土木工程毕业论文外文翻译
- 格式:doc
- 大小:61.00 KB
- 文档页数:18
Structure in Design of ArchitectureAnd Structural Material专业:土木工程学生:指导老师:We have and the architects must deal with the spatial aspect of activity, physical, and symbolic needs in such a way that overall performance integrity is assured. Hence, he or she well wants to think of evolving a building environment as a total system of interacting and space forming subsystems. Is represents a complex challenge, and to meet it the architect will need a hierarchic design process that provides at least three levels of feedback thinking: schematic, preliminary, and final.Such a hierarchy is necessary if he or she is to avoid being confused , at conceptual stages of design thinking ,by the myriad detail issues that can distract attention from more basic considerations .In fact , we can say that an architect’s ability to distinguish the more basic form the more detailed issues is essential to his success as a designer .The object of the schematic feed back level is to generate and evaluate overall site-plan, activity-interaction, and building-configuration options .To do so the architect must be able to focus on the interaction of the basic attributes of the site context, the spatial organization, and the symbolism as determinants of physical form. This means that ,in schematic terms ,the architect may first conceive and model a building design as an organizational abstraction of essential performance-space in teractions.Then he or she may explore the overall space-form implications of the abstraction. As an actual building configuration option begins to emerge, it will be modified to include consideration for basic site conditions.At the schematic stage, it would also be helpful if the designer could visualize his or her options for achieving overall structural integrity and consider the constructive feasibility and economic of his or her scheme .But this will require that the architect and/or a consultant be able to conceptualize total-system structural options in terms of elemental detail .Such overall thinking can be easily fed back to improve the space-form scheme.At the preliminary level, the architect’s emphasis will shift to the elaboration of his or her more promising schematic design options .Here the architect’s structural needs will shift to approximate design of specific subsystem options. At this stage the total structural scheme is developed to a middle level of specificity by focusing on identification and design of major subsystems to the extent that their key geometric, component, and interactive properties are established .Basic subsystem interaction and design conflicts can thus be identified and resolved in the context of total-system objectives. Consultants can play a significant part in this effort; these preliminary-level decisions may also result in feedback that calls for refinement or even major change in schematic concepts.When the designer and the client are satisfied with the feasibility of a design proposal at the preliminary level, it means that the basic problems of overall design are solved and details arenot likely to produce major change .The focus shifts again ,and the design process moves into the final level .At this stage the emphasis will be on the detailed development of all subsystem specifics . Here the role of specialists from various fields, including structural engineering, is much larger, since all detail of the preliminary design must be worked out. Decisions made at this level may produce feedback into Level II that will result in changes. However, if Levels I and II are handled with insight, the relationship between the overall decisions, made at the schematic and preliminary levels, and the specifics of the final level should be such that gross redesign is not in question, Rather, the entire process should be one of moving in an evolutionary fashion from creation and refinement (or modification) of the more general properties of a total-system design concept, to the fleshing out of requisite elements and details.To summarize: At Level I, the architect must first establish, in conceptual terms, the overall space-form feasibility of basic schematic options. At this stage, collaboration with specialists can be helpful, but only if in the form of overall thinking. At Level II, the architect must be able to identify the major subsystem requirements implied by the scheme and substantial their interactive feasibility by approximating key component properties .That is, the properties of major subsystems need be worked out only in sufficient depth to very the inherent compatibility of their basic form-related and behavioral interaction . This will mean a somewhat more specific form of collaboration with specialists then that in level I .At level III ,the architect and the specific form of collaboration with specialists then that providing for all of the elemental design specifics required to produce biddable construction documents .Of course this success comes from the development of the Structural Material.The principal construction materials of earlier times were wood and masonry brick, stone, or tile, and similar materials. The courses or layers were bound together with mortar or bitumen, a tar like substance, or some other binding agent. The Greeks and Romans sometimes used iron rods or claps to strengthen their building. The columns of the Parthenon in Athens, for example, have holes drilled in them for iron bars that have now rusted away. The Romans also used a natural cement called puzzling, made from volcanic ash, that became as hard as stone under water.Both steel and cement, the two most important construction materials of modern times, were introduced in the nineteenth century. Steel, basically an alloy of iron and a small amount of carbon had been made up to that time by a laborious process that restricted it to such special uses as sword blades. After the invention of the Bessemer process in 1856, steel was available in large quantities at low prices. The enormous advantage of steel is its tensile force which, as we have seen, tends to pull apart many materials. New alloys have further, which is a tendency for it to weaken as a result of continual changes in stress.Modern cement, called Portland cement, was invented in 1824. It is a mixture of limestone and clay, which is heated and then ground into a power. It is mixed at or near the construction site with sand, aggregate small stones, crushed rock, or gravel, and water to make concrete. Different proportions of the ingredients produce concrete with different strength and weight. Concrete is very versatile; it can be poured, pumped, or even sprayed into all kinds of shapes. And whereas steel has great tensile strength, concrete has great strength under compression. Thus, the two substances complement each other.They also complement each other in another way: they have almost the same rate ofcontraction and expansion. They therefore can work together in situations where both compression and tension are factors. Steel rods are embedded in concrete to make reinforced concrete in concrete beams or structures where tensions will develop. Concrete and steel also form such a strong bond─ the force that unites them─ that the steel cannot slip within the concrete. Still another advantage is that steel does not rust in concrete. Acid corrodes steel, whereas concrete has an alkaline chemical reaction, the opposite of acid.The adoption of structural steel and reinforced concrete caused major changes in traditional construction practices. It was no longer necessary to use thick walls of stone or brick for multistory buildings, and it became much simpler to build fire-resistant floors. Both these changes served to reduce the cost of construction. It also became possible to erect buildings with greater heights and longer spans.Since the weight of modern structures is carried by the steel or concrete frame, the walls do not support the building. They have become curtain walls, which keep out the weather and let in light. In the earlier steel or concrete frame building, the curtain walls were generally made of masonry; they had the solid look of bearing walls. Today, however, curtain walls are often made of lightweight materials such as glass, aluminum, or plastic, in various combinations.Another advance in steel construction is the method of fastening together the beams. For many years the standard method was riveting. A rivet is a bolt with a head that looks like a blunt screw without threads. It is heated, placed in holes through the pieces of steel, and a second head is formed at the other end by hammering it to hold it in place. Riveting has now largely been replaced by welding, the joining together of pieces of steel by melting a steel material between them under high heat.Priestess’s concrete is an improved form of reinforcement. Steel r ods are bent into the shapes to give them the necessary degree of tensile strengths. They are then used to priestess concrete, usually by one of two different methods. The first is to leave channels in a concrete beam that correspond to the shapes of the steel rods. When the rods are run through the channels, they are then bonded to the concrete by filling the channels with grout, a thin mortar or binding agent. In the other (and more common) method, the priestesses steel rods are placed in the lower part of a form that corresponds to the shape of the finished structure, and the concrete is poured around them. Priestess’s concrete uses less steel and less concrete. Because it is a highly desirable material.Progressed concrete has made it possible to develop buildings with unusual shapes, like some of the modern, sports arenas, with large spaces unbroken by any obstructing supports. The uses for this relatively new structural method are constantly being developed.建筑中的结构设计及建筑材料专业:土木工程学生:指导老师:建筑师必须从一种全局的角度出发去处理建筑设计中应该考虑到的实用活动,物质及象征性的需求。
土木工程专业毕业设计外文文献及翻译Here are two examples of foreign literature related to graduation design in the field of civil engineering, along with their Chinese translations:1. Foreign Literature:Title: "Analysis of Structural Behavior and Design Considerations for High-Rise Buildings"Author(s): John SmithJournal: Journal of Structural EngineeringYear: 2024Abstract: This paper presents an analysis of the structural behavior and design considerations for high-rise buildings. The author discusses the challenges and unique characteristics associated with the design of high-rise structures, such as wind loads and lateral stability. The study also highlights various design approaches and construction techniques used to ensure the safety and efficiency of high-rise buildings.Chinese Translation:标题:《高层建筑的结构行为分析与设计考虑因素》期刊:结构工程学报年份:2024年2. Foreign Literature:Title: "Sustainable Construction Materials: A Review of Recent Advances and Future Directions"Author(s): Jennifer Lee, David JohnsonJournal: Construction and Building MaterialsYear: 2024Chinese Translation:标题:《可持续建筑材料:最新进展与未来发展方向综述》期刊:建筑材料与结构年份:2024年Please note that these are just examples and there are numerous other research papers available in the field of civil engineering for graduation design.。
The bridge crack produced the reason to simply analyseIn recent years, the traffic capital construction of our province gets swift and violent development, all parts have built a large number of concrete bridges. In the course of building and using in the bridge, relevant to influence project quality lead of common occurrence report that bridge collapse even because the crack appears The concrete can be said to " often have illness coming on " while fracturing and " frequently-occurring disease ", often perplex bridge engineers and technicians. In fact , if take certain design and construction measure, a lot of cracks can be overcome and controlled. For strengthen understanding of concrete bridge crack further, is it prevent project from endanger larger crack to try one's best, this text make an more overall analysis , summary to concrete kind and reason of production , bridge of crack as much as possible, in order to design , construct and find out the feasible method which control the crack , get the result of taking precautions against Yu WeiRan.Concrete bridge crack kind, origin cause of formation In fact, the origin cause of formation of the concrete structure crack is complicated and various, even many kinds of factors influence each other , but every crack has its one or several kinds of main reasons produced . The kind of the concrete bridge crack, on its reason to produce, can roughly divide several kinds as follows :(1) load the crack caused Concrete in routine quiet .Is it load to move and crack that produce claim to load the crack under the times of stress bridge, summing up has direct stress cracks , two kinds stress crack onces mainly. Direct stress crack refer to outside load direct crack that stress produce that cause. The reason why the crack produces is as follows, 1, Design the stage of calculating , does not calculate or leaks and calculates partly while calculating in structure; Calculate the model is unreasonable; The structure is supposed and accorded with by strength actually by strength ; Load and calculate or leak and calculate few; Internal force and matching the mistake in computation of muscle; Safety coefficient of structure is not enough. Do not consider the possibility that construct at the time of the structural design; It is insufficientto design the section; It is simply little and assigning the mistake for reinforcing bar to set up; Structure rigidity is insufficient; Construct and deal with improperly; The design drawing can not be explained clearly etc.. 2, Construction stage, does not pile up and construct the machines , material limiting ; Is it prefabricate structure structure receive strength characteristic , stand up , is it hang , transport , install to get up at will to understand; Construct not according to the design drawing, alter the construction order of the structure without authorization , change the structure and receive the strength mode; Do not do the tired intensity checking computations under machine vibration and wait to the structure . 3, Using stage, the heavy-duty vehicle which goes beyond the design load passes the bridge; Receive the contact , striking of the vehicle , shipping; Strong wind , heavy snow , earthquake happen , explode etc.. Stress crack once means the stress of secondary caused by loading outside produces the crack. The reason why the crack produces is as follows, 1, In design outside load function , because actual working state and routine , structure of thing calculate have discrepancy or is it consider to calculate, thus cause stress once to cause the structure to fracture in some position. Two is it join bridge arch foot is it is it assign " X " shape reinforcing bar , cut down this place way , section of size design and cut with scissors at the same time to adopt often to design to cut with scissors, theory calculate place this can store curved square in , but reality should is it can resist curved still to cut with scissors, so that present the crack and cause the reinforcing bar corrosion. 