华师大版九年级数学下册第一学期期末考试模拟试卷(b)参考答案
- 格式:docx
- 大小:33.94 KB
- 文档页数:1
华师大版九年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于C点,其中﹣2<h<﹣1,﹣1<x<0,下列结论①abc<0;②(4a﹣b)(2a+b)<0;③4a﹣c<0;B④若OC=OB,则(a+1)(c+1)>0,正确的为()A.①②③④B.①②④C.①③④D.①②③2、如图,在△ABC中,∠A=90°,AB=AC=3,现将△ABC绕点B逆时针旋转一定角度,点C′恰落在边BC上的高所在的直线上,则边BC在旋转过程中所扫过的面积为()A.πB.2πC.3πD.4π3、抛物线的顶点坐标是()A. B. C. D.4、如图,已知⊙O是正方形ABCD的外接圆,点E是⊙O上任意一点,则∠BEC 的度数为()A.45°B.30°C.60°D.90°5、将y=x2+4x+1化为y=a(x-h)2+k的形式,h,k的值分别为( )A.2,-3B.-2,-3C.2,-5D.-2,-56、二次函数y=ax2+bx+c(a≠0)是偶函数,则实数b等于()A.1B.0C.-1D.27、把二次函数表达式.y=x2-2x-1,配方成顶点式为( )A. B. C. D.8、已知一次函数y1=kx+m和二次函数y2=ax2+bx+c部分的自变量与对应的函数值如下表:当y1>y2时,自变量的取值范围是()x -1 0 2 4 5y10 1 3 5 6y20 -1 0 5 9或x>5 D.x<-1或x>49、为了解游客在十渡、周口店北京人遗址博物馆、圣莲山和石花洞这四个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查400名导游;方案二:在十渡风景区调查400名游客;方案三:在云居寺风景区调查400名游客;方案四:在上述四个景区各调查100名游客.其中,最合理的收集数据的方案是()A.方案一B.方案二C.方案三D.方案四10、已知二次函数y=ax2+bx+c,其中a<0,若函数图象与x轴的两个交点均在负半轴,则下列判断错误的是()A.abc<0B.b>0C.c<0D.b+c<011、某厂今年七月份产品的产量为100吨,以后每月产品的产量与上月相比其增长率都是x,设九月份该产品的产量为y吨,则y关于x的函数关系式为()A.y=100(1﹣x)2B.y=100(1+x)2C.y=D.y=100+100(1+x)+100(1+x)212、矩形中,,,如果分别以、为圆心的两圆外切,且点在圆内,点在圆外,那么圆的半径的取值范围是()A. B. C. D.13、如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D.414、乐乐玩橡皮泥时,将一个底面直径为4cm,高为4cm的圆柱,捏成底面直径为3.2cm的圆柱,则圆柱的高变成了()A.7.5cmB.6.25cmC.5cmD.4.75cm15、二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤二、填空题(共10题,共计30分)16、如图,点、、都在上,若,则的度数是________.17、已知圆锥的侧面积为15π,母线长5,则圆锥的高为________.18、如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方向旋转60°后得到△AB′C′,若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________.(结果保留π).19、如图,小明从纸上剪下一个圆形和一个扇形纸片,用它们恰好能围成一个圆锥模型.若圆的半径为1,扇形的圆心角为120°,则此扇形的半径为________.20、如图,一块六边形绿化园地,六角都做有半径为R的圆形喷水池,则这六个喷水池占去的绿化园地的面积为________(结果保留π)21、某地区为估计该地区的绵羊只数,先捕捉20只绵羊给它们分别做上记号,然后放还,待有标记的绵羊完全混合于羊群后第二次捕捉40只绵羊,发现其中有2只有记号,从而估计这个地区有绵羊________ 只.22、如图,在中,的半径为1,点P是边上的动点,过点P作的一条切线(其中点Q为切点),则线段长度的最小值为________.23、如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD 长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=________.24、一个圆锥形零件的母线长为4,底面半径为1.则这个圆锥形零件的全面积是________.25、如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为弧AB的中点,D是OA的中点,则图中阴影部分的面积为________cm2.三、解答题(共5题,共计25分)26、将抛物线y=x2﹣4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B、C、D坐标;(2)△BCD的面积.27、已知抛物线l1的最高点为P(3,4),且经过点A(0,1),求l1的解析式.28、如图,正三角形ABC内接于⊙O,若AB= cm,求⊙O的半径.29、已知抛物线y=x²-4x+3.(1)该抛物线的对称轴是,顶点坐标;(2)将该抛物线向上平移2个单位长度,再向左平移3个单位长度得到新的二次函数图像,请写出相应的解析式,并用列表,描点,连线的方法画出新二次函数的图像;x ……y ……(3)新图像上两点A(x1, y1),B(x2, y2),它们的横坐标满足x1<-2,且-1<x2<0,试比较y1, y2, 0三者的大小关系.30、如图,在⊙O中,AB=CD.求证:AD=BC.参考答案一、单选题(共15题,共计45分)1、C2、C3、A4、A5、B6、B7、B9、D10、B11、B12、C13、C14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、28、29、。
(七)——2023-2024学年华师大版数学九年级上册期末复习专练1.在一个正方形的内部按照如图方式放置大小不同的两个小正方形,其中较大的正方形面积为12,重叠部分的面积为3,空白部分的面积为,则较小的正方形面积为( )A.11B.10C.9D.82.若,是一元二次方程的两个根,则的值为( )A.3B.10C.-3D.-103.如图,有两个可以自由转动的转盘.转盘A的盘面被等分成三个扇形区域,并分别标上数字1,2,-3;转盘B的盘面被等分成四个扇形区域,并分别标上数字-2,2,3,4.同时转动转盘A,B(当指针恰好指在分界线上时,重转),则转盘停止后两指针所指扇形区域中的数字的乘积为4的概率是( )A. B. C. D.4.如图,菱形ABCD的对角线AC,BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,,则的面积是( )A. B.2 C. D.45.如图,点F是菱形对角线BD上一动点,点E是线段BC上一点,且,连接EF,CF,设BF的长为x,,点F从点B运动到点D时,y随x变化的关系图象,图象最低点的纵坐标是( )A. B. C. D.6.表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数200500800200012000 n成活的棵数187446730179010836 m成活的频率0.9350.8920.9130.8950.903由此估计这种苹果树苗移植成活的概率约为__________.(精确到0.1)7.关于x的方程有两个不相等的实根,,若,则的最大值是________.8.如图,在正方形中,P,H分别为和上的点,与交于点E,.(1)判断与是否互相垂直________;(选填“是”或“否”)(2)若正方形的边长为4,,则线段的长为________.9.计算:(1);(2).10.商场某种商品平均每天可销售30件,每件盈利50元.商场为了减少库存开始降价销售,每件商品每降价1元,商场平均每天可多售出2件.(1)在商场日盈利达到2100元时,每件商品应该降价多少元?(2)若商场要保证每天销售量不少于100件,每件商品最多能盈利多少元?11.