随机事件的概率教案教案
- 格式:doc
- 大小:26.50 KB
- 文档页数:4
初中数学概率教案:随机事件的概率教案初中数学概率教案【教学目标】1.知识与技能:1)掌握随机事件、必然事件、不可能事件的概念。
2)了解随机事件发生的不确定性和频率的稳定性,进一步认识随机现象,了解概率的意义;2.过程与方法:通过经历数学实验,观察、发现随机事件的统计规律性,了解通过大量重复试验,用频率估计概率的方法;3. 情感、态度、价值观:通过随机事件的发生既有随机性,又存在着统计规律性的发现,体会偶然性和必然性的对立统一.【教学重点】概率的意义.【教学难点】通过观察数据图表,总结出在大量重复试验的情况下,随机事件的发生所呈现出的规律性.【教学方法】教师启发引导与学生自主探索相结合.【教学手段】投影和计算机辅助教学.【教学流程】考察概括【教学过程】一、创设情境,体会随机事件发生的不确定性1.展示生活实例1:麦蒂的35秒奇迹从同学们都很感兴趣的篮球比赛说起,介绍比赛最后时刻的情形.为什么在那个时刻,所有人都紧张的注视着麦蒂和他投出的篮球?你能确定神奇的麦蒂在即将开始的NBA比赛中的下一个三分球投进了吗?设计意图从学生感兴趣的生活实例引入,一方面是为了激发学生的听课热情,另一方面也是让学生体会学习随机事件及概率的原因和必要性.抓住生活实例中包含数学思维的部分进行提问,引导学生用数学的眼光观察、认识我们生活的世界,对生活中的现象和感性认识进行理性思考.2.展示生活实例2:杜丽北京奥运夺金我们都曾非常关注北京2021奥运会,大家知道这名中国射击运动员的名字吗?为什么射击比赛中每一枪都如此扣人心弦呢?设计意图奥运会是社会热点话题,可以增强学生的国家自豪感.3.展示生活实例3:石头、剪刀、布再看发生在我们身边的实例,甲、乙两个同学想看同一本好书,于是采用石头、剪刀、布的方式决定谁先看.那么能够预先确定甲和乙谁获胜吗?设计意图回到学生身边.从生活体验中归纳共性,包含了综合、概括、比较等分析过程,是形成概念的有效途径.因此在这一阶段通过创设情境唤起学生的兴趣,使他们身处现实情境中,为后续的思维活动建立起感性认识基础.二、归纳共性,形成随机事件的概念从数学的角度研究事件时我们主要关注事件是否发生,结果能否预先知道,从结果能够预知的角度看,能够发现以上事件的共同点吗?设计意图有了前面的基础,此时学生能够有效的概括、抽取上述生活体验的共性.在数学上研究事件时,主要关注在相应的条件下,事件是否发生,因此在提问时明确思考的角度,让学生的思维直指概念的本质,避免不必要的发散. 以上这些事件都是可能发生也可能不发生的事件.那么在自己的身边,还能找到此类的事件吗?有没有不属于此类的事件呢?通过以上思考,发现事件可以分为以下三类:必然事件:在一定的条件下必然要发生的事件;不可能事件:在一定的条件下不可能发生的事件;随机事件:在一定的条件下可能发生也可能不发生的事件.事件的表示:用大写字母A、B、C??表示设计意图在形成概念之前,通过主动的思考,在自己身边举例,巩固学生对随机事件的思维基础;二是通过对比,明确事件分类的标准和概念之间的差异. 巩固练习三、深入情境,体会随机事件的规律性我们看到,随机事件在生活中是广泛存在的,时刻影响着我们的生活.正因为体育比赛中充满了随机事件,而让比赛更加刺激、精彩,让观众更加紧张投入;因为每天的校园生活充满了随机事件,而让我们走入校门的时候内心涌动着好奇与兴奋;因为人生道路上充满了随机事件,而让我们每个人的人生各有各的不同,各有各的精彩.我们生活在一个充满了随机事件的世界当中.同时,我们身边也有一些意外是随机事件,那我们是不是因此而时刻都充满着恐慌呢?实现自己的目标这也是个随机事件,我们是不是就因此而放弃了今天的努力了呢?我们没有,这就说明随着我们在每天的生活中不断地接触随机事件我们对他发生的规律性有了一些感性的认识,那么接下来我们将对此做一些理性思考设计意图这一段教学首先表现了随机事件带给人们丰富多彩的生活,体现了教师对数学、对概率的喜爱和热情,传递给学生学习数学的积极态度.其次,这段教学既是对前面内容的总结,也引出了下面研究思考的方向,起到承上启下的作用,同时也就揭示了人们认识随机事件的过程,以及随机事件随机性和规律性之间的联系.第三,通过反问,使学生意识到,生活的不断体验已经使我们积累了一些对随机事件规律性的感性认识,那么接下来就是要挖掘出这些感性认识下面的理性依据,以这种方式激发学生对生活经验的反思和探究,同时帮助学生形成正确的世界观.初中数学概率教学反思《概率》这一章主要教学目标是通过学生猜测试验并收集试验数据分析试验结果等活动来了解必然事件,不可能事件和不确定事件发生的可能性,了解事件发生的等可能性及游戏规则的公平性,会对古典概型和几何概型发生地概率进行简单的计算。