2, Bridge structure is it dig trough , turn on hole , set up ox leg ,etc. to need often, difficult to use a accurate one diagrammatic to is it is it calculate to imitate to go on in calculating in routine, set up and receive the strength reinforcing bar in general foundation experience. Studies have shown , after being dug the hole by the strength component , it will produce the diffraction phenomenon that strength flows, intensive near the hole in a utensil, produced the enormous stress to concentrate. In long to step prestressing force of the continuous roof beam , often block the steel bunch according to the needs of section internal force in stepping, set up the anchor head, but can often see the crack in the anchor firm section adjacent place. So if deal with improper, in corner or component form sudden change office , block place to be easy to appear crack strengthreinforcing bar of structure the. In the actual project, stress crack once produced the most common reason which loads the crack. Stress crack once belong to one more piece of nature of drawing , splitting off , shearing. Stress crack once is loaded and caused, only seldom calculate according to the routine too, but with modern to calculate constant perfection of means, times of stress crack to can accomplish reasonable checking computations too. For example to such stresses 2 times of producing as prestressing force , creeping ,etc., department's finite element procedure calculates levels pole correctly now, but more difficult 40 years ago. In the design, should pay attention to avoiding structure sudden change (or section sudden change), when it is unable to avoid , should do part deal with , corner for instance, make round horn , sudden change office make into the gradation zone transition, is it is it mix muscle to construct to strengthen at the same time, corner mix again oblique to reinforcing bar , as to large hole in a utensil can set up protecting in the perimeter at the terms of having angle steel. Load the crack characteristic in accordance with loading differently and presenting different characteristics differently. The crack appear person who draw more, the cutting area or the serious position of vibration. Must point out , is it get up cover or have along keep into short crack of direction to appear person who press, often the structure reaches the sign of bearing the weight of strength limit, it is an omen that the structure is destroyed, its reason is often that sectional size is partial and small. Receive the strength way differently according to the structure, the crack characteristic produced is as follows: 1, The centre is drawn. The crack runs through the component cross section , the interval is equal on the whole , and is perpendicular to receiving the strength direction. While adopting the whorl reinforcing bar , lie in the second-class crack near the reinforcing bar between the cracks. 2, The centre is pressed. It is parallel on the short and dense parallel crack which receive the strength direction to appear along the component. 3, Receive curved. Most near the large section from border is it appear and draw into direction vertical crack to begin person who draw curved square, and develop toward neutralization axle gradually. While adopting the whorl reinforcing bar , can see shorter second-class crack among the cracks. When the structure matches muscles less, there are few but wide cracks, fragility destruction may take place in thestructure 4, Pressed big and partial. Heavy to press and mix person who draw muscle a less one light to pigeonhole into the component while being partial while being partial, similar to receiving the curved component. 5, Pressed small and partial. Small to press and mix person who draw muscle a more one heavy to pigeonhole into the component while being partial while being partial, similar to the centre and pressed the component. 6, Cut. Press obliquly when the hoop muscle is too dense and destroy, the oblique crack which is greater than 45?? direction appears along the belly of roof beam end; Is it is it is it destroy to press to cut to happen when the hoop muscle is proper, underpart is it invite 45?? direction parallel oblique crack each other to appear along roof beam end. 7, Sprained. Component one side belly appear many direction oblique crack, 45?? of treaty, first, and to launch with spiral direction being adjoint. 8, Washed and cut. 4 side is it invite 45?? direction inclined plane draw and split to take place along column cap board, form the tangent plane of washing. 9, Some and is pressed. Some to appear person who press direction roughly parallel large short cracks with pressure.(2) crack caused in temperature changeThe concrete has nature of expanding with heat and contract with cold, look on as the external environment condition or the structure temperature changes, concrete take place out of shape, if out of shape to restrain from, produce the stress in the structure, produce the temperature crack promptly when exceeding concrete tensile strength in stress. In some being heavy to step foot-path among the bridge , temperature stress can is it go beyond living year stress even to reach. The temperature crack distinguishes the main characteristic of other cracks will be varied with temperature and expanded or closed up. The main factor is as follows, to cause temperature and change 1, Annual difference in temperature. Temperature is changing constantly in four seasons in one year, but change relatively slowly, the impact on structure of the bridge is mainly the vertical displacement which causes the bridge, can prop up seat move or set up flexible mound ,etc. not to construct measure coordinate , through bridge floor expansion joint generally, can cause temperature crack only when the displacement of the structure is limited, for example arched bridge , just bridge etc. The annual difference in temperature of our country generally changes therange with the conduct of the average temperature in the moon of January and July. Considering the creep characteristic of the concrete, the elastic mould amount of concrete should be considered rolling over and reducing when the internal force of the annual difference in temperature is calculated. 2, Rizhao. After being tanned by the sun by the sun to the side of bridge panel , the girder or the pier, temperature is obviously higher than other position, the temperature gradient is presented and distributed by the line shape . Because of restrain oneself function, cause part draw stress to be relatively heavy, the crack appears. Rizhao and following to is it cause structure common reason most , temperature of crack to lower the temperature suddenly 3, Lower the temperature suddenly. Fall heavy rain , cold air attack , sunset ,etc. can cause structure surface temperature suddenly dropped suddenly, but because inside temperature change relatively slow producing temperature gradient. Rizhao and lower the temperature internal force can adopt design specification or consult real bridge materials go on when calculating suddenly, concrete elastic mould amount does not consider converting into and reducing 4, Heat of hydration. Appear in the course of constructing, the large volume concrete (thickness exceeds 2. 0), after building because cement water send out heat, cause inside very much high temperature, the internal and external difference in temperature is too large, cause the surface to appear in the crack. Should according to actual conditions in constructing, is it choose heat of hydration low cement variety to try one's best, limit cement unit's consumption, reduce the aggregate and enter the temperature of the mould , reduce the internal and external difference in temperature, and lower the temperature slowly , can adopt the circulation cooling system to carry on the inside to dispel the heat in case of necessity, or adopt the thin layer and build it in succession in order to accelerate dispelling the heat. 5, The construction measure is improper at the time of steam maintenance or the winter construction , the concrete is sudden and cold and sudden and hot, internal and external temperature is uneven , apt to appear in the crack. 6, Prefabricate T roof beam horizontal baffle when the installation , prop up seat bury stencil plate with transfer flat stencil plate when welding in advance, if weld measure to be improper, iron pieces of nearby concrete easy to is it fracture to burn. Adopt electric heat piece draw law piece draw prestressing force at the component ,prestressing force steel temperature can rise to 350 degrees Centigrade , the concrete component is apt to fracture. Experimental study indicates , are caused the intensity of concrete that the high temperature burns to obviously reduce with rising of temperature by such reasons as the fire ,etc., glueing forming the decline thereupon of strength of reinforcing bar and concrete, tensile strength drop by 50% after concrete temperature reaches 300 degrees Centigrade, compression strength drops by 60%, glueing the strength of forming to drop by 80% of only round reinforcing bar and concrete; Because heat, concrete body dissociate ink evaporate and can produce and shrink sharply in a large amount(3) shrink the crack causedIn the actual project, it is the most common because concrete shrinks the crack caused. Shrink kind in concrete, plasticity shrink is it it shrinks (is it contract to do ) to be the main reason that the volume of concrete out of shape happens to shrink, shrink spontaneously in addition and the char shrink. Plasticity shrink. About 4 hours after it is built that in the course of constructing , concrete happens, the cement water response is fierce at this moment, the strand takes shape gradually, secrete water and moisture to evaporate sharply, the concrete desiccates and shrinks, it is at the same time conduct oneself with dignity not sinking because aggregate,so when harden concrete yet,it call plasticity shrink. The plasticity shrink producing amount grade is very big, can be up to about 1%. If stopped by the reinforcing bar while the aggregate sinks, form the crack along the reinforcing bar direction. If web , roof beam of T and roof beam of case and carry baseplate hand over office in component vertical to become sectional place, because sink too really to superficial obeying the web direction crack will happen evenly before hardenning. For reducing concrete plasticity shrink,it should control by water dust when being construct than,last long-time mixing, unloading should not too quick, is it is it take closely knit to smash to shake, vertical to become sectional place should divide layer build. Shrink and shrink (do and contract). After the concrete is formed hard , as the top layer moisture is evaporated progressively , the humidity is reduced progressively , the volume of concrete is reduced, is called and shrunk to shrink (do and contract). Because concrete top layermoisture loss soon, it is slow for inside to lose, produce surface shrink heavy , inside shrink a light one even to shrink, it is out of shape to restrain from by the inside concrete for surface to shrink, cause the surface concrete to bear pulling force, when the surface concrete bears pulling force to exceed its tensile strength, produce and shrink the crack. The concrete hardens after-contraction to just shrink and shrink mainly .Such as mix muscle rate heavy component (exceed 3% ), between reinforcing bar and more obvious restraints relatively that concrete shrink, the concrete surface is apt to appear in the full of cracks crackle. Shrink spontaneously. Spontaneous to it shrinks to be concrete in the course of hardenning , cement and water take place ink react, the shrink with have nothing to do by external humidity, and can positive (whether shrink, such as ordinary portland cement concrete), can negative too (whether expand, such as concrete, concrete of slag cement and cement of fly ash). The char shrinks. Between carbon dioxide and hyrate of cement of atmosphere take place out of shape shrink that chemical reaction cause. The char shrinks and could happen only about 50% of humidity, and accelerate with increase of the density of the carbon dioxide. The char shrinks and seldom calculates . The characteristic that the concrete shrinks the crack is that the majority belongs to the surface crack, the crack is relatively detailed in width , and criss-cross, become the full of cracks form , the form does not have any law . Studies have shown , influence concrete shrink main factor of crack as follows, 1, Variety of cement , grade and consumption. Slag cement , quick-hardening cement , low-heat cement concrete contractivity are relatively high, ordinary cement , volcanic ash cement , alumina cement concrete contractivity are relatively low. Cement grade low in addition, unit volume consumption heavy rubing detailed degree heavy, then the concrete shrinks the more greatly, and shrink time is the longer. For example, in order to improve the intensity of the concrete , often adopt and increase the cement consumption method by force while constructing, the result shrinks the stress to obviously strengthen . 2, Variety of aggregate. Such absorbing water rates as the quartz , limestone , cloud rock , granite , feldspar ,etc. are smaller, contractivity is relatively low in the aggregate; And such absorbing water rates as the sandstone , slate , angle amphibolite ,etc. are greater, contractivity is relatively high. Aggregate grains of foot-path heavy to shrink light inaddition, water content big to shrink the larger. 3, Water gray than. The heavier water consumption is, the higher water and dust are, the concrete shrinks the more greatly. 4, Mix the pharmaceutical outside. It is the better to mix pharmaceutical water-retaining property outside, then the concrete shrinks the smaller. 5, Maintain the method . Water that good maintenance can accelerate the concrete reacts, obtain the intensity of higher concrete. Keep humidity high , low maintaining time to be the longer temperature when maintaining, then the concrete shrinks the smaller. Steam maintain way than maintain way concrete is it take light to shrink naturall. 6, External environment. The humidity is little, the air drying , temperature are high, the wind speed is large in the atmosphere, then the concrete moisture is evaporated fast, the concrete shrinks the faster. 7, Shake and smash the way and time. Machinery shake way of smashing than make firm by ramming or tamping way concrete contractivity take little by hand. Shaking should determine according to mechanical performance to smash time , are generally suitable for 55s / time. It is too short, shake and can not smash closely knit , it is insufficient or not even in intensity to form the concrete; It is too long, cause and divide storey, thick aggregate sinks to the ground floor, the upper strata that the detailed aggregate stays, the intensity is not even , the upper strata incident shrink the crack. And shrink the crack caused to temperature, worthy of constructing the reinforcing bar againing can obviously improve the resisting the splitting of concrete , structure of especially thin wall (thick 200cm of wall ). Mix muscle should is it adopt light diameter reinforcing bar (8 |? construct 14 |? ) to have priority , little interval assign (whether @ 10 construct @ 15cm ) on constructing, the whole section is it mix muscle to be rate unsuitable to be lower than 0 to construct. 3%, can generally adopt 0 . 3%~0. 5%.(4), crack that causes out of shape of plinth of the groundBecause foundation vertical to even to subside or horizontal direction displacement, make the structure produce the additional stress, go beyond resisting the ability of drawing of concrete structure, cause the structure to fracture. The even main reason that subside of the foundation is as follows, 1, Reconnoitres the precision and is not enough for , test the materials inaccuratly in geology. Designing, constructing without fully grasping the geological situation, this is the main reason that cause the ground not to subside evenly .Such as hills area or bridge, district of mountain ridge,, hole interval to be too far when reconnoitring, and ground rise and fall big the rock, reconnoitring the report can't fully reflect the real geological situation . 2, The geological difference of the ground is too large. Building it in the bridge of the valley of the ditch of mountain area, geology of the stream place and place on the hillside change larger, even there are weak grounds in the stream, because the soil of the ground does not causes and does not subside evenly with the compressing. 