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是______(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共______件,其中B班征集到作品______件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(写出用树状图或列表分析过程)12.某兴趣小组为了测量大楼的高度,先沿着斜坡走了52米到达坡顶点B处,然后在点B处测得大楼顶点C的仰角为,已知斜坡的坡度为,点A到大楼的距离为72米,求大楼的高度.(参考数据:,,)13.如图,在中,,以CA、CD为边作矩形ACDE,直线AB与直线CE、DE分别交于点F、G.(1)如图所示,点D在线段CB上,四边形ACDE是正方形.①求证:;②若点G为DE的中点,求FG的长;③若,求BC的长.(2)已知,是否存在点D,使得是等腰三角形?若存在,若不存在,说明理由.答案以及解析1.答案:B解析:观察可知,两个空白部分的长相等,宽也相等,重叠部分也为正方形,空白部分的面积为,一个空白长方形面积,大正方形面积为12,重叠部分面积为3,大正方形边长,重叠部分边长,空白部分的长,设空白部分宽为x,可得:,解得:,小正方形的边长=空白部分的宽+阴影部分边长,小正方形面积,故选:B.2.答案:D解析:,是一元二次方程的两个根,.故选:D.3.答案:D解析:根据题意,画树状图如下.由树状图可知,共有12种等可能的结果,其中转盘停止后两指针所指扇形区域中的数字的乘积为4的结果有2种,故所求概率为.4.答案:A解析:菱形ABCD的周长为16,菱形ABCD的边长为4. ,是等边三角形.又O是菱形对角线AC,BD的交点,.在中,,,.又O,E分别是AC,DC的中点,,,,,,故选A.5.答案:B解析:由函数图象可知:当F与B重合时,,即,,,,,当F与D重合时,,连接AC交BD于点O,连接FA,ABCD是菱形,AC和BD互相垂直平分,,,当A,E,F三点共线时,y取最小值为AE,作交于点P,,,,,,,即,,,,.故选:B6.答案:0.9解析:本题考查概率.∵表中的树苗移植成活率稳定在0.9附近,∴由概率的定义可知,估计这种苹果树苗移植成活的概率约为0.9.7.答案:解析:关于x的方程有两个不相等的实根,,,,,,即,,,,,,的最大值是6.故答案为:6.8.答案:是;//2.4解析:(1)四边形是正方形,,,在与中,,,,,,,.(2)正方形的边长为4,,,,,,,,,,,,.故答案为:①是;②.9.答案:(1);(2);解析:(1)原式;(2)原式.10.答案:(1)每件商品降价20元时,商场日盈利可达到2100元(2)商场要保证每天销售量不少于100件,每件商品最多能盈利15元解析:(1)设每件商品降价m元时,商场日盈利可达到2100元,根据题意得:,解得或,为了尽快减少库存,销量尽可能大,m取20,答:每件商品降价20元时,商场日盈利可达到2100元;(2)设每件商品降价x元,每件商品盈利为y元,则,商场要保证每天销售量不少于100件,,解得:,,y随x的增大而减小,当时,y最大,最大值为15,商场要保证每天销售量不少于100件,每件商品最多能盈利15元.11.答案:(1)抽样调查;12;3;补全图形见解析(2)四个班平均每个班征集作品3(件),计全年级征集到参展作品:42(件)(3)恰好抽中一男一女的概率是解析:(1)王老师采取的调查方式是抽样调查,所调查的4个班征集到作品数为:件,B班征集作品的件数为:件,故答案为:抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品(件),所以,估计全年级征集到参展作品:(件);(3)画树状图如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女),即恰好抽中一男一女的概率是.12.答案:大楼的高度为52米解析:如下图,过点B作于点E,作于点F,在中,,,又,,解得:,;,四边形是矩形,,;在中,,即:,,.答:大楼的高度为52米.13.答案:(1)①见解析;②;③;(2)存在,等腰的腰长为4或20或或.解析:(1)①四边形ACDE是正方形,CE是对角线,,,,;②在正方形ACDE中,,,点G为DE中点,,在中,,,,,,;③如图中,正方形ACDE中,,,,,,设;,,,,在中,,,解得,,,,在中,;(2)在中,,当点D在线段BC上时,此时只有,,,设,则,,则;,,,,整理得:.解得或5(舍弃),腰长.当点D在线段BC的延长线上,且直线ABCE的交点中AE上方时,此时只有,如图,设,则,,,,,,解得或﹣2(舍弃),腰长.当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有,过点D作,如图,设,则,,.,,,,,,解得或(舍去).腰长,当点D在线段CB的延长线上时,此时只有,作于H,如图:设,则,,,,,,,,,,解得或(舍去).腰长,综上所述,等腰的腰长为4或20或或.。
华师大版九年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若二次函数y=(k+1)x2﹣2 x+k的最高点在x轴上,则k的值为( )A.1B.2C.﹣1D.﹣22、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为()A.6B.5C.4D.33、若抛物线y=ax2+2ax+4a(a>0)上有A( ,y1)、B(2,y2)、C( ,y3)三点,则y1、y2、y3的大小关系为( ).A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y2<y3<y14、频数m、频率p和数据总个数n之间的关系是()A.n=mpB.p=mnC.n=m+pD.m=np5、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论有()A.1个B.2个C.3个D.4个6、已知弧CD是⊙O的一条弧,点A是弧CD的中点,连接AC,CD.则()A.CD=2ACB.CD>2ACC.CD<2ACD.不能确定7、如图,AD是⊙O的直径,弦AB∥CD,若∠BAD=35°,则∠AOC等于( )A.35°B.45°C.55°D.70°8、AB,CD为⊙O的两条不重合的直径,则四边形ACBD一定是( )A.等腰梯形B.矩形C.菱形D.正方形9、已知:如图,⊙O的半径为9,弦AB⊥半径OC于H,sin∠BOC=,则AB 的长度为()A.6B.9C.12D.310、小红统计了她家3月份的电话通话时间,并绘制成如下的频数分布表(表中数据含最大值但不含最小值):通话时间(min)0~2 2~4 4~6 6~8 8~10 通话次数26 12 8 5 3那么小红家3月份电话通话时间不超过6min的频数是()A.3B.8C.38D.4611、已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x …﹣1 0 2 4 …y1…0 1 3 5 …x …﹣1 1 3 4 …y2…0 ﹣4 0 5 …当y2>y1时,自变量x的取值范围是()A.x<﹣1B.x>4C.﹣1<x<4D.x<﹣1或x>412、下列说法:①三点确定一个圆;②相等的圆周角所对的弧相等;③同圆或等圆中,等弦所对的弧相等;④等边三角形的内心与外心重合.其中,正确的个数共有()A.1B.2C.3D.413、将抛物线y=-x2向左平移2个单位后,得到的抛物线解析式是()A. y=-(x+2)2B. y=-x2+2C. y=-(x-2)2D. y=-x2-214、如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=110°,则∠DEF的度数是()A.35°B.40°C.45°D.70°15、如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是( )A. B. C.D.二、填空题(共10题,共计30分)16、如图,在等腰△ABC中,AB=AC,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合.