 mg=2RMm G∴g=2R M G 在环绕地球运行的卫星所需的向心力是由于地球对其引力(即重力)提供,即 mg ′=2)(h R Mm G + ∴g ′=2)(h R M G+ 其中h 为卫星离地高度,g ′为卫星所在处重力加速度。
四、求周期确定的卫星的高度例如地球同步卫星的周期T=24h则)(4)(222h R Tm h R Mm G +=+π 而地球表面2RMm G =mg ∴卫星高度h=km R T gR 43222106.34⨯=-π五、比较卫星环绕运动的一些物理量:v 、ω、T由于卫星环绕运动所需的向心力是由万有引力提供的。
① 由2)(h R Mm G +=h R v m +2得 v=hR GM + 所以h 越高(或者说环绕半径越大),卫星的环绕速度v 越小。
当h=0时,s km RGM v /9.7== 也可由mg=Rv m 2得s km gR v /9.7==这就是第一宇宙速度。
万有引力与天体运动引言:在自然界中,存在着一种无所不在的力量,即万有引力。
万有引力是负责使得天体之间相互吸引的力量,它是牛顿力学的基本法则之一。
本文将探讨万有引力的定义、原理及其与天体运动的关系。
一、万有引力的定义与原理万有引力是指任意两个物体之间存在相互吸引的力量,这种力量与物体的质量和距离有关。
根据牛顿第三定律,相互作用的两个物体之间的引力大小相等,方向相反。
万有引力的存在与质量有关,质量越大的物体,其引力也越大。
而且,两个物体之间的引力与它们之间的距离的平方成反比,即距离越近,引力越强。
二、天体运动的基本规律根据万有引力的原理,天体运动遵循以下基本规律:1. 开普勒定律约翰内斯·开普勒是天体运动领域的重要科学家之一,他总结出三个著名的运动定律。
第一定律表明天体绕太阳运动的轨道是椭圆形,而不是圆形。
这就意味着天体在其轨道上的位置不是固定的,而是变化的。
2. 第二定律开普勒的第二定律,也称为面积定律,表明天体在相同时间内扫过的面积相等。
换句话说,当天体离太阳较远时,它的速度较慢;当它距离太阳较近时,速度较快。
这个定律说明了天体在椭圆轨道上的运动速度是不均匀的。
3. 第三定律开普勒的第三定律,也称为调和定律,阐述了天体轨道周期与半长轴的关系。
具体来说,天体运动的周期的平方与它的椭圆轨道的半长轴的立方成正比。
这个定律揭示了天体运动的规律性,使得科学家们可以通过研究地球运动来推导出其他天体的运动规律。
三、天体运动和万有引力的关系天体运动与万有引力有着密不可分的关系,万有引力是驱动天体运动的根本力量。
在太阳系中,太阳是最重要的引力中心,其他行星、卫星以及小行星等都围绕太阳进行运动。
1. 行星运动行星绕太阳运动的轨道是椭圆形,行星距离太阳越近,它们的速度越快;相反,距离越远,速度越慢。
这符合开普勒定律中的第二定律。
行星的运动速度与距离有关,而这种变化正是受到万有引力的影响。
2. 月球运动月球是地球的卫星,它也受到地球的引力影响,围绕地球进行运动。
物理天体运动的基本公式
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:
V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r
地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
强调:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
万有引力与天体运动研究报告小结示例文章篇一:《万有引力与天体运动研究报告小结》嘿,你知道吗?咱们生活的这个宇宙啊,就像一个超级神秘又超级有趣的大游乐场,而万有引力和天体运动呢,就像是这个游乐场里最刺激、最神秘的游乐项目。
咱先来说说万有引力吧。
牛顿发现万有引力的时候,那可真是一个超级伟大的时刻,就好像在黑暗中突然点亮了一盏超级亮的灯。
我就想啊,牛顿当时肯定是个超级爱思考的人。
你看啊,苹果从树上掉下来,这事儿在咱平常人眼里,那就是个再平常不过的事儿了,说不定还会想,这苹果熟了不掉下来才怪呢。
可是牛顿他老人家就不一样啊,他就琢磨着,为啥这苹果是往地上掉,而不是往天上飞呢?这一琢磨可不得了,就琢磨出了万有引力这个大宝贝。
万有引力就像是宇宙中的一条看不见的绳子。
你想啊,咱们地球上的东西,不管是大的像山,还是小的像一粒沙子,都被这条看不见的绳子给拴着呢。
而且这绳子的力量可神奇了,它不是乱拴的。
质量越大的东西,它拴得就越紧。
就好比是两个大力士在拔河,力气大的那个肯定能把力气小的那个拉得更靠近自己。
在宇宙里也是一样,像地球这么大质量的星球,就把咱们人啊、动物啊、还有那些花花草草,都紧紧地拽在自己身上。
要是没有万有引力,咱们估计就像气球一样,到处乱飞了。
那可就乱套了,说不定早上一睁眼,人就飘到外太空去了,想想都可怕。
再说说天体运动吧。
那些天体在宇宙里就像是一群舞者,各自有着自己独特的舞步。
行星绕着恒星转,就像孩子围着妈妈转一样。
拿咱们地球来说吧,地球就绕着太阳这个大火球转啊转。
我就常常在想,地球在转的时候,会不会也有累的时候呢?哈哈,这当然是开玩笑啦。
地球的这种运动可是非常有规律的,它就这么一圈又一圈地转着,带来了白天和黑夜,带来了春夏秋冬。
其他的行星也一样啊。
它们在万有引力的作用下,有条不紊地进行着自己的运动。
你看木星,那可是个大家伙,它也乖乖地按照自己的轨道运行。
这就好比是在一个超级大的舞池里,每个舞者都知道自己的位置,都知道自己该怎么跳,谁也不会乱了脚步。
文登三中高三物理教学案
课题:万有引力定律与天体运动课型:复习课
编写人:丁丽萍审定人:高三备课组课时:2课时使用时间:9月12日星期三
学习目标:1、开普勒三定律及万有引力定律的内容、公式和适用条件
2、会求天体的质量、密度及天体产生的加速度
重点:学习目标1、2
难点:天体的质量、密度及天体产生的加速度的计算
方法:讲练结合、小组合作
图1
是地球大气层外圆形轨道上运动的三颗卫星,
的质量,则下列说法错误的是
的周期
的向心加速度大小相等,且大于a
的线速度大小相等,且小于a的线速度
天体产生的重力加速度问题
在地面上,忽略地球自转时,认为物体的向心力为零.各处位置均有
所以对一般问题的研究认为
任意星球表面的重力加速度:在星球表面处,
)
处的重力加速度:
图6
和M的两个星球
和B两者中心之间的距离为
和B分别在O的两侧.引力常数为求两星球做圆周运动的周期;
若忽略其它星球的影响,可以将月球和地球看成上述星,月球绕其轨道中心运行的周期记为
常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为
5.98×1024kg和7.35
)
3、如图3所示,P、Q为质量均为m的两个质点,分别置于地球表面不
同纬度上,如果把地球看成是一个均匀球体,
转做匀速圆周运动,则以下说法中正确的是
A.P、Q做圆周运动的向心力大小相等
、月发射第一颗火星探测器“萤火一号”.假设探测器在离火星表面高
和T 2.火星可视为质
引力常量为G.仅利用以上数。