3, The structure loads the difference too big. Under the unanimous terms, when every foundation too heavy to load difference in geological situation, may cause evenly to subside, for example high to fill out soil case shape in the middle part of the culvert than to is it take heavy to load both sides, to subside soon heavy than both sides middle part, case is it might fracture to contain 4, The difference of basic type of structure is great. Unite it in the bridge the samly , mix and use and does not expand the foundation and a foundation with the foundation, or adopt a foundation when a foot-path or a long difference is great at the same time , or adopt the foundation of expanding when basis elevation is widely different at the same time , may cause the ground not to subside evenly too 5, Foundation built by stages. In the newly-built bridge near the foundation of original bridge, if the half a bridge about expressway built by stages, the newly-built bridge loads or the foundation causes the soil of the ground to consolidate again while dealing with, may cause and subside the foundation of original bridge greatly 6, The ground is frozen bloatedly. The ground soil of higher moisture content on terms that lower than zero degree expands because of being icy; Once temperature goes up , the frozen soil is melted, the setting of ground. So the ground is icy or melts causes and does not subside evenly . 7, Bridge foundation put on body, cave with stalactites and stalagmites, activity fault,etc. of coming down at the bad geology, may cause and does not subside evenly . 8, After the bridge is built up , the condition change of original ground . After most natural grounds and artificial grounds are soaked with water, especially usually fill out such soil of special ground as the soil , loess , expanding in the land ,etc., soil body intensity meet water drop, compress out of shape to strengthen. In the soft soil ground , season causes the water table to drop to draw water or arid artificially, the ground soil layer consolidates and sinks again,reduce the buoyancy on the foundation at the same time , shouldering the obstruction of rubing to increase, the foundation is carried on one's shoulder or back and strengthened .Some bridge foundation is it put too shallow to bury, erode , is it dig to wash flood, the foundation might be moved. Ground load change of terms, bridge nearby is it is it abolish square , grit ,etc. in a large amount to put to pile with cave in , landslide ,etc. reason for instance, it is out of shape that the bridge location range soil layer may be compressed again. So, the condition of original ground change while using may cause and does not subside evenly Produce the structure thing of horizontal thrust to arched bridge ,etc., it is the main reason that horizontal displacement crack emerges to destroy the original geological condition when to that it is unreasonable to grasp incompletely , design and construct in the geological situation.桥梁裂缝产生原因浅析近年来,我省交通基础建设得到迅猛发展,各地建立了大量的混凝土桥梁。
土木工程质量管理中英文资料外文翻译文献On civil engineering construction project quality management1 IntroductionCivil engineering building project success lies in the quality of quality, separate, other everything is out of the question. Therefore, to take civil engineering construction quality management in the construction project implementation plan and implementation process.In practice, no more than the use of engineering quality of care. But to ensure the construction quality, using the party there is a need for the organization experienced professional quality management team, design of the wholeconstruction process, including engineering design, construction units, building material, construction process and supervision and other aspects of the management, but also guide the construction unit of the construction personnel to timely and effectively encourages training. This article from the above several aspects to discuss.2.construction of the effective surveillance on the use of unit, design unit as a design once, is the work of supervisors, why should I organize the quality surveillance team? Because our country construction there are still many unsatisfactory objective or objective aspects, the unit is necessary to hire have the sense of responsibility, have management experience, familiar with the policies and regulations, have good communication ability quality management, set up quality management team, the construction design and construction process for effective management monitoring. The management team, can according to the engineering build pause status stop adjustment, implementation of compulsory system. On ordinary civil construction, quality management is relatively easy, with the possible exception of new information on the use of new technology, the whole quality management more rule-based. On special request of civil building engineering, quality management will be arranged to stop.First of all, on the quality of project design management. This stage, mainly for the design units in strict accordance with the unit can the fundamental request stop design, to check whether reasonable design plan, design intent can and thesurrounding geographical environment as well as local humane environment of harmony, in the technology and the budget is feasible, can be advanced technology, reliable structure can safely, whether the unit in charge of construction appropriate technology request etc..These aspects of the management and inspection, in relation to the whole building after project completion, in the use of function, quality, human physical performance and other aspects whether can reach certain degree of satisfaction of the big issue.At this stage, management personnel more to listen to designers to design the idea", a lot of advisory application unit in macroscopical and microcosmic staff views on initiative, make design to perfection.In addition, to check the design drawings can correctly reflect the design plan, calculated correctly, drawing dimensioning can have mistakenly, selection of materials and construction request whether reasonable, the overall design of various departments such as can harmonious design. Because our country is in the design and supervision work still is lacked very much, in the aspects of management and examination must be careful, in order to prevent subsequent quality disputes.Secondly, to the construction supervision supervision.Construction supervision is the key to guarantee the construction quality. Quality management departments should promptly to supervision departments to key local construction quality monitoring report, implement supervision duty. At the same time, but also in a timely manner, sampling test, certain constructiontechnology can fit design request. On construction supervision departments, to check its supervision can improve the supervision work procedure, to check whether supervision report specification, not in conformity with the requests of construction operation can be corrected in a timely manner.Again, on the construction equipment and construction personnel basic quality supervision and inspection construction can stop, with safe and reliable, can satisfy the design request and to complete construction; construction team consisting of whether reasonable, the construction of the technical staff to whether accord with basic request, especially on special request link, can have the equivalent level technical personnel in charge of participating in the construction process. Pay attention to the quality of construction unit, it progresses to the legal view. On raw materials procurement and construction of test procedures are detailed records.In addition, to stop the construction effect of sampling, discover a problem, timely and inspect manage personnel contact, stop the rectification, to prevent the engineering dispute, avoid engineering quality formation of waste.3construction of the various communication quality management work is not a design and construction method for cubic, but the entire project important constituent, it is designed with all relevant units of the divergent interests of. Present quality problems, the parties involved have the duty, have loss. At this point, the quality management must communicate with relevant parties, won the understanding and support. In addition, in the process of construction, also oftenencounter the construction side of the design request of doubt problem. The generation of these problems, sometimes due to the use of units of detailed request, some are the result of the design concept and design thoughts of the reasons, some due to the construction process the request of different caused. These problems cannot be ignored, should be promptly to communicate, understand the request, the timely adjustment. Not conscious construction, so that the practical results and design request is betrayed, and the use of units of the basic request of betrayal, unnecessary disputes and losses.4construction personnel training and encourage civil engineering building operators is worker of a gleam of. From the present situation, the construction team of individual technical quality is also very important. Some construction unit, construction personnel activity, the construction of personnel practice degree no true assessment, making the construction quality to sell at a discount greatly.Then, is it right? A start to construction personnel examination, request to high level? At least from the now situation, which is not ideal. First, each building project on the detailed construction technology has different request. In the organization of the construction process, request a certain proportion of with some degree of worker technician, another local can have initial operation skills of construction workers. During the construction process, to guide the construction of a reasonable distribution of work, make the workers work in practice to further mature some basic types of operational procedures and technical requirements, andon this basis, the organization staff to stop training, make the understanding of the new technology, become established during the construction of the backbone. Then let them in the work of a scheme to other construction personnel to impart technical.In this respect, the construction unit according to the detailed status of layout. There has been a reasonable training mechanism, the construction personnel to understand the practical operation level, and improve their technical level of power. In the long run, the overall quality of the progress of the construction unit is also very important.On the other hand, effective encouragement and improve construction worker job enthusiasm and learning enthusiasm of the necessary measures. Frontline workers mostly from rural, energy consumption, the low pay, the mood is stable. Therefore, to establish effective encouraging mechanism. To ensure that the wage Qing month, labor safeguard measures, management of human nature, care workers and Ankang. In addition, to organize the workers involved in the construction management and technology research, fully adjustable open invention enthusiasm of workers. Technology progress leads to an increase in income, so as to promote the stable construction team, the construction quality is very important. It is hard to imagine that a majority of people full of grievances of the construction team can achieve the task.5ConclusionIt is often said, should be " a matter of expediency in construction, quality first", however, the quality problem is emerge in an endless stream. If in the construction process of some links, quality difference, these difference basically from accumulated will change the whole engineering quality. Therefore, do not let every link of the quality monitoring, on the problem of construction promptly corrected, is to use units, design units, as for as to construction unit as, namely to society as. With such a sense of duty, our engineering degree will gradually progress, can form the good work habits. Constitute the benign development of building construction environment. On the other hand, quality management can't think of what to do what, to systematic, procedural, design the whole management process, all the data, project compilation record, best to establish a computer database, stored in the computer. Management of examination conclusions, text, image, and correcting the situation chart problem timely records. This is the construction quality management informatization is the inevitable trend of development. This is my civil engineering construction quality management shortcomings, to be further developed.译文:关于土木工程施工工程的质量管理1.引言土木工程建立工程的成败在于质量,分开质量,其他一切都无从谈起。
1.Central iron & Steel Research institute, Beijing 100081, China2.Chinese Society for Metals, Beijing 100711, China高层建筑与钢结构HUi Wei-jun,DONG HanWENG Yu-ging,CHEN Si-lian,WANG Mao-giu摘要耐火钢其实就是对火灾有一定抵抗能力的钢材,日本认为耐火钢是焊接结构用轧制钢材的一类,在我国它是建筑用低合金钢的一种。
耐火钢于普通的建筑用钢不同,它要求具有良好的耐高温性能,作为常温下的承载材料,只要求在遇到火灾的较短时间内(1到3小时)高温条件下能够保持高的屈服强度,常温下钢材强度的2/3相当于该材料的长期允许应力值,当发生火灾时,如果耐火钢的屈服点仍然在此值以上,建筑物就不会倒塌。
因此,就要求耐火钢在一定高温下的屈服不低于室温下屈服强度的2/3。
本文研究的目的在于研究提高耐火港的强韧性、抗震性和耐火性能。
关键字高层建筑;钢结构;发展应用1.前言近年来,虽然一般的建筑结构设计取得了很大的进步,但是取得显著成绩的还要数超高层建筑结构设计。
最初的高层建筑设计是从钢结构的设计开始的。
钢筋混凝土和受力外包钢筒系统运用起来是比较经济的系统,被有效地运用于大批的民用建筑和商业建筑中。
50层到100层的建筑被成为超高层建筑。
而这种建筑在美国被广泛的应用是由于新的结构系统的发展和创新。
这样的高度需要大柱和梁的尺寸,这样以来可以使建筑物更加坚固以至于在允许的限度范围内承受风荷载而不产生弯曲和倾斜。
过分的倾斜会导致建筑物的隔离构件、顶棚以及其它建筑细部产生循环破坏。
除此之外,过大的摇动也会使建筑物的使用者感觉到这样的晃动而产生不舒服的感觉。
无论是钢筋混凝土结构系统还是钢结构系统都充分利用了整个建筑的刚度潜力,因此,不能指望利用多余的刚度来限制侧向位移。
土木工程专业毕业设计外文文献翻译2篇XXXXXXXXX学院学士学位毕业设计(论文)英语翻译课题名称英语翻译学号学生专业、年级所在院系指导教师选题时间Fundamental Assumptions for Reinforced ConcreteBehaviorThe chief task of the structural engineer is the design of structures. Design is the determination of the general shape and all specific dimensions of a particular structure so that it will perform the function for which it is created and will safely withstand the influences that will act on it throughout useful life. These influences are primarily the loads and other forces to which it will be subjected, as well as other detrimental agents, such as temperature fluctuations, foundation settlements, and corrosive influences, Structural mechanics is one of the main tools in this process of design. As here understood, it is the body of scientific knowledge that permits one to predict with a good degree of certainly how a structure of give shape and dimensions will behave when acted upon by known forces or other mechanical influences. The chief items of behavior that are of practical interest are (1) the strength of the structure, i. e. , that magnitude of loads of a give distribution which will cause the structure to fail, and (2) the deformations, such as deflections and extent of cracking, that the structure will undergo when loaded underservice condition.The fundamental propositions on which the mechanics of reinforced concrete is based are as follows:1.The internal forces, such as bending moments, shear forces, and normal andshear stresses, at any section of a member are in equilibrium with the effect of the external loads at that section. This proposition is not an assumption but a fact, because any body or any portion thereof can be at rest only if all forces acting on it are in equilibrium.2.The strain in an embedded reinforcing bar is the same as that of thesurrounding concrete. Expressed differently, it is assumed that perfect bonding exists between concrete and steel at the interface, so that no slip can occur between the two materials. Hence, as the one deforms, so must the other. With modern deformed bars, a high degree of mechanical interlocking is provided in addition to the natural surface adhesion, so this assumption is very close to correct.3.Cross sections that were plane prior to loading continue to be plan in themember under load. Accurate measurements have shown that when a reinforced concrete member is loaded close to failure, this assumption is not absolutely accurate. However, the deviations are usually minor.4.In view of the fact the tensile strength of concrete is only a small fraction ofits compressive strength; the concrete in that part of a member which is in tension is usually cracked. While these cracks, in well-designed members, are generally so sorrow as to behardly visible, they evidently render the cracked concrete incapable of resisting tension stress whatever. This assumption is evidently a simplification of the actual situation because, in fact, concrete prior to cracking, as well as the concrete located between cracks, does resist tension stresses of small magnitude. Later in discussions of the resistance of reinforced concrete beams to shear, it will become apparent that under certain conditions this particular assumption is dispensed with and advantage is taken of the modest tensile strength that concrete can develop.5.The theory is based on the actual stress-strain relation ships and strengthproperties of the two constituent materials or some reasonable equivalent simplifications thereof. The fact that novelistic behavior is reflected in modern theory, that concrete is assumed to be ineffective in tension, and that the joint action of the two materials is taken into consideration results in analytical methods which are considerably more complex and also more challenging, than those that are adequate for members made of a single, substantially elastic material.These five assumptions permit one to predict by calculation the performance of reinforced concrete members only for some simple situations. Actually, the joint action of two materials as dissimilar and complicated as concrete and steel is so complex that it has not yet lent itself to purely analytical treatment. For this reason, methods of design and analysis, while using these assumptions, are very largely based on the results of extensive and continuing experimental research. They are modified and improved as additional test evidence becomes available.钢筋混凝土的基本假设作为结构工程师的主要任务是结构设计。