若∠CEF=50°,则∠AOF的度数是________.17、将抛物线y=x2-2向上平移一个单位后,得一新的抛物线,那么新的抛物线的表达式是________.18、如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是________19、调查青铜峡市全民健身情况,这种调查适合用________(填“普查”或“抽样调查”)20、如图所示,⊙O是以坐标原点O为圆心,4为半径的圆,点P的坐标为(,),弦AB经过点P,则图中阴影部分面积的最小值=________.21、在直角坐标系中,抛物线y=ax2-4ax+2(a>0)交y轴于点A,点B是点A关于对称轴的对称点,点C是抛物线的顶点,若△ABC的外接圆经过原点O,则a的值为________.22、的图象开口向________,顶点坐标为________,当时,值随着值的增大而________.23、若二次函数y=x2﹣4x+c的图象与x轴没有交点,则c的取值范围是________.24、已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为________.25、若扇形的圆心角为,半径为6,则扇形的面积为________.三、解答题(共5题,共计25分)26、如图,A、B、C、D均为⊙O上的点,其中A、B两点的连线经过圆心O,线段AB、CD的延长线交于点E,已知AB=2DE,∠E=18°,求∠AOC的度数.27、如图(1)是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.现把拱桥的截面图放在平面直角坐标系中,如图(2).求(1)抛物线的解析式;(2)两盏景观灯P1、P2之间的水平距离.28、汽车正在行驶可车轮突然陷入无盖井,骑车人正在快速前行却因突然出现在面前的凸起井盖被摔伤,夜间出门时被一个没有井盖的窖井吞噬…全国各地因为井盖缺失而造成事故的情形不绝于耳,井盖吞人事件更是频频发生,为了保障市民的人身安全,合肥市政部门开始更换质量更好的井盖(如图所示).小明想知道井盖的半径,在⊙O上,取了三个点A、B、C,测量出AB=AC=50,BC=80,请你帮助小明求出井盖的半径,写出计算过程.29、如图,AB是⊙O的直径,点F、C在⊙O上且,连接AC、AF,过点C作CD⊥AF交AF的延长线于点D.(1)求证:CD是⊙O的切线;(2)若, CD=4,求⊙O的半径.30、如图,已知在平面直角坐标系中,抛物线过点,,.求抛物线的解析式,并求出抛物线的顶点的坐标.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、D5、B6、C7、D8、B9、C10、D11、D12、A13、A14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、30、。
华师大版九年级数学第一学期期末测试姓名 成绩一、填空题1、 若代数式2164x x --的值为0,则x =____________.2、 计算1m +2 +4m 2-4的结果是3、 分式x+22x+2 , x x ²-x -2, 38-4x的最简公分母是4、第五次全国人口普查结果显示,我国的总人口已达到1300000000人,这个数用科学记数法表示: 。
5、如图,A 、B 、C 、D 是⊙O 上的三点,∠BAC=30°,则∠BOC 的大小 是6、在半径为2a 的⊙O 中,弦AB长为,则AOB ∠为7、如果圆锥的底面半径为3cm ,高为4cm ,那么它的侧面积为8、两同心圆,大圆半径为6,小圆半径为 4.若有一圆与这两同心圆都相切,则这圆的半径为 .9、若O 是△ABC 的内心,且∠BAC=70º,则∠BOC=10、命题“对顶角相等”的题设是 ,结论是11、等腰△ABC 中,5==AC AB , 120=∠A ,将ABC ∆在平面内绕B 点顺时针方向旋转60至C B A ''∆,C '为C 的对应点,则='C C 12、一块周长为20cm 的三角形铁片裁成四块形状、大小完全 相同的小三角形铁片(如图示),则每块小三角形铁片的周 长为 cm.二、选择题1、下列运算中正确的是 ( ) (A )a 2·a 3=a 5(B )(a 2)3=a 5(C )a 6÷a 2=a 3 (D )a 5+a 5=2a 102、方程2650x x +-=的左边配成完全平方后所得方程为( )A . 2(3)14x +=B . 2(3)14x -= C . 21(6)2x += D . 以上答案都不对3、关于x 的一元二次方程01)12(2=-+++k x k x 根的情况是 ( )(A )有两个不相等实数根 (B )有两个相等实数根(C )没有实数根 (D )根的情况无法判定4、甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙。
华师大版九年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如果函数y=(k﹣2)x +kx+1是关于x的二次函数,那么k的值是()A.1或2B.0或2C.2D.02、如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是()A.相切B.相离C.相交D.相切或相交3、函数是二次函数,那么m的值是()A.2B.-1或3C.3D.±14、一个边长为4的等边三角形ABC的高与⊙O的直径相等,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长是( )A. B. C.2 D.35、如图,AB是⊙O的直径,CD为弦,CD⊥AB于点E,则下列结论中不成立的是()A.∠A=∠DB.CE=DEC.CE=BDD.∠ACB=90°6、对于二次函数y=2(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.与x轴有两个交点D.顶点坐标是(1,2)7、小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min 0<x≤5 5<x≤10 10<x≤15 15<x≤2020 16 9 5频数(通话次数)则通话时间不超过15min的频率为()A.0.1B.0.4C.0.5D.0.98、某公司的生产量在七个月之内的增长变化情况如图所示,从图上看,下列结论错误的是()A.2~6月生产量增长率逐月减少B.7月份生产量的增长率开始回升 C.这七个月中,每月生产量不断上涨 D.这七个月中,生产量有上涨有下跌9、若所求的二次函数图象与抛物线y=2x2-4x-1有相同的顶点,并且在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,则所求二次函数的表达式为( )A.y=-x 2+2x+4B.y=-ax 2-2ax-3(a>0)C.y=-2x 2-4x-5 D.y=ax 2-2ax+a-3(a<0)10、把二次函数y=x2的图象向右平移2个单位后,再向上平移3个单位所得图象的函数表达式是()A.y=(x-2) 2+3B.y=(x+2) 2+3C.y=(x-2) 2-3D.y=(x+2) 2-311、已知二次函数y=ax2+bx+c(a≠0) 的图象如图所示,给出以下结论:① b2>4ac;②abc<0 ;③2a+b=0 ;④ 8a+c>0 ;⑤9a+3b+c<0,其中正确结论是().A.①②B.②③C.①③④D.①③④⑤12、在平面直角坐标系中,如果把抛物线y=-2x2向上平移1个单位,那么得到的抛物线的表达式是()A.y=-2(x+1)2B.y=-2(x-1)2C.y=-2x 2+1D.y=-2x 2-113、把抛物线y=x2+1向右平移3个单位,再向上平移2个单位,得到抛物线()A.y=(x+3)2﹣1B.y=(x+3)2+3C.y=(x﹣3)2﹣1D.y=(x﹣3)2+314、二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为-1,3.与y轴负半轴交于点C,在下面五个结论中:①2a-b=0;②a+b+c>0;③c=-3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a值可以有三个.