《随机事件的概率》教案1教学目标1.通过试验,形成对随机亊件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.2.了解频数、频率的概念.3.了解概率的定义,会应用概率公式求简单事件的概率.数学思考与问题解决让学生经历猜想试验-收集数据-分析结果的探索过程.在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.情感与态度在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯;得出随机事件发生的可能性大小的准确结论,需经过大量重复的试验,让学生从中体验到科学的探究态度.通过概率意义教学,渗透辩证思想教育.重点难点重点1.对随机事件发生可能性大小的定性分析.2.概率的意义.难点1.理解大量重复试验的必要性.2.在具体情境中了解概率的意义.教学设计一、情境引入课件显示教材第63页“大家谈谈”中的第2题.提出问题:(1)“今天有雨”是必然事件还是随机事件?(2)“很可能要下雨”是什么意思?学生畅所欲言,只要合理即可.引出课题:今天我们就来研究可能性大小的问题.设计意图:采用现实情境引入,学生一下被实际情境所吸引,积极思考,发表意见.由此引出今天研究的内容,使学生在现实生活的经验基础上分析并体会可能性有大小乏分.二、新知探究1.摸球试验:一个袋子中有大小相同的5个球,其中3个红球,2个黄球,从中任意摸出一个球,记事件A=“摸到红球”,B=“摸到黄球”.2.提出问题:(1)你认为事件A 和B 哪个发生的可能性大?(2)4名同学一组,轮流从袋子中摸球,记下颜色后放回袋子中,重复20次试验,记录事件A 和B 发生的次数.(3)汇总全班各小组的试验结果,统计摸到红球和黄球的次数,计算摸到红球和黄球的次数占试验总次数的百分比,将结果填入下表中.(投影显示教材第64页表格)设计意图:让学生养成动脑筋、想办法的学习习惯,明白小组合作的优势.(4)事件A 和B 发生的次数所占的百分比大小有什么规律吗?(5)用哪两个数值可以刻画事件A 和B 发生的可能性大小?设计意图:通过这两个问题,引出频数、频率的概念.设总共做n 次重复试验,而事件A 发生了m 次,则称事件A 发生的次数m 为频数,称比值m n 为A 发生的频率.提问:通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大必须怎么做?先让学生回答,回答时教师注意纠正学生的不准确用语,最后由教师总结:要判断随机事件发生的可能性大小,必须经过大量重复试验.设计意图:本小节是教学难点,这个结论由学生得出,体现了自主学习的理念,有利于学生思维的发展.3.概率定义.上述摸球试验中,任意摸出一个球,有5种可能结果,摸到毎个球的可能性大小相同.可以用15刻画摸到每个球的可能性大小.于是用35|刻画摸到红球的可能性大小,用25刻画摸到黄球的可能性的大小.用一个数刻画随机事件A 发生的可能性大小,称这个数为事件A 的概率.一般记作P (A ). 一般地,如果一个试验有n 个等可能的结果,而事件A 包含其中k 个结果,则P (A )=.事件包含的可能结果数所有可能结果总数k A n 对任何一个事件A ,它的概率P (A )满足0<P (A )<1,必然事件的概率是1,不可能事件的概率是0.教师活动:参与分析定义、公式,并讲解求概率的方法.学生活动:参与分析定义、公式,从中认识概率的意义和运算公式.[说明]概率的意义较难理解,教师分析,学生参与探讨,问题可明.三、新知应用1.课件显示教材第64页例题.