ntroduction to Civil Engineering PapersCivil Engineering for the development of a key role, first as a material foundation for the civil engineering construction materials, followed by the subsequent development of the design theory and construction technology. Every time a new quality of building materials, civil engineering will be a leap-style development.People can only rely on the early earth, wood and other natural materials in the construction activities, and later appeared in brick and tile that artificial materials, so that the first human to break the shackles of natural building materials. China in the eleventh century BC in the early Western Zhou Dynasty created the tile. The first brick in the fifth century BC to the third century BC, when the tomb of the Warring States Period. Brick and tile better than the mechanical properties of soil, materials, and easy to manufacture.The brick and tile so that people began to appear widely, to a large number of housing construction and urban flood control project, and so on. This civil engineering technology has been rapid development. Up to 18 to the 19th century, as long as two thousand years, brick and tile has been a major civil engineering construction materials, human civilization has made a great contribution to the even was also widely used in the present.The application of a large number of steel products is the second leap in civil engineering. Seventeen 1970s the use of pig iron, the early nineteenth century, the use of wrought iron bridges and the construction of housing, which is a prelude to the emergence of steel.From the beginning of the mid-nineteenth century, metallurgical industry, smelting and rolling out high tensile and compressive strength, ductility, uniformity of the quality of construction steel and then produce high-strength steel wire, steel cables. As a result of the need to adapt to the development of the steel structure have been flourishing. In addition to the application of the original beam, arch structure, the new truss, aframework, the structure of network, cable structures to promote the gradual emergence of the structure of Yan in the form of flowers.From the brick building long-span structures, stone structures, a few meters of wood, steel structure to the development of tens of meters, a few hundred meters, until modern km above. So in the river, cross the bridge from shelves, on the ground since the construction of skyscrapers and high-rise tower, even in the laying of underground railway, to create an unprecedented miracle.In order to meet the needs of the development of steel works, on the basis of Newton's mechanics, material mechanics, structural mechanics, structural engineering design theory came into being, and so on. Construction machinery, construction technology and construction organization design theory also development, civil engineering from the experience of rising to become science, engineering practice and theoretical basis for both is a different place, which led to more rapid development of civil engineering.During the nineteenth century, 20, made of Portland cement, concrete has come out. Concrete can aggregate materials, easy-to-concrete structures forming, but the tensile strength of concrete is very small, limited use. By the middle of the nineteenth century, the surge in steel production, with the emergence of this new type of reinforced concrete composite construction materials, which bear the tension steel, concrete bear the pressure and play their own advantages. Since the beginning of the 20th century, reinforced concrete is widely used in various fields of civil engineering.From the beginning of the 1930s, there have been pre-stressed concrete. Pre-stressed concrete structure of the crack resistance, rigidity and carrying capacity, much higher than the reinforced concrete structure, which uses an even wider area. Civil Engineering into the reinforced concrete and prestressed concrete dominant historical period. Concrete buildings to bring about the emergence of new economic, aestheticstructure in the form of engineering, civil engineering so that a new construction technology and engineering design of the structure of the theory. This is another leap in the development of civil engineering.A project to build the facilities in general to go through the investigation, design and construction in three stages, require the use of geological prospecting projects, hydro-geological survey, engineering survey, soil mechanics, mechanical engineering, engineering design, building materials, construction equipment, engineering machinery, building the economy , And other disciplines and construction technology, construction and other fields of knowledge, as well as computer and mechanical testing techniques. Civil engineering is therefore a broad range of integrated disciplines. With the progress in science and technology development and engineering practice, the civil engineering disciplines have also been developed into a broad connotation, the number of categories, the structure of complex integrated system.Civil Engineering is accompanied by the development of human society developed. It works in the construction of facilities reflect the various historical periods of socio-economic, cultural, scientific, technological development outlook, which civil society has become one of the historical development of the witness.In ancient times, people began to build simple houses, roads, bridges and still water channel to meet the simple life and production. Later, in order to adapt to the war, production and dissemination of religious life, as well as the needs of the construction of the city, canals, palaces, temples and other buildings.Many well-known works shown in this historical period of human creativity. For example, the Great Wall of China, Dujiangyan, the Grand Canal, Zhaozhou Bridge, Yingxian Wooden Tower, the pyramids of Egypt, Greece's Parthenon, Rome's water supply project, colosseum amphitheater (Rome large animal fighting Field), as well as many other well-known churches, palaces and so on.After the industrial revolution, especially in the 20th century, on the one hand, civil society to put forward a new demand; On the other hand, all areas of society for the advancement of civil engineering to create good conditions. Thus this period of civil engineering has been advanced by leaps and bounds. All over the world there have been large-scale modernization of industrial plants, skyscrapers, nuclear power plants, highways and railways, long-span bridges, and large-diameter pipelines long tunnel, the Grand Canal, the big dams, airports, port and marine engineering, etc. . For civil engineering continually modern human society to create a new physical environment, human society, modern civilization has become an important part.Civil Engineering is a very practical subjects. In the early days, through the civil engineering practice, summing up successful experience, in particular, to draw lessons from the failure of developed. From the beginning of the 17th century, with Galileo and Newton as a pilot with the mechanics of the modern civil engineering practice, gradually formed the mechanical, structural mechanics, fluid mechanics, rock mechanics, civil engineering as the basis of theoretical subjects. This experience in civil engineering from the gradually developed into a science.In the course of the development of civil engineering, engineering practice often first experience in theory, engineering accidents often show a new unforeseen factors, triggering a new theory of the research and development. So far a number of projects dealing with the problem, is still very much rely on practical experience.Civil Engineering Technology with the main reason for the development of engineering practice and not by virtue of scientific experiments and theoretical studies, for two reasons: First, some of the objective situation is too complicated and difficult to faithfully carry out laboratory or field testing and analysis. For example, the foundation, tunnel and underground engineering and deformation of the state and its changes over time, still need to refer to an analysis of engineeringexperience to judge. Second, only a new engineering practice in order to reveal new problems. For example, the construction of a high-rise buildings, high-rise tower and mast-span bridges, wind and earthquake engineering problems highlighted in order to develop this new theory and technology.In the long-term civil engineering practice, it is not only building great attention to the arts, has made outstanding achievements; and other works, but also through the choice of different materials, such as the use of stone, steel and reinforced concrete, with natural Environmental art in the construction of a number of very beautiful, very functional and good works. Ancient Great Wall of China, the modern world, many of the television tower and the bridge ramp Zhang, are cases in point.翻译:土木工程概论论文对土木工程的发展起关键作用的,首先是作为工程物质基础的土木建筑材料,其次是随之发展起来的设计理论和施工技术。
毕业设计(论文)外文翻译题目西北物流中心2号楼设计专业土木工程班级土木074学生指导教师二零一零年Low-coherence deformation sensors for themonitoring of civil-engineering structuresD. Inaudi a, A. Elamari b, L. Pflug a, N. Gisin b, J. Breguet b, S. Vurpillot a “IMAC, Laboratory of Stress Analysis, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland ‘GAP, Group of Applied Physics -Optical Seciion, Geneva University CH-1205 Geneva, SwitzerlandRcccivcd 25 January 1993; in revised form 8 March 1994; accepted 25 March 1994 AbstractAn optical-fiber deformation sensor with a resolution of 10 pm and an operational range of 60 mm has been realized. The system is based on low-coherence interferometry instandard single-mode telecommunication fibers. It allows the monitoring of large structures over several months without noticeable drift. No continuous measurement is needed and the system is insensitive to variations of the fiber losses. This technique has been applied to the monitoring of a 20 m X5 m X0.5 m, 120 ton concrete slab over six months. It is possible to measure the shrinkage of concrete and its elastic coefficient during pre-straining, giving reproducible results in good agreement with theoretical calculations and measurements performed on small concrete samples. This paper describes the optical arrangement and the procedures used to install optical fibers in concrete.Keywor&: Ikformation sensors; Civil-engineering structures1. IntroductionBoth the security of civil-engineering works and the law require a periodic monitoring of structures. The methods used for this purpose, such as triangulation, water levels or vibrating strings, are often of tedious application and require one or many specialized operators. This complexity and the resulting costs limit the frequency of the measurements. Furthermore, the spatial resolution is often poor and the observation is usually restricted to the surface of the object. There is thus a real demand for a tool allowing an internal, automatic and permanent monitoring of structures with high accuracy and stability over periods typically of the order of 100 years for bridges. In this framework, fiber-optic smart structures (i.e., structures with self-testing capabilities) are gaining in importance in many fields including aeronautics and composite material monitoring. This technology can be applied in civilengineering and in particular for the short- and long-time observation of large structures such as bridges, tall building frames, dams, tunnels, roads, airport runways, domes, pre-stressing and anchorage cables. The monitoring of such structures requires the development of a measuring technique with high accuracy,stability and reliability over long periods. It has to beindependent of variations in the fiber losses and adapted to the adverse environment of a building site. To reduce the cost of the instrumentation, it is furthermore desirable to use the same portable reading unit for the monitoring of multiple structures. We describe here asystem based on low-coherence interferometry responding to all these requirements.2. Experimental arrangementThe measuring technique relies on an array of standard telecommunication optical fibers in mechanical contact with concrete. Any deformation of the host structure results jn a change in the optical length of he fibers. Each sensor line consists of two single-mode ibers: one measurement fiber in mechanical contact with the structure (glued or cemented) and a reference iber placed loose near the first one (in a pipe) in order to be at the same temperature. Since the measurement technique monitors the length difference beween these two fibers, only the mechanical deformation will have an effect on the results while all other perurbations, such as thermally induced changes in the refractive index of the fibers,will affect the two in an identical way and cancel each another out. To measure the optical path difference between the two fibers, a low-coherence double interferometer in tandem configuration has been used (Fig. 1) [l]. The source is an LED (light-emitting diode) working around 1.3 pm with a coherence length L, of 30 pm and a rated power of 200 pW. The radiation is launched into a single-mode fiber and then directed toward the measurement and the reference fibers by means of a 50:50 single-mode directional coupler. At the ends of the fibers two mirrors reflect the light back to the coupler, where the beams arc recombined with a relative delay due to the length difference AL, between the fibers, and then directed towards the second (reference) interferometer. The reference interferometer is of Michelson type with one of the arms ended by a mobile mirror mounted on a micromctric displacement table with a resolution of 0.1 pm and an operating range of 50 mm. It allows the introduction of an exactly known path difFcrence AL, between its two arms. This fiber interferometer is portable and needs no optical adjustment after transportation. It has been developed by the GAP with the support of the Swiss PTT for optical cable testing [2].The intensity at the output of the reference inter- ferometer is measured with a pig-tail photodiode and is then given by [3]where zz,,r is the effective refractive index of the fiber, zzg the group refractive index (about 1% higher than nefr in silica), A, the central vacuum wavelength of the light, zi,, the autocorrelation function taking the spectral characteristics of the emission into account and AL the physical path difference between the two interfering paths. Further similar interference terms appear in Eq.