其中正确的结论是()A.1B.2C.3D.415、下列各式中,y是x的二次函数的是()A.y=ax 2+bx+cB.x 2+y﹣2=0C.y 2﹣ax=﹣2D.x 2﹣y 2+1=0二、填空题(共10题,共计30分)16、小颖在二次函数y=2x2+4x+5的图象上找到三点(-1,y1),(,y2),(-3 ,y3),则你认为y1, y2, y3的大小关系应为________.17、如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(-1,0)和B(2,0),当y<0时,x的取值范围是________ .18、已知圆锥如图所示放置,.其主视图面积为12,俯视图的周长为6π,则该圆锥的侧面积为________.19、直角三角形的两条直角边分别是5和12,则它的内切圆半径为________.20、二次函数y=x2﹣2x的图像的对称轴是直线________.21、如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是________.22、已知二次函数y=m (x﹣1)( x﹣4)的图象与x轴交于A,B两点(点A 在点B的左边),顶点为C,将该二次函数的图象关于x轴翻折,所得图象的顶点为D.若四边形ACBD为正方形,则m的值为________.23、小明用彩纸给爸爸做一顶生日帽,其左视图和俯视图如图所示,其中AB=24 cm,AC=36 cm,则至少需用彩纸________cm2(接口处重叠面积不计).24、如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE= AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF= :2.当边AD或BC所在的直线与⊙O相切时,AB的长是________.25、我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D-d.在平面直角坐标系xOy中,图形G为以原点O为圆心,2为半径的圆,则点A(1,-1)到图形G的距离跨度是________.三、解答题(共5题,共计25分)26、已知函数y=2x2-(3-k)x+k2-3k-10的图象经过原点,试确定k的值。
2024-2025学年九年级数学上学期第三次月考(华东师大版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:华东师大版第23章图形的相似~第24章解直角三角形,第21章占比15%,第22章占比15%,第23-24章占比70%。
5.难度系数:0.68。
第一部分(选择题共30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1x的取值范围是()A.x>2024B.x=2024C.D.∴,∴,2.已知2a=3b(ab?0),则下列比例式成立的是()A.a2=3bB.a3=b2C.ab=23D.ba=323.在△ABC中,,AB=15,sin B=35,则AC等于()A.25B.12C.9D.16根据题意得:在中,∴AC=35×15=9,故选C.4.下列方程中是关于x的一元二次方程的是()A.x2+2x=x2+1B.1x2+1x―2=0C.3x+2y=5D.3(x+1)2=2x+15.如图,△ABC与是位似图形,点O是位似中心,若OA:OA′=3:1,则B′C′BC的值为( )A .13B .23C .12D .34与是位似图形,∴,6.福州白塔是福州的标志性建筑之一,也是中国现存最早的木塔之一(如图1).小明想测量白塔AB 的高度(如图2),在离白塔底端B 正前方8米的C 处,用高为1.5米的测角仪CD 测得白塔顶部A 处的仰角为,则白塔AB 的高度为( )A .(8tan a +1.5)米B .米C .(8cos a +1.5)米D .(8sin a +1.5)米【答案】A【解析】过点D 作,垂足为E ,由题意得:CD=BE=1.5米,DE=BC=8米,在中,,(米),米,白塔AB的高度为(8tan a+1.5)米.故选A.7.若关于x一元二次方程mx2+2x+1=0有实数解,则m的取值范围是()A.B.C.m≥―1且D.且∴,解得:且.8.实数a,b―|a―b|化简的结果是()A.―2b B.―2a C.2b―2a D.0故选A .9.如图,在矩形ABCD 中,AB =6cm ,BC =9cm ,点E,F 分别在边AB,BC 上,AE =2cm ,BD,EF 交于点G ,若G 是EF 的中点,则线段BG 的长度是( )A B .203cm C .103cm D 【答案】D【解析】四边形ABCD 是矩形, ,,,,,,是EF 的中点,,,,∽△DCB ,,,,,.10.如图,正方形ABCD中,AE平分∠CAB,交BC于点E,将△ABE绕点B顺时针旋转得到△CBF,延长AE交CF于点G,连BG、DG,DG交AC于点H.下列结论①BE=BF;②;③;④AE=正确的是()A.①②③④B.②③C.①③D.①②顺时针旋转得到,∴,,故正确;∴,,∴,∵,∴,∴,∴,故正确;∵,∴,∴,∴,∵,∴,∴,∴,∴,,即,∴,故正确;∵,∴,∵,∴,∵,∴,,故正确;∴正确,第二部分(非选择题共90分)二、填空题:本题共8小题,每小题3分,共24分。
期末专题复习:华师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.二次函数y=-2(x-1)2+3的图象的顶点坐标是()A. (1,3)B. (-1,3) C. (1,-3) D. (-1,-3)2.把二次函数y=y2−2y−1配方成顶点式为( )A. y=(y−1)2B. y=(y−1)2−2 C. y=(y+1)2+1 D. y=(y+1)2−23.下列说法,正确的是( )A. 半径相等的两个圆大小相等 B. 长度相等的两条弧是等弧C. 直径不一定是圆中最长的弦 D. 圆上两点之间的部分叫做弦4.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为()A. 68°B. 88°C. 90°D. 112°5.半径为5的⊙O,圆心在原点O,点P(-3,4)与⊙O的位置关系是().A. 在⊙O内B. 在⊙O上 C. 在⊙O外 D. 不能确定6.(2016•温州)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A. 2~4小时B. 4~6小时 C. 6~8小时 D. 8~10小时7.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A. 20B. 30C. 40D. 508.如图,已知▱ABCD的对角线BD=4cm,将▱ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A. 4πcm B. 3πcm C. 2π cm D. π cm9.如图,点A, B, C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为( )A. 70°B. 90°C. 110°D. 120°10.如图,点P为正方形ABCD的边CD上一点,BP的垂直平分线EF分别交BC、AD于E、F两点,GP⊥EP 交AD于点G,连接BG交EF于点 H,下列结论:①BP=EF;②∠FHG=45°;③以BA为半径⊙B与GP 相切;④若G为AD的中点,则DP=2CP.其中正确结论的序号是()A. ①②③④B. 只有①②③ C. 只有①②④ D. 只有①③④二、填空题(共10题;共30分)11.如图,点A、B把⊙O分成2:7两条弧,则∠AOB=________.12.已知函数y=(y−1)y y2+1+5y+3是关于x的二次函数,则m的值为________.13.二次函数y=x2-2x-3与x轴交点交于A、B两点,交 y轴于点C,则△OAC的面积为________.14.对于二次函数y=3x2+2,下列说法:①最小值为2;②图象的顶点是(3,2);③图象与x轴没有交点;④当x<-1时,y随x的增大而增大.其中正确的是________.15.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是________.16.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为 ________只.17.某二次函数的图象的顶点坐标(4,﹣1),且它的形状、开口方向与抛物线y=﹣x2相同,则这个二次函数的解析式为________.̂的三等分点,连接OC,OD,18.如图,在圆心角为135°的扇形OAB中,半径OA=2cm,点C,D为yyAC,CD,BD,则图中阴影部分的面积为________cm2.19.如图,正六边形ABCDEF的边长为2,则对角线AF=________.20.如图,在矩形yyyy中,y是边yy上一点,连接yy,将矩形沿yy翻折,使点y落在边yy上点y处,连接yy .在yy上取点y,以点y为圆心,yy长为半径作⊙ y与yy相切于点y .若yy=6,yy=3√3,给出下列结论:① y是yy的中点;②⊙ y的半径是2; ③ yy=9 2yy;④ y阴影=√32.其中正确的是________.(填序号)三、解答题(共9题;共60分)21.如图⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12,求⊙O的半径.22.某农户承包荒山种了44棵苹果树.现在进入第三年收获期.收获时,先随意摘了5棵树上的苹果,称得每棵树摘得的苹果重量如下(单位:千克) 35 35 34 39 37(1)在这个问题中,总体指的是?个体指的是?样本是?样本容量是?(2)试根据样本平均数去估计总体情况,你认为该农户可收获苹果大约多少千克?23.已知二次函数y=ax2-4x+c的图象过点(-1,0)和点(2,-9).(1)求该二次函数的解析式并写出其对称轴;(2)已知点P(2,-2),连结OP,在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).24.如图,点D是∠AOB的平分线OC上任意一点,过D作DE⊥OB于E,以DE为半径作⊙D,①判断⊙D与OA的位置关系,并证明你的结论。
2024年华东师大版九年级数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四总分得分评卷人得分一、选择题(共6题,共12分)1、方程(x+1)(x-3)=0的解是()A. x=1,x=3B. x=4,x=-2C. x=-1,x=3D. x=-4,x=22、(2014•重庆模拟)如图,在半径为1的⊙O中,AP是⊙O的切线,A为切点,OP与弦AB交于点C,点C为AB中点,∠P=30°,则CP的长度为()A. 2B. 1.5C. 1.6D. 1.83、下列运算正确的是()A. a2+a3=a5B. a2•a3=a6C. a3÷a2=aD. (a2)3=a84、一次函数y=kx+1,y随x的增大而减小,则一次函数的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5、下列说法正确的是()A. 的次数为1B. 单项式a既没有系数,也没有次数C. -2πa2bc的系数为-2D. 是三次单项式,系数为6、(2012•沈阳)气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是()A. 本市明天将有30%的地区降水B. 本市明天将有30%的时间降水C. 本市明天有可能降水D. 本市明天肯定不降水评卷人得分二、填空题(共6题,共12分)7、(2013•南沙区一模)如图,一个空间几何体的主视图和左视图都是边长为2的正三角形,俯视图是一个圆,那么这个几何体的侧面积是____.8、如图,在半径为2,圆心角等于90°的扇形AOB内部作一个直角梯形OBCD,使点C在上,且为的中点,D在OA上,则阴影部分的面积为(结果保留π)____.9、射线OA绕端点O逆时针旋转120°到OB位置,再逆时针旋转100°到OC位置,再顺时针旋转390°到OD的位置,则∠AOD=____,∠BOD=____.10、|x+2|+|x+5|的最小值为____.11、已知一次函数,若y随x的增大而减小,则m的值为____.12、绝对值小于3的所有整数是____,若|x|=6,则x=____.评卷人得分三、判断题(共7题,共14分)13、某班A、B、C、D、E共5名班干部,现任意派出一名干部参加学校执勤,派出任何一名干部的可能性相同____(判断对错)14、等边三角形都相似.____.(判断对错)15、过直线外一点可以作无数条直线与已知直线平行.(____)16、等边三角形都相似.____.(判断对错)17、两个等腰三角形一定是全等的三角形.____.(判断对错)18、边数不同的多边形一定不相似.____.(判断对错)19、了解某渔场中青鱼的平均重量,采用抽查的方式____(判断对错)评卷人得分四、证明题(共2题,共10分)20、如图,点O是同心圆的圆心,大圆半径OA,OB分别交小圆于点C,D,求证:AB∥CD.21、已知△ABC中;∠C=90°,CA=CB,∠BAC的平分线交BC于点D,DE⊥AB于点E.求证:AB=AC+CD.参考答案一、选择题(共6题,共12分)1、C【分析】【分析】根据题意,转化成两个一元一次方程,再求解即可.【解析】【解答】解:根据题意得;x+1=0,x-3=0;解得x1=-1,x2=3.故选C.2、B【分析】【分析】连结OA;根据切线的性质得OA⊥PA,由于∠P=30°,根据含30度的直角三角形三边的关系得PO=2OA=2,再根据垂径定理由点C为AB中点得到OC⊥AB;在Rt△OCA中,由∠OAC=30°,OA=1得到OC= OA= ,于是得到PC=PO-OC= .【解析】【解答】解:连结OA;如图;∵AP是⊙O的切线;A为切点;∴OA⊥PA;∵∠P=30°;∴∠POA=60°;在Rt△POA中;PO=2OA=2;∵点C为AB中点;∴OC⊥AB;在Rt△OCA中;∠OAC=30°,OA=1;∴OC= OA= ;∴PC=PO-OC=2- = .故选B.3、C【分析】【分析】利用合并同类项法则、同底数幂的除法法则、同底数幂的乘法法则、积的乘方法则分别计算得出即可.【解析】【解答】解:A、a2+a3=a5;不是同类项无法计算,故此选项错误;B、a2•a3=a5;故此选项错误;C、a3÷a2=a;故此选项正确;D、(a2)3=a6;故此选项错误;故选:C.4、C【分析】【分析】根据函数的增减性及解析式判断函数图象所经过的象限即可.【解析】【解答】解:∵一次函数y=kx+1;y随x的增大而减小;∴k<0;∵1>0;∴函数图象经过一;二、四象限.故选C.5、D【分析】【分析】单项式是指只有数与字母积的式子,包括单独一个数(或者字母).单项式的系数是指其中的数字因数,π属于数字;次数是单项式中所有字母的指数和.【解析】【解答】解:A、的次数为3;故选项错误;B;单项式a的系数是1;次数是1,故选项错误;C、-2πa2bc的系数为-2π;故选项错误;D、是三次单项式,系数为- ;故选项正确.故选D.6、C【分析】【解答】解:本市明天降水概率是30%是指明天降水的可能性问题;且可能性比较小;即本市明天有可能降水.故选C.【分析】根据概率的意义求解,即可求得答案.注意排除法在解选择题中的应用.二、填空题(共6题,共12分)7、略【分析】【分析】根据三视图的知识可知该几何体为一个圆锥.又已知底面半径可求出母线长以及侧面积.【解析】【解答】解:综合主视图;俯视图,左视图可以看出这个几何体应该是圆锥,且底面圆的半径为1,母线长为2;因此侧面面积为:π×1×2=2π.故答案为:2π.8、略【分析】连接OC;∵点C为的中点;∴∠AOC=∠BOC=45°;∴△ODC是等腰直角三角形;∵OC=2;∴OD=CD=则S阴影=S扇形-S梯形OBCD=-(+2)×=π-1-.故答案为:π-1-.【解析】【答案】连接OC,则可得∠AOC=∠BOC=45°,△ODC是等腰直角三角形,从而求出OD,根据S阴影=S扇形-S梯形OBCD即可得出答案.9、略【分析】根据角的概念得到∠AOB=120°,∠BOC=100°,根据角的和差得到∠AOD=390°-120°-100°=170°,然后根据周角的定义即可得到结论.【解析】【解答】解:∵射线OA绕端点O逆时针旋转120°到OB位置;∴∠AOB=120°;∵再逆时针旋转100°到OC位置;∴∠BOC=100°;∵再顺时针旋转390°到OD的位置;∴∠AOD=390°-120°-100°=170°;∠BOD=360°-120°-170°=70°;故答案为:170°,70°.10、略【分析】【分析】首先根据第一个绝对值的最小值为0确定第二个绝对值的最小值为3,从而确定代数式的最小值.【解析】【解答】解:∵|x+2|≥0;∴|x+2|的最小值为0;∴|x+5|的最小值为3;∴|x+2|+|x+5|的最小值为3;故答案为:3.11、略【分析】【分析】根据一次函数的定义可知自变量的指数为1,比例系数k<0,据此可以解答.