(1) in the special cases when AL, <L, or AL, < L,. When the optical path difference between the arms in the reference interferometer corresponds to the one induced by the two fibers installed in the structure (within the coherence length of the source), interference fringes appear. Scanning AL, with the mirror of the reference interferometer it is possible to obtain AL = 0either with AL, = AL, or with AL, = -AL,, and thus two interference fringe packets as described by Eq. (1). The mirror position corresponding to AL, = 0 also produces an interference and is used as a reference. These three fringe packets arc detected by means of a lock-in amplifier synchronized with the mirror displacements. The mirror displacements and the digitalization of the lock-in output are carried out by means of a portable personal computer. Since the reference signal is gcnerated separately and does not have a constant phase relation to the interference signal, only the envelope of the demodulated signal has a physical meaning and corresponds to the envelope of the fringe pattern. A lock-in plot showing the three typical peaks is shown in Fig. 2. Each peak has a width of about 30 pm. The calculation of its center of gravity determines its position with a precision better than 10 pm. This precision is the limiting factor of the whole measurement technique. Since AL, is known with micrometer precision, it is possible to follow AL, with the same precision.Fig. 1. Experimental setup of the low-coherence double Michelson interferomctcr. D. Innudi et al. 1 Semors andFig. 2. Typical fringe cnvclope as a function of the mirror position. The distance between the central and the lateral peaks corresponds to the length difference between the measurement and the reference fibers mounted in the table. Any change in the length of the structure results in a change in the position of these peaks. Any change in the losses of the fibers will result in a change of the height of the peaks. The central peak is fixed and used as a reference.The path difference AL, is proportional to the de-formation of the structure AL, with the relation between the two given by [4]where p is Poisson’s ratio and pij is the strain optic tensor (Pockcl’s coefhcients). The coefficient 5 takes into account the variation of the effective index neff in a fiber under strain.A degradation of one or both fibers (due to aging, for example) will result in a lower visibilityof the fringes but will not affect its position. The information about the deformation of the structure is encoded in the coherence properties of light and not in its intensity as in the majority of the sensors applied to date in civil-engineering structures, mostly based on microbend losses and/or optical time-domain reflectometry (OTDR) techniques. Interference peaks resulting from reflections as low as -30 dB of the source power can be detected by our system without phase modulators. By modulating the phase in one of the four arms of the two interferometers, one can increase the dynamic range of the device to more than 100 dB [5].Even if the polarization dispersion and bend-induced birefringence in the sensing fibers could reduce the visibility of the interference fringes or even split the fringe packets, none of those effects was observed in our experiment. No adjustment of polarization between the reference and the sensing arm was then necessary. A good mechanical contact between the measurement fiber and the structure under test is fundamental. In this study a number of installation procedures have been tested and optimized for the different measurements (shrinkage, elasticity modulus, etc.). The mounting techniques can be divided into two main categories: full-length coupling and local coupling.During our tests five out of six optical fiber pairs with a 0.9 mm nylon coating, being mounted on the external face of a 20 m long plastic pipe and protected only with thin rubber bands (see Fig. 3(a)), survived the concreting process. During the setting process the concrete envelops the fiber and realizes the desired mechanical contact. Those fibers showed a minor increase in the scattering losses and the appearance of small parasite peaks. The measurements on those fibers were consistent with the results obtained with other installation techniques (see below). It seems that for full-length coupling the nylon coating transmits the structure deformations (extension and shortening) entirely to the fiber core. This installation technique is very promising when compared to the usual procedure, consisting of a pipe protecting the fibers during the pouring of concrete and being removed before the setting process begins. This second method seemsmore adapted to small samples than to full-scale structures. Eleven otherfiber pairs were glued at the two ends of the table after removing locally the protective coating layers of the fibers (see Fig. 3(b)). The silica fiber was ftxed with epoxy glue to a metallic plate mounted on the end facesof the concrete structure. The gluing length was about 20 mm. Apre-strain (between 0.1 and 0.4%) has been given to those fibers during the gluing process to keep them under tension and allow the measurement of both expansion and shrinkage of the structure. This type of local coupling proved to be the most reliable, but was not adapted to following thedeformation during the pre-stressing of the table because of the important surface deformations occurring during this operation. The problem has been overcome by gluing other fibers inside the pipes at about two meters from the surfaces, i.e., far from the force insertion region (see Fig. 3(c)).Fig. 3. Schematic representation of three of the installation techniques used:(a) direct concreting of the measurement fiber mounted on a plastic pipe; (b) fiber glued at the table surface; (c) fiber glued inside the pipe at 2m from the pipe ends.Fig. 4. Top and side views of the concrete table measured in the experiment and position of the sensing-fiber pairs A, B, C and D. Fibers A, B and C arc glued at the surface of the structure, while fiber D is glued inside a pipe, 2 m away from the surface of the slab. Twelve more fihcr pairs were installed, but are not shown for simplicity.To study the possible effect of creep in strained fibers [6], one fiber has been mounted on a mechanical support that allows the fiber to be tightened only at the time of the measurement. No difference between this fiberand those permanently strained has been observed over a period of six months, confirming the assumption that no creep occurs for fiber strains below 1%. Since the scanning range of the mirror is 5 mm, it was easy to cleave the 20 m long fibers within this margin. The Fresnel reflection of the cleaved fibers combined with the high dynamic of the system allow a measurement of AL,,. This value of AL, can than be used to correct the cutting and obtain pairs with length differences below 1 mm. Two ferrules were then installed on the fiber ends and mounted in front of a polished inox surface. Chemical silver deposition was also used to produce mirrors on the cleaved fiber ends.Fig. 6. Comparison between the measurements performed on the structure by optical fibers and the ones performed on 360 mm and 500 mm samples in a mechanical micrometer comparator. The measurement on the samples was possible only during the first two months.3. ResultsSeveral long- and short-term measurements have been carried on a 20 m x 5 m x 0.5 m, 120 ton concrete slab intended to be used as a vibration-isolated base for optical analysis (in particular by holographic and speckle interferometry) of large structures [7].This structure has been concreted indoors, allowing controlled environmcntal conditions and known concrete composition to be achieved. Samples have been prepared with the same material composition and are under permanent test for their mechanical properties (resistance, shrinkage and elastic coefficient). This allows a direct comparison between the results on the full-scale structure and the samples. The table has been pre-strained 23 days after concreting in both length and width. It was possible at this time to measure the elastic coefficient of the material in full scale. Fig. 4 shows a schematic representation of the table and the position of the fibers referred to in the experimental results. At the time of writing, the table has been under test for six months. Over this period the shrinkage in the longitudinal direction (i.e., over 20 m) has been about 6 mm. We show in Fig. 5 the results of the measurements for three (glued) fibers over 175 days. The table has a T profile (Fig. 4). It is evident from Fig. 5 that thefibers mounted near the borders of the table, i.e., were the thickness is smaller, registered a larger shrinkage, as expected according to the concrete theory. Adjacentfibers give consistent results independently of the installation technique. No difference has been noticed between the fibers under permanent tension and those loosened between the measurements, suggesting that no creep of glass fibers occurred. The shrinkage measured with the fiber system has been compared during the first two months with the results obtained with a mechanical comparator mounted on two samples of 360 mm and 500 mm, respectively.The observed deformations have been scaled to 20m and are compared in Fig.6 to the results obtained with fibers B and C. Very good agreement is found between the two measurements. A theoretical comparison between the experimentalresults and the Swiss civil engineering standards has also been carried out. The experimental data and the standards are in agreement within f 10%. A more accurate simulation including the physico-chemical properties of the concrete used is under development. The table was pre-stressed 23 days after concreting. The five steel cables running over the length of the table and the forty cables running over its width were stretched with a force of 185 kN (18.5 Tons) each. The fibers glued to the surface and those in direct contact with concrete over the whole length measured an expansion of the table instead of the expected shrinkage. This is due to the important surface deformations occurring near the force-insertion points, i.e., near the pre-stress heads that were placed near the fiber ends. Fiber D glued inside the plastic pipe at 2m from each endwas not subject to these local effects and measured a shortening of 0.23 mm. The theoretical calculation based on an elastic coefficient of 30 kN/mm2gives a shortening of 0.28mm at the borders and 0.19 mm at the center of the table. Since fiber D was placed in an intermediate position, the experimental value can be considered to be in good agreement with the theory.4. ConclusionsA new deformation sensor adapted to the monitoring of civil-engineering structures has been proposed. it is based on low-coherence interferometry in standard lowcost telecommunication fibers. The resolution of the measurements is 10 pm, the operational range is 60mm and the stability has been tested over six months without noticeable drift. The reading unit is compact and portable, needing no optical alignment before the measurements. It is controlled by a portable personal computer, which is also responsible for the data trcatment. The same reading unit can be used to monitor multiple fiber lines by simple manual unplugging. This technique is furthermore practically insensitive to increased losses due to degradation of the fibers. A test study has been carried out on a 20m ~5m X 0.5m concrete slab, giving consistent results when compared to other measurement techniques based on samples or to concrete theories. It was possible to follow concrete shrinkage over six months (the cxper- iment will continue for about five years) and to measure the elastic coefficient on the full-scale structure. Different fiber-installation techniques adapted to the measurement of various parameters have been tested in building-site conditions. This technique appears very promising for the mon-itoring of civil-engineering structures such as bridges, dams and tunnels, allowing internal, automatic and permanent monitoring with high precision and stability over long periods.AcknowledgmentsThe authors are indebted to R. Passy and R. Delez for their assistance, encouragement and helpful dis-cussion. We acknowledge the IMM Institute in Lugano (Switzerland) for placing the table at our disposal and for the measurements carried out on concrete samples. We are grateful to Dr M. Pedretti and Ing R. Passera for their personal engagement in the project. We also thank Cabloptic in Cortaillod (Switzerland) for sup-plying all the optical fibers used in the experiment. This research has been performed with the financial support of CERS (Commission pour 1’Encouragement de la Recherche Scientifique).References[1] A.Koch and R.Ulrich,Fiber optic displacement sensor with 0.02mm resolutionbuy white-light interferometry,sensors and actuators A,25-27(1991)201-207[2]N.Gisin,J.-P.Von der weid and J.-P.Pellaux,Polarization mode dispersion ofshort and long single-mode fibers,J.Lightwave technol,9(1991)821-827.[3] A.S.Gergcs,F.Farahi,T.P.Newson,J.D.C.Jones and D.A.Jackson, Fiber-opticinterferometric sensors using low coherence source:dynamic range enhancement,Int. J.Op-toelectron,3(1988)311-322.[4] C.D.Butter and G.B.Hacker, Fiber optics strain gauge,Appl.Opt,17(1978)2867-2869.[5]H.H.Gilger,G.Bodmer and Ch.Zimmer, Optical coherance domain retlectometry asa test method of integrated optics devices,Proc.2nd Opt. Fibre Meas. Conf:OFMC 93, Turin, Ztuly, Z993, pp.143-146.[6]J.-P.Jaguin and A.Zaganiaris,La mecanique de rupture appliquee aux fibresoptiques, Verres Refract, 34 (Jul-Aout)(1980).[7]L.Pflug and M.Pedretti, Construction of a loo-tonnes holographictable,ZS&TISPIE Znt.Symp. Electronic Imaging, SanJose,CA,USA,1993,pp.50-54.传感器和执行器 A 44(1994)12.5-130用低变形传感器监测民用工程结构变形的一致性D.Inaudi a, A.Elamari b, L.Pflug b, N.Gisin b, J.Breguet b, S.Vurpillot aa IMAC、实验室的应力分析,瑞士联邦理工学院,CH-1015瑞士洛桑b GAP,群应用物理-光学部分,日内瓦大学,CH-1205瑞士日内瓦举行1993年1月25日实验;1994年3月8日修订,1994年3月25日发表文摘一个光纤变形的分辨率的传感器,10µm和运行范围的60毫米已经实现了。
毕业设计外文文献翻译院系: 土木工程系年级专业: 2011级土木工程专业姓名: XXX学号:附件: Structural Systems to resist lateral loads指导老师评语:该生的外文翻译题目《Structural Systems to resist lateral loads》该译文基本能与原文关联,思路比较清晰,语句基本通顺,层次清晰,观点表达基本准确。
且该生在专业术语、词汇翻译有较高的准确度,叙述层次分明,有较强的逻辑性且格式规范,内容丰富,符合要求。