【解答】解:∵函数是一次函数;∴解得:m=- ;故答案为:.12、-2,-1,0,1,2±6【分析】【分析】根据绝对值的定义可以解答本题.【解析】【解答】解:绝对值小于3的所有整数是:-2;-1,0,1,2;若|x|=6;则x=±6;故答案为:-2,-1,0,1,2;±6.三、判断题(共7题,共14分)13、√【分析】【分析】得到每名干部的可能性的大小后进行判断即可.【解析】【解答】解:∵5名干部的可能性相同,均为;∴派出任何一名干部的可能性相同;正确.故答案为:√.14、√【分析】【分析】根据等边三角形的性质得到所有等边三角形的内角都相等,于是根据有两组角对应相等的两个三角形相似可判断等边三角形都相似.【解答】解:等边三角形都相似.故答案为√.15、×【分析】【分析】直接根据平行公理即可作出判断.【解析】【解答】解:由平行公理可知;过直线外一点,有且只有一条直线与这条直线平行.故过直线外一点可以作无数条直线与已知直线平行是错误的.故答案为:×.16、√【分析】【分析】根据等边三角形的性质得到所有等边三角形的内角都相等,于是根据有两组角对应相等的两个三角形相似可判断等边三角形都相似.【解析】【解答】解:等边三角形都相似.故答案为√.17、×【分析】【分析】两个腰相等,顶角相等的等腰三角形全等.【解析】【解答】解:如图所示:△ABC和△DEF不全等;故答案为:×.18、√【分析】【分析】利用相似多边形的定义及性质解题.【解析】【解答】解:∵相似多边形的对应边的比相等;且对应角相等;∴边数不同的多边形一定不相似;正确;故答案为:√19、√【分析】【分析】根据抽样调查和全面调查的区别以及普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解析】【解答】解:了解某渔场中青鱼的平均重量;采用抽查的方式是正确的;故答案为:√.四、证明题(共2题,共10分)20、略【分析】【分析】利用半径相等得到OC=OD,则利用等腰三角形的性质得∠OCD=∠ODC,再根据三角形内角和定理得到∠OCD= (180°-∠O),同理可得∠OAB= (180°-∠O);则∠OCD=∠OAB,然后根据平行线的判定即可得到结论.【解析】【解答】证明:∵OC=OD;∴∠OCD=∠ODC;∴∠OCD= (180°-∠O);∵OA=OB;∴∠OAB=∠OBA;∴∠OAB= (180°-∠O);∴∠OCD=∠OAB;∴AB∥CD.21、略【分析】【分析】根据三角形内角和定理求出∠ABC=45°,利用角平分线性质求证DE=CD,再利用HL求证△ADE≌△ADC,得AC=AE,再利用DE⊥AB,求证BE=DE,根据线段之间的等量关系即可求证.【解析】【解答】证明:∵∠C=90°;CA=CB;∴∠ABC=∠BAC=45°;∵∠C=90;DE⊥AB,BC是∠BAC的平分线;∴DE=CD;∴△ADE≌△ADC(HL)∴AC=AE;又∵DE⊥AB;∴∠B=∠BDE=45°;∴BE=DE;AB=AE+BE=AC+CD.第11页,总11页。
华师大版九年级数学上册期末考试试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________ 一、选择题(本题共10小题,每小题4分,共40分)1.下列根式中,与20是同类二次根式的是()A.15B.45C.35 D.182.关于x的一元二次方程x2=1的根是()A.x=1 B.x1=1,x2=-1C.x=-1 D.x1=x2=13.用配方法解方程x2+4x-1=0时,配方结果正确的是()A.(x+4)2=5 B.(x+2)2=5 C.(x+4)2=3 D.(x+2)2=34.下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有2个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯5.某班一同学在老师的培训后学会了某个物理实验操作,回到班上后第一节课教会了若干名同学,第二节课会做该实验的同学又各自教会了同样多的同学,这样全班共有36名同学会做这个实验.若设1名同学每次都能教会x名同学,则可列方程为()A.x+(x+1)x=36 B.1+x+(1+x)x=36C.1+x+x2=36 D.x+(x+1)2=3663的整数部分为x,小数部分为y,则3x-y的值是()A.3 3-3 B.3C.1D.37.定义运算:a*b=2ab, 若a、b是方程x2+x-m=0(m>0)的两个根,则(a+1)*b+2a的值为()A.m B.2-2m C.2m-2 D.-2m-28.如图,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cos α=35,AB=4,则AC的长为( ) A .3B.165C.203D.163(第8题)(第9题) 9.如图,在菱形ABCD 中,∠ABC =60°,连结AC 、BD ,则ACBD =( )A.12B.22C.32D.3310.如图,正方形ABCD 的边AB =3,对角线AC 和BD 交于点O ,P 是边CD 上靠近点D 的三等分点,连结P A 、PB ,分别交BD 、AC 于点M 、N ,连结MN .有下列结论:①OM =MD ;②S △OMA S △ONB=52;③MN =35820;④S △MDP =38,其中正确的是( )(第10题)A .①②③B .①②④C .②③④D .①②③④二、填空题(本题共6小题,每小题4分,共24分) 11.计算:12+27=________.12.一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出1个球是红球的概率为________.13.若关于x 的方程x 2+(k -3)x -k 2=0的两根互为相反数,则k =________.14.如图,添加一个条件:__________________________,使△ADE ∽△ABC .(写一个即可)(第14题)(第15题)15.如图,在三角形纸片ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,BF =4,CF =6.将这张纸片沿直线DE 翻折,点A 与点F 重合.若DE ∥BC ,AF =EF ,则四边形ADFE 的面积为________.16.如图,菱形ABCD的顶点A在函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且过B、D两点.若AB=2,∠BAD=30°,则k=________.(第16题)三、解答题(本题共9小题,共86分)17.(8分)计算:(-3)2-2sin 45°+||2-1.18.(8分)解方程:2x2-7x-4=0.19.(8分)如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(2,1)、B(1,-2).(1)以原点O为位似中心,在y轴的右侧按21放大,画出△OAB的一个位似图形△OA1B1;(2)画出将△OAB向左平移2个单位长度,再向上平移1个单位长度后得到的△O2A2B2;(3)△OA1B1与△O2A2B2是位似图形吗?若是,请在图中标出位似中心点M,并写出点M的坐标.(第19题)20.(8分)如图,将Rt△AOB绕直角顶点O按顺时针方向旋转,得到△A′OB′,使点A的对应点A′落在边AB上,过点B′作B′C∥AB,交AO的延长线于点C.(第20题)(1)求证:∠BA′O=∠C;(2)若OB=2OA,求tan∠OB′C的值.21.(8分)如图,已知▱ABCD,点F在AB的延长线上,CF⊥AB.(1)尺规作图:在边BC上找一点E,使得△DCE∽△CBF(保留作图痕迹,不写作法,不必证明)(2)在(1)的条件下,若E为BC的中点,AD=8,BF=3,求AB的长.(第21题)22.(10分)定义:如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根互为相反数,那么称这样的方程是“对称方程”.例如:一元二次方程x2-4=0的两个根是x1=2,x2=-2,2和-2互为相反数,则方程x2-4=0是“对称方程”.(1)通过计算,判断下列方程是否是“对称方程”:①x2+x-2=0;②x2-12=0.(2)已知关于x的一元二次方程x2-(k2-4)x-3k=0 (k是常数)是“对称方程”,求k的值.23.(10分)如图,在等腰三角形ADC中,AD=AC,B是DC上的一点,连结AB,且有AB=DB.(1)若∠BAC=90°,AC=3,求CD的长;(第23题)(2)若ABCD=13,求证:∠BAC=90°.24.(12分)在如今智能手机的功能中,都可以利用手势密码进行锁屏和解锁.其中最常见的就是利用3×3的正方形点阵设置密码,我们将其称为“9点码”.通常,在设置“9点码”时,只能连结相邻的两点(如图,不妨将9个点依次对应数字1到9,例如图中路线Ⅰ,Ⅱ是可行的,路线Ⅲ,Ⅳ是不可行的),不能走重复的路线,从而形成相应的密码线段,线段越多,密码越复杂.已知小明设置的“9点码”从右上角的点“3”出发,且用了3个数字.(1)已知横向和纵向的相邻两点距离为1,且以小明设置的“9点码”所经过的点为顶点的三角形恰好是等腰三角形,则该等腰三角形的面积所有可能的值为________;(2)用概率知识并结合树状图回答:若小明设置的“9点码”用了3个数字,对于一个不知道该密码的人(已知出发点和用了3个数字),通过画树状图,求其一次尝试能将小明手机解锁的概率.(第24题)25.(14分)如图,在正方形ABCD中,AB=4,P、Q分别是边AD、AC上的动点.(1)填空:AC=________;(2)若AP=3PD,且点A关于PQ的对称点A′落在边CD上,求tan∠A′QC的值;(3)设AP=a,直线PQ交直线BC于点T,求△APQ与△CTQ面积之和S的最小值.(用含a的代数式表示)(第25题)参考答案一、1.B 2.B 3.B 4.B 5.B 6.C7.D8.C9.D10.D二、11.5 312.3 813.314.∠ADE=∠B(答案不唯一) 15.5 316.6+2 3三、17.解:原式=3-2×22+2-1=2.18.解:原方程可化为(x -4)(2x +1)=0 ∴x -4=0或2x +1=0 ∴x 1=4,x 2=-12.19.解:(1)如图,△OA 1B 1为所作.(2)如图,△O 2A 2B 2为所作.(3)△OA 1B 1与△O 2A 2B 2是位似图形.如图,点M 为所求,其坐标为(-4,2).(第19题)20.(1)证明:如图,∵B ′C ∥AB ,∴∠A +∠C =180°.由旋转,得OA ′=OA ,∴∠1=∠A .∵∠1+∠BA ′O =180°,∴∠A +∠BA ′O =180° ∴∠BA ′O =∠C .(第20题)(2)解:如图,由旋转,得OB ′=OB ∠A ′OB ′=∠AOB =90°,∴∠2+∠3=90°. ∵∠3+∠4=90°,∴∠2=∠4. 由(1)得,∠BA ′O =∠C∴△A ′OB ≌△COB ′,∴∠B =∠OB ′C . 在Rt △AOB 中,OB =2OA∴tan B=OAOB=12.∴tan∠OB′C=tan B=1 2.21.解:(1)如图,点E即为所求.(第21题)(2)∵四边形ABCD是平行四边形,AD=8∴BC=AD=8,AB=CD.∵E为BC的中点,∴CE=BE=12BC=4.∵△DCE∽△CBF,∴CEBF=DCBC∴43=DC8,∴DC=323,∴AB=DC=323.22.解:(1)①x2+x-2=0,即(x+2)(x-1)=0∴x1=-2,x2=1.∵-2和1不互为相反数,∴不是“对称方程”.②由题意,得x=±12=±2 3即x1=2 3,x2=-2 3.∵2 3与-2 3互为相反数,∴是“对称方程”.(2)设x1,x2为原方程的解,∵该方程为“对称方程”∴x1+x2=k2-4=0,即k2=4,解得k=±2.当k=-2时,方程为x2+6=0,无解,不符合题意.当k=2时,方程为x2-6=0,符合题意.∴k的值为2.23.(1)解:∵AD=AC,AB=DB∴∠C=∠D,∠D=∠DAB,∴∠C=∠D=∠DAB.∵∠BAC=90°,∠C+∠D+∠DAC=∠C+∠D+∠DAB+∠BAC=180°,∴∠C+∠D+∠DAB=90°∴∠C=∠D=∠DAB=30°.在△ABC中,∠BAC=90°,∠C=30°∴AB=AC·tan 30°=3×33=1∴BC=2AB=2,BD=AB=1 ∴CD=BD+BC=1+2=3.(2)证明:∵ABCD=13,AB=DB∴BC=2AB,DC=3AB.∵∠DAB=∠C,∠D=∠D∴△DAB∽△DCA,∴ABAC=ADCD.∵AD=AC,∴AC2=3AB2.∵BC=2AB,∴BC2=4AB2.∴AB2+AC2=BC2,∴∠BAC=90°.24.解:(1)12或1(2)如图.(第24题)由树状图可得,所有等可能的结果有15种,而符合条件的结果只有1种,所以一次尝试能将小明手机解锁的概率为1 15.25.解:(1)4 2(2)∵在正方形ABCD中,AB=4,AC为对角线∴AD=AB=4,∠DAC=∠DCA=45°,∠ADC=90°.∵点A关于PQ的对称点A′落在CD边上∴△APQ和△A′PQ关于PQ对称∴AP=A′P,∠P AQ=∠P A′Q=45°.∵∠DA′Q=∠DCA+∠A′QC=∠P A′Q+∠P A′D∴∠A′QC=∠P A′D.∵AP=3PD,AD=4,∴A′P=AP=3,PD=1第 11 页 共 11 页 ∴A ′D =A ′P 2-PD 2=2 2∴tan ∠A ′QC =tan ∠P A ′D =PD A ′D =12 2=24. (3)如图,过点Q 作直线MN ⊥AD 于点M ,交BC 于点N ,则MN ⊥BC .(第25题)∵AP ∥CT ,∴△APQ ∽△CTQ ,∴AP CT =QM QN .设QM =h ,则QN =4-h ,∴a CT =h 4-h解得CT =a (4-h )h∴S =12ah +12·a (4-h )h ·(4-h )=12ah +a (4-h )22h整理得ah 2-(4a +S )h +8a =0.∵方程有实数根∴[-(4a +S )]2-4a ·8a ≥0,即(4a +S )2≥32a 2.又∵4a +S >0,a >0,∴4a +S ≥4 2a∴S ≥(4 2-4)a .当S =(4 2-4)a 时,由方程可得h 1=h 2=2 2,满足题意.故当h =2 2时,△APQ 与△CTQ 面积之和S 最小,最小值为(4 2-4)a .。
河南省南阳市2023-2024学年华东师大版九年级上学期数学期末模拟试卷一.选择题(共10小题,30分)1.下列二次根式中,最简二次根式的是( )A.B.C.D.2.下列说法正确的是( )A.“山川异域,风月同天”是随机事件B.买中奖率为1%的奖券100张,一定会中奖C.“同旁内角互补”是必然事件D.一枚硬币连抛100次,可能50次正面朝上3.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )A.k>B.k>且k≠0C.k<D.k≥且k≠04.在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+3C.y=x2+1 D.y=x2﹣15.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是( )A.B.C.D.6.在大力发展现代化农业的形势下,现有A、B两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10030050010003000 A出芽率0.990.940.960.980.97B出芽率0.990.950.940.970.96下面有三个推断:①当实验种子数量为100时,两种种子的出芽率均为0.99,所以A、B两种新玉米种子出芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是( )A.①②③B.①②C.①③D.②③7.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为( )A.B.C.D.8.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2,下列对方程20t﹣5t2=15的两根t1=1与t2=3的解释正确的是( )A.小球的飞行高度为15m时,小球飞行的时间是1sB.小球飞行3s时飞行高度为15m,并将继续上升C.小球从飞出到落地要用4sD.小球的飞行高度可以达到25m9.西周数学家商高总结了用“矩”(如图1)测量物高的方法:把矩的两边放置成如图2的位置,从矩的一端A(人眼)望点E,使视线通过点C,记人站立的位置为点B,量出BG长,即可算得物高EG.令BG=x(m),EG=y(m),若a=30cm,b=60cm,AB=1.6m,则y关于x的函数表达式为( )A.y=x B.y=x+1. C.y=2x+1.6D.y=+1.610.