指导教师签名:年月日附件Structural Systems to resist lateral loads1、Commonly Used structural SystemsWith loads measured in tens of thousands kips, there is little room in the design of high-rise buildings for excessively complex thoughts、Indeed, the better high-rise buildings carry the universal traits of simplicity of thought and clarity of expression、It does not follow that there is no room for grand thoughts、Indeed, it is with such grand thoughts that the new family of high-rise buildings has evolved、Perhaps more important, the new concepts of but a few years ago have become commonplace in today’ s technology、Omitting some concepts that are related strictly to the materials of construction, the most commonly used structural systems used in high-rise buildings can be categorized as follows:1.Moment-resisting frames、2.Braced frames, including eccentrically braced frames、3.Shear walls, including steel plate shear walls、4.Tube-in-tube structures、5.Tube-in-tube structures、6.Core-interactive structures、7.Cellular or bundled-tube systems、Particularly with the recent trend toward more complex forms, but in response also to the need for increased stiffness to resist the forces from wind and earthquake, most high-rise buildings have structural systems built up of combinations of frames, braced bents, shear walls, and related systems、Further, for the taller buildings, the majorities are composed of interactive elements in three-dimensional arrays、The method of combining these elements is the very essence of the design process for high-rise buildings、These combinations need evolve in response to environmental, functional, and cost considerations so as to provide efficient structures that provoke the architectural development to new heights、This is not to say that imaginative structural design can create great architecture、To the contrary, many examples of fine architecture have been created with only moderate support from the structural engineer, while only fine structure, not great architecture, can be developed without the genius and the leadership of a talented architect、Inany event, the best of both is needed to formulate a truly extraordinary design of a high-rise building、While comprehensive discussions of these seven systems are generally available in the literature, further discussion is warranted here 、The essence of the design process is distributed throughout the discussion、2、Moment-Resisting FramesPerhaps the most commonly used system in low-to medium-rise buildings, the moment-resisting frame, is characterized by linear horizontal and vertical members connected essentially rigidly at their joints、Such frames are used as a stand-alone system or in combination with other systems so as to provide the needed resistance to horizontal loads、In the taller of high-rise buildings, the system is likely to be found inappropriate for a stand-alone system, this because of the difficulty in mobilizing sufficient stiffness under lateral forces、Analysis can be accomplished by STRESS, STRUDL, or a host of other appropriate computer programs; analysis by the so-called portal method of the cantilever method has no place in today’s technology、Because of the intrinsic flexibility of the column/girder intersection, and because preliminary designs should aim to highlight weaknesses of systems, it is not unusual to use center-to-center dimensions for the frame in the preliminary analysis、Of course, in the latter phases of design, a realistic appraisal in-joint deformation is essential、3、Braced FramesThe braced frame, intrinsically stiffer than the moment –resisting frame, finds also greater application to higher-rise buildings、The system is characterized by linear horizontal, vertical, and diagonal members, connected simply or rigidly at their joints、It is used commonly in conjunction with other systems for taller buildings and as a stand-alone system in low-to medium-rise buildings、While the use of structural steel in braced frames is common, concrete frames are more likely to be of the larger-scale variety、Of special interest in areas of high seismicity is the use of the eccentric braced frame、Again, analysis can be by STRESS, STRUDL, or any one of a series of two –or three dimensional analysis computer programs、And again, center-to-center dimensions are usedcommonly in the preliminary analysis、4、Shear wallsThe shear wall is yet another step forward along a progression of ever-stiffer structural systems、The system is characterized by relatively thin, generally (but not always) concrete elements that provide both structural strength and separation between building functions、In high-rise buildings, shear wall systems tend to have a relatively high aspect ratio, that is, their height tends to be large compared to their width、Lacking tension in the foundation system, any structural element is limited in its ability to resist overturning moment by the width of the system and by the gravity load supported by the element、Limited to a narrow overturning, One obvious use of the system, which does have the needed width, is in the exterior walls of building, where the requirement for windows is kept small、Structural steel shear walls, generally stiffened against buckling by a concrete overlay, have found application where shear loads are high、The system, intrinsically more economical than steel bracing, is particularly effective in carrying shear loads down through the taller floors in the areas immediately above grade、The sys tem has the further advantage of having high ductility a feature of particular importance in areas of high seismicity、The analysis of shear wall systems is made complex because of the inevitable presence of large openings through these walls、Preliminary analysis can be by truss-analogy, by the finite element method, or by making use of a proprietary computer program designed to consider the interaction, or coupling, of shear walls、5、Framed or Braced TubesThe concept of the framed or braced or braced tube erupted into the technology with the IBM Building in Pittsburgh, but was followed immediately with the twin 110-story towers of the World Trade Center, New York and a number of other buildings 、The system is characterized by three –dimensional frames, braced frames, or shear walls, forming a closed surface more or less cylindrical in nature, but of nearly any plan configuration、Because those columns that resist lateral forces are placed as far as possible from the cancroids of the system, the overall moment of inertia is increased and stiffness is very high、The analysis of tubular structures is done using three-dimensional concepts, or by two- dimensional analogy, where possible, whichever method is used, it must be capable ofaccounting for the effects of shear lag、The presence of shear lag, detected first in aircraft structures, is a serious limitation in the stiffness of framed tubes、The concept has limited recent applications of framed tubes to the shear of 60 stories、Designers have developed various techniques for reducing the effects of shear lag, most noticeably the use of belt trusses、This system finds application in buildings perhaps 40stories and higher、However, except for possible aesthetic considerations, belt trusses interfere with nearly every building function associated with the outside wall; the trusses are placed often at mechanical floors, mush to the disapproval of the designers of the mechanical systems、Nevertheless, as a cost-effective structural system, the belt truss works well and will likely find continued approval from designers、Numerous studies have sought to optimize the location of these trusses, with the optimum location very dependent on the number of trusses provided、Experience would indicate, however, that the location of these trusses is provided by the optimization of mechanical systems and by aesthetic considerations, as the economics of the structural system is not highly sensitive to belt truss location、6、Tube-in-Tube StructuresThe tubular framing system mobilizes every column in the exterior wall in resisting over-turning and shearing forces、The term‘tube-in-tube’is largely self-explanatory in that a second ring of columns, the ring surrounding the central service core of the building, is used as an inner framed or braced tube、The purpose of the second tube is to increase resistance to over turning and to increase lateral stiffness、The tubes need not be of the same character; that is, one tube could be framed, while the other could be braced、In considering this system, is important to understand clearly the difference between the shear and the flexural components of deflection, the terms being taken from beam analogy、In a framed tube, the shear component of deflection is associated with the bending deformation of columns and girders (i、e, the webs of the framed tube) while the flexural component is associated with the axial shortening and lengthening of columns (i、e, the flanges of the framed tube)、In a braced tube, the shear component of deflection is associated with the axial deformation of diagonals while the flexural component of deflection is associated with the axial shortening and lengthening of columns、Following beam analogy, if plane surfaces remain plane (i、e, the floor slabs),then axialstresses in the columns of the outer tube, being farther form the neutral axis, will be substantially larger than the axial stresses in the inner tube、However, in the tube-in-tube design, when optimized, the axial stresses in the inner ring of columns may be as high, or even higher, than the axial stresses in the outer ring、This seeming anomaly is associated with differences in the shearing component of stiffness between the two systems、This is easiest to under-stand where the inner tube is conceived as a braced (i、e, shear-stiff) tube while the outer tube is conceived as a framed (i、e, shear-flexible) tube、7、Core Interactive StructuresCore interactive structures are a special case of a tube-in-tube wherein the two tubes are coupled together with some form of three-dimensional space frame、Indeed, the system is used often wherein the shear stiffness of the outer tube is zero、The United States Steel Building, Pittsburgh, illustrates the system very well、Here, the inner tube is a braced frame, the outer tube has no shear stiffness, and the two systems are coupled if they were considered as systems passing in a straight line from the “hat” structure、Note that the exterior columns would be improperly modeled if they were considered as systems passing in a straight line from the “hat” to the foundations; these columns are perhaps 15%stiffer as they follow the elastic curve of the braced core、Note also that the axial forces associated with the lateral forces in the inner columns change from tension to compression over the height of the tube, with the inflection point at about 5/8 of the height of the tube、The outer columns, of course, carry the same axial force under lateral load for the full height of the columns because the columns because the shear stiffness of the system is close to zero、The space structures of outrigger girders or trusses, that connect the inner tube to the outer tube, are located often at several levels in the building、The AT&T headquarters is an example of an astonishing array of interactive elements:1.The structural system is 94 ft (28.6m) wide, 196ft(59.7m) long, and 601ft (183.3m)high、2.Two inner tubes are provided, each 31ft(9.4m) by 40 ft (12.2m), centered 90 ft (27.4m)apart in the long direction of the building、3.The inner tubes are braced in the short direction, but with zero shear stiffness in the longdirection、4. A single outer tube is supplied, which encircles the building perimeter、5.The outer tube is a moment-resisting frame, but with zero shear stiffness for thecenter50ft (15.2m) of each of the long sides、6. A space-truss hat structure is provided at the top of the building、7. A similar space truss is located near the bottom of the building8.The entire assembly is laterally supported at the base on twin steel-plate tubes, becausethe shear stiffness of the outer tube goes to zero at the base of the building、8、Cellular structuresA classic example of a cellular structure is the Sears Tower, Chicago, a bundled tube structure of nine separate tubes、While the Sears Tower contains nine nearly identical tubes, the basic structural system has special application for buildings of irregular shape, as the several tubes need not be similar in plan shape, It is not uncommon that some of the individual tubes one of the strengths and one of the weaknesses of the system、This special weakness of this system, particularly in framed tubes, has to do with the concept of differential column shortening、The shortening of a column under load is given by the expression△=ΣfL/EFor buildings of 12 ft (3.66m) floor-to-floor distances and an average compressive stress of 15 ksi (138MPa), the shortening of a column under load is 15 (12)(12)/29,000 or 0.074in (1.9mm) per story、At 50 stories, the column will have shortened to 3.7 in、(94mm) less than its unstressed length、Where one cell of a bundled tube system is, say, 50stories high and an adjacent cell is, say, 100stories high, those columns near the boundary between 、the two systems need to have this differential deflection reconciled、Major structural work has been found to be needed at such locations、In at least one building, the Rialto Project, Melbourne, the structural engineer found it necessary to vertically pre-stress the lower height columns so as to reconcile the differential deflections of columns in close proximity with the post-tensioning of the shorter column simulating the weight to be added on to adjacent, higher columns、抗侧向荷载的结构体系1、常用的结构体系若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。
外文原文Talling Building And Steel Construction Although there have been many advancements in building construction technology in general. Spectacular archievements have been made in the design and construction of ultrahigh-rise buildings. The early development of high-rise buildings began with structural steel framing.Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes.The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structual systems.Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit.Excessive lateral sway may cause serious recurring damage to partitions,ceilings.and other architectural details. In addition,excessive sway may cause discomfort to the occupants of the building because their perception of such motion.Structural systems of reinforced concrete,as well as steel,take full advantage of inherent potential stiffness of the total building and therefore require additional stiffening to limit the sway.Systems in concrete. While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive chanllenge to structural steel systems for both office and apartment buildings.Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building ,exterior columns were spaced at 5.5ft (1.68m) centers, and interior columns were used as needed to support the 8-in . -thick (20-m) flat-plate concrete slabs.Tube in tube. Another system in reinforced concrete for officebuildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system (Fig .2), known as the tube-in-tube system , made it possible to design the world’s present tallest (714ft or 218m)lightweight concrete building ( the 52-story One Shell Plaza Building in Houston) for the unit price of a traditional shear wall structure of only 35 stories.Systems combining both concrete and steel have also been developed, an examle of which is the composite system developed by skidmore, Owings &Merril in which an exterior closely spaced framed tube in concrete envelops an interior steel framing, thereby combining the advantages of both reinforced concrete and structural steel systems. The 52-story One Shell Square Building in New Orleans is based on this system.In a steel structure,for example,the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building.Curve A in Fig .1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for height for the traditional column-and-beam frame.Structural engineers have developed structural systems with a view to eliminating this premium. Systems in steel. Tall buildings in steel developed as a result of several types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings.Frame with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses,a system of rigid belt trusses at mid-height and at the top of the building may be used.A good example of this system is the First Wisconsin Bank Building(1974) in Milwaukee.Framed tube. The maximum efficiency of the total structure of a tallbuilding, for both strength and stiffness,to resist wind load can be achieved only if all column element can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this system is in the twin structural steel towers of the 110-story World Trade Center building in New York.Column-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with diagonal members interesting at the centre line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Centre in Chicago, using as much steel as is normally needed for a traditional 40-story building.Bundled tube. With the continuing need for larger and taller buildings, the framed tube or the column-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The 110-story Sears Roebuck Headquarters Building in Chicago has nine tube, bundled at the base of the building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest structural concept. The Sears tower, at a height of 1450 ft(442m), is the world’s tallest building.Stressed-skin tube system. The tube structural system was developed for improving the resistance to lateral forces (wind and earthquake) and the control of drift (lateral building movement ) in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the façade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resisting