某小区有一块绿地如图中等腰直角△ABC所示,计划在绿地上建造一个矩形的休闲书吧PMBN,其中点P,M,N分别在边AC,BC,AB上,记PM=x,PN=y,图中阴影部分的面积为S,当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是( )A.正比例函数关系,一次函数关系B.一次函数关系,二次函数关系C.一次函数关系,一次函数关系D.正比例函数关系,二次函数关系二.填空题(共5小题,15分)11.使有意义的x的取值范围是 .12.已知=,那么的值是 .13.如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是 .14.如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为 .15.如图,在Rt△ABC中,∠C=90°,AC=BC=2,点M为边BC的中点,点D为边BC上一动点,连接AD,将边AC沿直线AD翻折得到线段AE,连接ME,则ME长度的取值范围为 .三.解答题(共8小题,75分)16.解方程:(x+2)(x﹣5)=1.(5分)17.《小猪佩奇》这部动画片,估计同学们都非常喜欢.周末,小猪佩奇一家4口人(小猪佩奇,小猪乔治,小猪妈妈,小猪爸爸)来到一家餐厅就餐,包厢有一圆桌,旁边有四个座位(A,B,C,D).(8分)(1)小猪佩奇随机到A座位的概率是 ;(2分)(2)若现在由小猪佩奇,小猪乔治两人先后选座位,用树状图或列表的方法计算出小猪佩奇和小猪乔治坐对面的概率.(6分)18.如图,在△ABC中,AB=AC=5,BC=4,BD⊥AC于点D.(9分)(1)求tan∠ABC的值;(5分)(2)求BD的长.(4分)19.在体育考试中,一名男生掷实心球,已知实心球出手时离地面2米,当实心球行进的水平距离为4米时实心球被掷得最高,此时实心球离地面3.6米,设实心球行进的路线是如图所示的一段抛物线.(10分)(1)求实心球行进的高度y(米)与行进的水平距离x(米)之间的函数关系式;(6分)(2)如果实心球考试优秀成绩为9.6米,那么这名男生在这次考试中成绩是否能达到优秀?请说明理由.(4分)20.【材料阅读】2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度,其基本原理之一是三角高程测量法,在山顶上立一个标杆,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为(其中d为两点间的水平距离,R为地球的半径,R取m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.【问题解决】某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山顶标杆顶端E的仰角为37°,测量点A处的海拔高度为1800m.(10分)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)请你计算该山的海拔高度(要计算球气差,结果精确到0.01m).21.戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒.(10分)(1)若商家要使日利润达400元,又想尽快销售完该款口罩,问每盒售价应定为多少元?(5分)(2)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.(5分)22.阅读与思考(11分)下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是 (从下面选项中选出两个即可);(2分)A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(6分)(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为 .(3分)23.【综合与实践】数学综合实践课上,同学们以“等腰三角形的旋转”为主题,开展如下探究活动:(12分)(1)【操作探究】如图1,△ABC为等边三角形,将△ABC绕点A旋转180°,得到△ADE,连接BE,则∠EBC= °.若F是BE的中点,连接AF,则AF与DE的数量关系是 .(2分)(2)【迁移探究】如图2,将(1)中的△ABC绕点A逆时针旋转30°,得到△ADE,其他条件不变,求出此时∠EBC的度数及AF与DE的数量关系.(6分)(3)【拓展应用】如图3,在Rt△ABC中,AB=AC=2,∠BAC=90°,将△ABC绕点A旋转,得到△ADE,连接BE,F是BE的中点,连接AF.在旋转过程中,当∠EBC=15°时,直接写出线段AF的长.(4分)九年级数学模拟答案一.选择题(共10小题)1. C.2. D.3. B.4.D.5.A.6.D.7.B.8.C.9.B.10.B.二.填空题(共5小题)11. x≤2 12. 13 (1,0) 14. 15. ﹣2≤EM≤ 三.解答题(共8小题)16.解:原方程可化为x2﹣3x﹣11=0.∵a=1,b=﹣3,c=﹣11,且△=(﹣3)2﹣4×1×(﹣11)=53>0,∴,∴,.17.解:(1)小猪佩奇随机到A座位的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中小猪佩奇和小猪乔治坐对面的结果数为4,所以小猪佩奇和小猪乔治坐对面的概率==.18.解:(1)如图,过点A作AE⊥BC交BC于点E,∵AB=AC,AE⊥BC,∴,∠AEB=90°,∵BC=4,∴,在Rt△AEB中,∵∠AEB=90°,∴AE2=AB2﹣BE2,∵AB=AC=5,BE=2,∴AE2=52﹣22=21,∴.在Rt△AEB中,∵∠AEB=90°,,BE=2,∴.(2)如图,同(1),过点A作AE⊥BC交BC于点E,∵AE⊥BC,∴,又∵BD⊥AC,∴,∴,∵AC=5,BC=4,又∵由(1)求得,∴.19.解:(1)由抛物线顶点是(4,3.6),设抛物线解析式为:y=a(x﹣4)2+3.6,把点(0,2)代入得a=﹣,∴抛物线解析式为:y=﹣(x﹣4)2+3.6;(2)当y=0时,0=﹣(x﹣4)2+3.6,解得,x1=﹣2(舍去),x2=10,即这名男生在这次考试中成绩是10米,能达到优秀.20.解:如图,过点C作CH⊥BE于点H,由题意,得AB=CH=800m,AC=BH=1.5m,在Rt△ECH中,EH=CH⋅tan37°≈600(m),又DE=2,∴DB=EH﹣DE+BH=599.5(m),由题意,得,∴599.5+0.043+1800≈2399.54(m),故山的海拔高度为2399.54m.21.解:(1)设每盒售价降低x元,根据题意可知:(20+2x)(20﹣x)=400,解得:x1=0(舍去),x2=10,∴售价应定为70﹣10=60(元),答:若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为60元;(2)设当每盒售价降低x元时,商家获得的利润为W元,由题意可知:W=(20+2x)(20﹣x)=﹣2x2+20x+400,∵a=﹣2<0,∴抛物线开口向下,当x=﹣=5时,W有最大值,即W=450元,∴售价应定为70﹣5=65(元),答:当每盒售价定为65元时,商家可以获得最大日利润,最大日利润为450元.22.解:(1)上面小论文中的分析过程,主要运用的数学思想是AC;故AC;(2)a>0时,抛物线开口向上,当Δ=b2﹣4ac<0时,有4ac﹣b2>0.∵a>0,∴顶点纵坐标>0∴顶点在x轴的上方,抛物线与x轴无交点,如图,∴一元二次方程ax2+bx+c=0(a≠0)无实数根;(3)可用函数观点认识二元一次方程组的解;故可用函数观点认识二元一次方程组的解(答案不唯一).23.解:(1)90,AF=DE;(2)∵等边三角形△ABC绕点A逆时针旋转30°,得到△ADE,∴AB=AD=AE,∠CAE=30°,∴∠BAE=∠BAC+∠CAE=90°,∴△ABE是等腰直角三角形,∴∠ABE=45°,∴∠EBC=∠ABC﹣∠ABE=60°﹣45°=15°;∵F是BE的中点,∴∠AFB=90°,∴△AFB是等腰直角三角形,∴AF=AB,∵AB=BC=DE,∴AF=DE;答:∠EBC的度数为15°,AF与DE的数量关系为AF=DE;(3)AF的长为1或.。