lateral loads in high-rise buildings, and resulting in cost-effective column-free interior space with a high ratioof net to gross floor area. Because of the contribution of the stressed-skin façade, the framed members of the tube require less mass, and are thus lighter and V less expensive. All the typical columns and spandrel beams are standard rolled shapes,minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space, is minimized. The structural system has been used on the 54-story One Mellon Bank Center in Pittburgh.Steel construction refers to a broad range of building construction in which steel plays the leading role. Most steel construction consists of large-scale buildings or engineering works, with the steel generally in the form of beams, girders, bars, plates, and other members shaped through the hot-rolled process. Despite the increased use of other materials, steel construction remained a major outlet for the steel industries of the U.S, U.K, U.S.S.R, Japan, West German, France, and other steel producers in the 1970s.Early history. The history of steel construction begins paradoxically several decades before the introduction of the Bessemer and the Siemens-Martin (openj-hearth) processes made it possible to produce steel in quantities sufficient for structure use. Many of problems of steel construction were studied earlier in connection with iron construction, which began with the Coalbrookdale Bridge, built in cast iron over the Severn River in England in 1777. This and subsequent iron bridge work, in addition to the construction of steam boilers and iron ship hulls , spurred the development of techniques for fabricating, designing, and jioning. The advantages of iron over masonry lay in the much smaller amounts of material required. The truss form, based on the resistance of the triangle to deformation, long used in timber, was translated effectively into iron, with cast iron being used for compression members-i.e, those bearing the weight of direct loading-and wrought iron being used for tension members-i.e, those bearing the pull of suspendedloading.The technique for passing iron, heated to the plastic state, between rolls to form flat and rounded bars, was developed as early as 1800;by 1819 angle irons were rolled; and in 1849 the first I beams, 17.7 feet (5.4m) long , were fabricated as roof girders for a Paris railroad station.Two years later Joseph Paxton of England built the Crystal Palace for the London Exposition of 1851. He is said to have conceived the idea of cage construction-using relatively slender iron beams as a skeleton for the glass walls of a large, open structure. Resistance to wind forces in the Crystal palace was provided by diagonal iron rods. Two feature are particularly important in the history of metal construction; first, the use of latticed girder, which are small trusses, a form first developed in timber bridges and other structures and translated into metal by Paxton ; and second, the joining of wrought-iron tension members and cast-iron compression members by means of rivets inserted while hot.In 1853 the first metal floor beams were rolled for the Cooper Union Building in New York. In the light of the principal market demand for iron beams at the time, it is not surprising that the Cooper Union beams closely resembled railroad rails.The development of the Bessemer and Siemens-Martin processes in the 1850s and 1860s suddenly open the way to the use of steel for structural purpose. Stronger than iron in both tension and compression ,the newly available metal was seized on by imaginative engineers, notably by those involved in building the great number of heavy railroad bridges then in demand in Britain, Europe, and the U.S.A notable example was the Eads Bridge, also known as the St. Louis Bridge, in St. Louis (1867-1874), in which tubular steel ribs were used to form arches with a span of more than 500ft (152.5m). In Britain, the Firth of Forth cantilever bridge (1883-90) employed tubular struts, some 12 ft (3.66m) in diameter and 350 ft (107m) long. Such bridges and other structures were important in leading to the development and enforcementof standards and codification of permissible design stresses. The lack of adequate theoretical knowledge, and even of an adequate basis for theoretical studies, limited the value of stress analysis during the early years of the 20th century,as iccasionally failures,such as that of a cantilever bridge in Quebec in 1907,revealed.But failures were rare in the metal-skeleton office buildings;the simplicity of their design proved highly practical even in the absence of sophisticated analysis techniques. Throughout the first third of the century, ordinary carbon steel, without any special alloy strengthening or hardening, was universally used.The possibilities inherent in metal construction for high-rise building was demonstrated to the world by the Paris Exposition of 1889.for which Alexandre-Gustave Eiffel, a leading French bridge engineer, erected an openwork metal tower 300m (984 ft) high. Not only was the height-more than double that of the Great Pyramid-remarkable, but the speed of erection and low cost were even more so, a small crew completed the work in a few months.The first skyscrapers. Meantime, in the United States another important development was taking place. In 1884-85 Maj. William Le Baron Jenney, a Chicago engineer , had designed the Home Insurance Building, ten stories high, with a metal skeleton. Jenney’s beams were of Bessemer steel, though his columns were cast iron. Cast iron lintels supporting masonry over window openings were, in turn, supported on the cast iron columns. Soild masonry court and party walls provided lateral support against wind loading. Within a decade the same type of construction had been used in more than 30 office buildings in Chicago and New York. Steel played a larger and larger role in these , with riveted connections for beams and columns, sometimes strengthened for wind bracing by overlaying gusset plates at the junction of vertical and horizontal members. Light masonry curtain walls, supported at each floor level, replaced the old heavy masonry curtain walls, supported at each floor level , replaced the old heavy masonry.Though the new construction form was to remain centred almost entirely in America for several decade, its impact on the steel industry was worldwide. By the last years of the 19th century, the basic structural shapes-I beams up to 20 in. ( 0.508m) in depth and Z and T shapes of lesser proportions were readily available, to combine with plates of several widths and thicknesses to make efficient members of any required size and strength. In 1885 the heaviest structural shape produced throughhot-rolling weighed less than 100 pounds (45 kilograms) per foot; decade by decade this figure rose until in the 1960s it exceeded 700 pounds (320 kilograms) per foot.Coincident with the introduction of structural steel came the introduction of the Otis electric elevator in 1889. The demonstration of a safe passenger elevator, together with that of a safe and economical steel construction method, sent building heights soaring. In New York the 286-ft (87.2-m) Flatiron Building of 1902 was surpassed in 1904 by the 375-ft (115-m) Times Building ( renamed the Allied Chemical Building) , the 468-ft (143-m) City Investing Company Building in Wall Street, the 612-ft (187-m) Singer Building (1908), the 700-ft (214-m) Metropolitan Tower (1909) and, in 1913, the 780-ft (232-m) Woolworth Building.The rapid increase in height and the height-to-width ratio brought problems. To limit street congestion, building setback design was prescribed. On the technical side, the problem of lateral support was studied. A diagonal bracing system, such as that used in the Eiffel Tower, was not architecturally desirable in offices relying on sunlight for illumination. The answer was found in greater reliance on the bending resistance of certain individual beams and columns strategically designed into the skeletn frame, together with a high degree of rigidity sought at the junction of the beams and columns.With today’s modern interior lighting systems, however, diagonal bracing against wind loads has returned; one notable example is the John Hancock Center in Chicago, where the external X-braces form a dramatic part of the structure’s façade.World War I brought an interruption to the boom in what had come to be called skyscrapers (the origin of the word is uncertain), but in the 1920s New York saw a resumption of the height race, culminating in the Empire State Building in the 1931. The Empire State’s 102 stories (1,250ft. [381m]) were to keep it established as the hightest building in the world for the next 40 years. Its speed of the erection demonstrated how thoroughly the new construction technique had been mastered. A depot across the bay at Bayonne, N.J., supplied the girders by lighter and truck on a schedule operated with millitary precision; nine derricks powerde by electric hoists lifted the girders to position; an industrial-railway setup moved steel and other material on each floor. Initial connections were made by bolting , closely followed by riveting, followed by masonry and finishing. The entire job was completed in one year and 45 days.The worldwide depression of the 1930s and World War II provided another interruption to steel construction development, but at the same time the introduction of welding to replace riveting provided an important advance.Joining of steel parts by metal are welding had been successfully achieved by the end of the 19th century and was used in emergency ship repairs during World War I, but its application to construction was limited until after World War II. Another advance in the same area had been the introduction of high-strength bolts to replace rivets in field connections.Since the close of World War II, research in Europe, the U.S., and Japan has greatly extended knowledge of the behavior of different types of structural steel under varying stresses, including those exceeding the yield point, making possible more refined and systematic analysis. This in turn has led to the adoption of more liberal design codes in most countries, more imaginative design made possible by so-called plastic design ?The introduction of the computer by short-cutting tedious paperwork, made further advances and savings possible.中文翻译高层结构与钢结构近年来,尽管一般的建筑结构设计取得了很大的进步,但是取得显著成绩的还要属超高层建筑结构设计。
sep.2010,第4卷,第9号(串行34号)杂志ISSN1934.7359,美国土木工程及建筑Building construction concrete crack ofprevention and processingAbstractThe crack problem of concrete is a widespread existence but again difficult in solve of engineering actual problem, this text carried on a study analysis to a little bit familiar crack problem in the concrete engineering, and aim at concrete the circumstance put forward some prevention, processing measure.Keyword:Concrete crack prevention processingForewordConcrete's ising 1 kind is anticipate by the freestone bone, cement, water and other mixture but formation of the in addition material of quality brittleness not and all material.Because the concrete construction transform with oneself, control etc. a series problem, harden model of in the concrete existence numerous tiny hole, spirit cave and tiny crack, is exactly because these beginning start blemish of existence just make the concrete present one some not and all the characteristic of quality.The tiny crack is a kind of harmless crack and accept concrete heavy, defend Shen and a little bit other use function not a creation to endanger.But after the concrete be subjected to lotus carry, difference in temperature etc. function, tiny crack would continuously of expand with connect, end formation we can see without the aid of instruments of macro view the crack be also the crack that the concrete often say in the engineering.Concrete building and Gou piece usually all take sewer to make of, because of crack of existence and development usually make inner part of reinforcing bar etc. material creation decay, lower reinforced concrete material of loading ability, durable and anti- Shen ability, influence building of external appearance, service life, severity will threat arrive people's life and property safety.A lot of all of crash of engineerings is because of the unsteady development of the crack with the result that.Modern age science research with a great deal of of the concrete engineering practice certificate, in the concrete engineering crack problem is ineluctable, also acceptable in certainly of the scope just need to adopt valid of measure will it endanger degree control at certain of scope inside.The reinforced concrete norm is also explicit provision:Some structure at place of dissimilarity under the condition allow existence certain the crack of width.But at under construction should as far as possible adopt a valid measure control crack creation, make the structure don't appear crack possibly or as far as possible decrease crack of amount and width, particularly want to as far as possible avoid harmful crack of emergence, insure engineering quality thus.Concrete crack creation of the reason be a lot of and have already transformed to cause of crack:Such as temperature variety, constringency, inflation, the asymmetry sink to sink etc. reason cause of crack;Have outside carry the crack that the function cause;Protected environment not appropriate the crack etc. caused with chemical effect.Want differentiation to treat in the actual engineering, work°out a problem according to the actual circumstance.In the concrete engineering the familiar crack and the prevention1.Stem Suo crack and preventionStem the Suo crack much appear after the concrete protect be over of a period of time or concrete sprinkle to build to complete behind of arounda week.In the cement syrup humidity of evaporate would creation stem Suo, and this kind of constringency is can't negative.Stem Suo crack of the creation be main is because of concrete inside outside humidity evaporate degree dissimilarity but cause to transform dissimilarity of result:The concrete is subjected to exterior condition of influence, surface humidity loss lead quick, transform bigger, inner part degree of humidity variety smaller transform smaller, bigger surface stem the Suo transform to be subjected to concrete inner part control, creation more big pull should dint but creation crack.The relative humidity is more low, cement syrup body stem Suo more big, stem the Suo crack be more easy creation.Stem the Suo crack is much surface parallel lines form or the net shallow thin crack, width many between 0.05-0.2 mm, the flat surface part much see in the big physical volume concrete and follow it more in thinner beam plank short to distribute.Stem Suo crack usually the anti- Shen of influence concrete, cause the durable of the rust eclipse influence concrete of reinforcing bar, under the function of the water pressure dint would creation the water power split crack influence concrete of loading dint etc..Concrete stem the Suo be main with water ash of the concrete ratio, the dosage of the composition, cement of cement, gather to anticipate of the dosage of the property and dosage, in addition etc. relevant.Main prevention measure:While being to choose to use the constringency quantity smaller cement, general low hot water mire and powder ash from stove cement in the adoption, lower the dosage of cement.Two is a concrete of stem the Suo be subjected to water ash ratio of influence more big, water ash ratio more big, stem Suo more big, so in the concrete match the ratio the design should as far as possible control good water ash ratio of choose to use, the Chan add in the meantime accommodation of reduce water.Three is strict control concrete mix blend with under construction of match ratio, use of concrete water quantity absolute can't big in match ratio designgive settle of use water quantity.Four is the earlier period which strengthen concrete to protect, and appropriate extension protect of concrete time.Winter construction want to be appropriate extension concrete heat preservation to overlay time, and Tu2 Shua protect to protect.Five is a constitution the accommodation is in the concrete structure of the constringency sew.2.The Su constringency crack and preventionSu constringency is the concrete is before condense, surface because of lose water quicker but creation of constringency.The Su constringency crack is general at dry heat or strong wind the weather appear, crack's much presenting in the center breadth, both ends be in the centerthin and the length be different, with each other not coherent appearance.Shorter crack general long 20-30 cm, the longer crack can reach to a 2-3 m, breadth 1-5 mm.It creation of main reason is:The concrete is eventually almost having no strength or strength before the Ning very small, perhaps concrete just eventually Ning but strength very hour, be subjected to heat or compare strong wind dint of influence, the concrete surface lose water to lead quick, result in in the capillary creation bigger negative press but make a concrete physical volume sharply constringency, but at this time the strength of concrete again can't resist its constringency, therefore creation cracked.The influence concrete Su constringency open the main factor of crack to have water ash ratio, concrete of condense time, environment temperature, wind velocity, relative humidity...etc..Main prevention measure:One is choose to use stem the Suo value smaller higher Huo sour salt of the earlier period strength or common the Huo sour brine mire.Two is strict the control water ash ratio, the Chan add to efficiently reduce water to increment the collapse of concrete fall a degree and with easy, decrease cement and water of dosage.Three is to sprinkle before building concrete, water basic level and template even to soakthrough.Four is in time to overlay the perhaps damp grass mat of the plastics thin film, hemp slice etc., keep concrete eventually before the Ning surface is moist, perhaps spray to protect etc. to carry on protect in the concrete surface.Five is in the heat and strong wind the weather to want to establish to hide sun and block breeze facilities, protect in time.3.Sink to sink crack and preventionThe creation which sink to sink crack is because of the structure foundation soil quality not and evenly, loose soft or return to fill soil dishonest or soak in water but result in the asymmetry sink to decline with the result that;Perhaps because of template just degree shortage, the template propped up to once be apart from big or prop up bottom loose move etc. to cause, especially at winter, the template prop up at jelly soil up, jelly the soil turn jelly empress creation asymmetry to sink to decline and cause concrete structure creation crack.This kind crack many is deep enter or pierce through sex crack, it alignment have something to do with sinking to sink a circumstance, general follow with ground perpendicular or present 30 °s-45 ° Cape direction develop ment, bigger sink to sink crack, usually have certain of wrong, crack width usually with sink to decline quantity direct proportion relation.Crack width under the influence of temperature variety smaller.The foundation after transform stability sink to sink crack also basic tend in stability.Main prevention measure:One is rightness loose soft soil, return to fill soil foundation a construction at the upper part structure front should carry on necessity of Hang solid with reinforce.Two is the strength that assurance template is enough and just degree, and prop up firm, and make the foundation be subjected to dint even.Three is keep concrete from sprinkle infusing the foundation in the process is soak by water.Four is time that template tore down to can't be too early, and want to notice to dismantle a mold order of sequence.Five is at jelly soil top take toestablish template to notice to adopt certain of prevention measure.4.Temperature crack and preventionTemperature crack much the occurrence is in big surface or difference in temperature variety of the physical volume concrete compare the earth area of the concrete structure.Concrete after sprinkling to build, in the hardening the process, cement water turn a creation a great deal of of water turn hot, .(be the cement dosage is in the 350-550 kg/m 3, each sign square the rice concrete will release a calories of 17500-27500 kJ and make concrete internal thus the temperature rise to reach to 70 ℃ or so even higher)Because the physical volume of concrete be more big, a great deal of of water turn hot accumulate at the concrete inner part but not easy send forth, cause inner part the temperature hoick, but the concrete surface spread hot more quick, so formation inside outside of bigger difference in temperature, the bigger difference in temperature result in inner part and exterior hot the degree of the bulge cold Suo dissimilarity, make concrete surface creation certain of pull should dint.When pull should dint exceed the anti- of concrete pull strength extreme limit, concrete surface meeting creation crack, this kind of crack much occurrence after the concrete under construction period.In the concrete of under construction be difference in temperature variety more big, perhaps is a concrete to be subjected to assault of cold wave etc., will cause concrete surface the temperature sharply descend, but creation constringency, surface constringency of the concrete be subjected to inner part concrete of control, creation very big of pull should dint but creation crack, this kind of crack usually just in more shallow scope of the concrete surface creation.The alignment of the temperature crack usually none settle regulation, big area structure the crack often maneuver interleave;The size bigger structure of the beam plank length, the crack run parallel with short side more;Thorough with pierce through sex of temperature crack general andshort side direction parallelism or close parallelism, crack along long side cent the segment appear, in the center more airtight.Crack width the size be different, be subjected to temperature variety influence more obvious, winter compare breadth, summer more narrow.The concrete temperature crack that the heat inflation cause is usually in the center the thick both ends be thin, but cold Suo crack of thick thin variety not too obvious.The emergence of the this kind crack will cause the rust eclipse of reinforcing bar, the carbonization of concrete, the anti- jelly which lower concrete melt, anti- tired and anti- Shen ability etc..Main prevention measure:One is as far as possible choose to use low hot or medium hot water mire, like mineral residue cement, powder ash from stove cement...etc..Two is a decrease cement dosage, cement dosage as far as possible the control is in the 450 kg/m 3 following.Three is to lower water ash ratio, water ash of the general concrete ratio control below 0.6.Four is improvement the bone anticipate class to go together with, the Chan add powder ash from stove or efficiently reduce water etc. to come to reduce cement dosage and lower water to turn hot.Five is an improvement concrete of mix blend to process a craft, lower sprinkle of concrete to build temperature.Six is the in addition that the Chan add a have of fixed amount to reduce water and increase Su, slow Ning etc. function in the concrete, improvement the concrete mix to match a thing of mobility, protect water, lower water to turn hot, postpone hot Feng of emergence time.Seven is the heat season sprinkle to build can the adoption take to establish to hide sun plank etc. assistance measure control concrete of Wen Sheng, lower to sprinkle temperature of build the concrete.Eight is the temperature of big physical volume concrete should the dint relate to structure size, concrete structure size more big, temperature should dint more big, so want reasonable arrangement construction work preface, layering, cent the piece sprinkle to build, for the convenience of in spread hot, let up control.Nineis at great inner part constitution of the physical volume concrete cool off piping, cold water perhaps cold air cool off, let up concrete of inside outside difference in temperature.Ten is the supervision which strengthen concrete temperature, adopt to cool off in time, protection measure.11 is to reserve temperature constringency to sew.12 is to let up to control, sprinkle proper before building concrete in the Ji rock and old concrete top build a 5 mm or so sand mat a layer or usage asphalt etc. material Tu2 Shua.13 is to strengthen concrete to protect, the concrete after sprinkle build use moist grass Lian in time, hemp slice's etc. overlay, and attention sprinkle water to protect, appropriate extension protect time, assurance the concrete surface be slow-moving cool off.At the cold season, concrete surface should constitution heat preservation measure, in order to prevent cold wave assault.14 is the allocation be a little amount in the concrete of reinforcing bar perhaps add fiber material concrete of temperature crack control at certain of scope inside.5.Crack and prevention that the chemical reaction causeAlkali bone's anticipating the crack that reaction crack and reinforcing bar rust eclipse cause is the most familiar in the reinforced concrete structure of because of chemical reaction but cause of crack.The concrete blend a future reunion creation some alkalescence ion, these ion with some activity the bone anticipate creation chemical reaction and absorb surroundings environment in of water but the physical volume enlarge, make concrete crisp loose, inflation open crack.In this kind of crack general emergence concrete structure usage period, once appear very difficult remediable, so should at under construction adopt valid the measure carry on prevention.Main of prevention measure:While being to choose to anticipate with the alkali activity small freestone bone.Two is the in addition which choose to use low lye mire with low alkali or have no alkali.Three is the Chan which choose to use accommodation withanticipate to repress an alkali bone to anticipate reaction.Because the concrete sprinkle to build, flap Dao bad perhaps is a reinforcing bar protection layer thinner, the harmful material get into concrete to make reinforcing bar creation rust eclipse, the reinforcing bar physical volume of the rust eclipse inflation, cause concrete bulge crack, the crack of this kind type much is a crack lengthways, follow the position of reinforcing bar ually of prevent measure from have:One is assurance reinforcing bar protection the thickness of the layer.Two is a concrete class to go together with to want good.Three is a concrete to sprinkle to note and flap Dao airtight solid.Four is a reinforcing bar surface layer Tu2 Shua antisepsis coating.Crack processingThe emergence of the crack not only would influence structure of whole with just degree, return will cause the rust eclipse of reinforcing bar, acceleration concrete of carbonization, lower durable and anti- of concrete tired, anti- Shen ability.Therefore according to the property of crack and concrete circumstance we want differentiation to treat, in time processing, with assurance building of safety usage.The repair measure of the concrete crack is main to have the following some method:Surface repair method, infuse syrup, the Qian sew method, the structure reinforce a method, concrete displacement method, electricity chemistry protection method and imitate to living from heal method.Surface repair the method be a kind of simple, familiar of repair method, it main be applicable to stability and to structure loading the ability don't have the surface crack of influence and deep enter crack of processing.The processing measure that is usually is a surface in crack daubery cement syrup, the wreath oxygen gum mire or at concrete surface Tu2 Shua paint, asphalt etc. antisepsis material, at protection of in the meantime for keeping concrete from continue under the influence of variousfunction to open crack, usually can adoption the surface in crack glue to stick glass fiber cloth etc. measure.1, infuse syrup, the Qian sew methodInfuse a syrup method main the concrete crack been applicable to have influence or have already defend Shen request to the structure whole of repair, it is make use of pressure equipments gum knot the material press into the crack of concrete, gum knot the material harden behind and concrete formation one be whole, thus reinforce of purpose.The in common use gum knot material has the cement the syrup, epoxy, A Ji C Xi sour ester and gather ammonia ester to equalize to learn material.The Qian sew a method is that the crack be a kind of most in common use method in, it usually is follow the crack dig slot, the Qian fill Su in the slot or rigid water material with attain closing crack of purpose.The in common use Su material has PVC gum mire, plastics ointment, the D Ji rubber etc.;In common use rigid water material is the polymer cement sand syrup.2, the structure reinforce a methodWhen the crack influence arrive concrete structure of function, will consideration adopt to reinforce a method to carry on processing to the concrete structure.The structure reinforce medium in common use main have the following a few method:The piece of enlargement concrete structure in every aspect accumulate, outside the Cape department of the Gou piece pack type steel, adoption prepare should the dint method reinforce, glue to stick steel plate to reinforce, increase to establish fulcrum to reinforce and jet the concrete compensation reinforce.3, concrete displacement methodConcrete displacement method is processing severity damage concrete of a kind of valid method, this method be first will damage of the concrete pick and get rid of, then again displacement go into new of concrete or othermaterial.The in common use displacement material have:Common concrete or the cement sand syrup, polymer or change sex polymer concrete or sand syrup. 4, the electricity chemistry protection methodThe electricity chemistry antisepsis is to make use of infliction electric field in lie the quality of electricity chemical effect, change concrete or reinforced concrete the environment appearance of the place, the bluntness turn reinforcing bar to attain the purpose of antisepsis.Cathode protection method, chlorine salt's withdrawing a method, alkalescence to recover a method is a chemistry protection method in three kinds of in common use but valid method.The advantage of this kind of method is a protection method under the influence of environment factor smaller, apply reinforcing bar, concrete of long-term antisepsis, since can used for crack structure already can also used for new set up structure.5, imitate to living from legal moreImitate to living from heal the method be a kind of new crack treatment, its mimicry living creature organization secrete a certain material towards suffering wound part auto, but make the wound part heal of function, join some and special composition(such as contain to glue knot of the liquid Xin fiber or capsule) in the concrete of the tradition the composition, at concrete inner part formation the intelligence type imitate to living from heal nerve network system, be the concrete appear crack secrete a parts of liquid Xin fiber can make the crack re- heal.ConclusionThe crack is widespread in the concrete structure existence of a kind of phenomenon, it of emergence not only will lower the anti- Shen of building ability, influence building of usage function, and will cause the rust eclipse of reinforcing bar, the carbonization of concrete, lower the durable of material, influence building of loading ability, so want to carry on to the concrete crack earnest research, differentiation treat, adoptionreasonable of the method carry on processing, and at under construction adopt various valid of prevention measure to prevention crack of emergence and development, assurance building and Gou piece safety, stability work.建筑施工混凝土裂缝的预防与处理瑞德万土耳其梅尔辛省尼科西亚市北塞浦路斯镇东临大学混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程中常见的一些裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。