引导学生自己完成.设计意图:培养学生自主学习习惯,激发学生的学习积极性.2.练习:教材第65页练习.在例题学习的基础上,趁热打铁,熟练概率公式的应用.要求学丰尽量独立完成,有困难者,可小组探讨.四、课堂小结1.问题:本节课你有什么收获?2.你学到哪些具体知识?五、布置作业必做题:教材第65〜66页A组第1〜5题,B组第1题.选做题:B组第2题.《随机事件的概率》教案2教学目标知识与技能1.进一步理解概率的意义.2.会通过对某一事件概率的计算来判断游戏的公平性.数学思考与问题解决使学生经历合作交流的过程,在此过程中积累经验,加深对概念的理解.情感与态度由游戏的公平性,感受理论和实践的关系,体会数学来源于实践,又指导生活实践.重点难点重点:利用概率的计算判断游戏的公平性.难点:对于游戏规则的设定.教学设计一、创设情境同学们,下周一我们班要和(二)班进行广播体操比赛,我们班是愿意第一个出场呢,还是(二)班做完咱们再做?(学生回答)其实,谁第一个出场,学校是有规则的,并且规则是公平的.你知道规则是什么吗?学校的规则是这样的,将一枚质地均匀的硬币抛出,落地之后如果正面朝上,则(一)班第一个出场;如果反面朝上,则第一个出场的是(二)班.(规则公平)同学们,如果是将一枚质地均匀的硬币抛掷两次,如果都是正面朝上,我们(一)班第一个出场;如果一个正面朝上,一个反面朝上,(二)班就第一个出场,现在的规则还公平吗?二、大家谈谈1.小组内同学进行交流,大家踊跃发表看法,教师适时将教材第66页“甲、乙两同学的观点”展示出来,再重点讨论这两种方法正确与否.2.指导学生进行将一枚硬币投掷两次的试验,进行验证.小组内一人掷硬币,一个人记结果,其余的同学观察、体会.3.教师总结:甲同学的观点只是停留在日常生活中的经验,没有进行深入的思考、分析,更没有进行试验验证,这个结果是不正确的.乙同学没有停留在日常生活经验的表面,而是对之进行试验验证,试验的结果证明了日常生活的经验和实际的数学规则是有差距的,乙同学的结果是正确的,最值得同学们学习的是乙同学的做法,能够对于数学上的问题进行深入的思考,并进行试验验证,这才是学好数学最重要的品质.而对于我们本节所要讨论的游戏规则公平问题:实际上,在机会游戏中,有两个事件A和B,如果规定A发生,甲胜发生,乙胜,那么当事件A和B的概率相等时,游戏就是公平的.否则,就不公平.三、—起探究教材第67页“一起探究”:(把掷两次硬币的结果列举出来)我们刚才已经通过掷硬币的试验了解到了掷两次硬币共有四种结果,每种结果出现的机会是均等的.具体结果:所以,P(两次正面朝上)=14,P(—次正面朝上,一次反面朝上)=12,P(两次反面朝上)=14.因此如果按“两次正面朝上和一次正面朝上,一次反面朝上”来制订游戏规则显然是不公平的,那么我们该怎样修改游戏规则,使其成为一个公平的游戏?(学生小组内讨论) 学生答案只要是合理的,就应予以肯定、表扬.四、做一做1.学生小组合作,做教材第67页“做一做因此试验共有9种结果,P(两数之和为奇数)=49,P(两数之和为偶数)=59.教师总结,给出正确的答案.重点讲清(讨论):“所有可能出现的结果”“每种出现的结果机会是否均等”,特别是对于“1+2=3”和“2+1=3”是否看为同一种结果,明确它们的不同之处,和“试验共有多少种等可能结果”的区别,这也是解决本节开头甲同学观点错误的关键.2.学生独立做教材第67页例2.3.教材第68页练习第1、2题.学生独立做完之后,指定学生讲述答案,最后教师总结,及时点评.五、课堂小结本节课你最大的收获是什么?(请同学们谈一谈本节课最大的收获)六、布置作业必做题:教材第68〜69页A组第1,4题.选做题:教材第69页B组第1、2題.。
《随机事件的概率》公开课教案精细化处理后的文本一、教学内容本节课将深入探讨随机事件的内涵,并掌握等可能事件的概率计算方法。
我们会进一步了解条件概率与独立事件的概率,这两个概念在数学领域中极为重要,它们能够帮助我们更好地理解事件之间的关系,并应用于各种实际问题中。
二、教学目标1. 深刻理解随机事件的本质,掌握等可能事件的概率计算技巧。
2. 理解并运用条件概率与独立事件的概率知识,解决生活中的数学问题。
3. 培养学生的逻辑思维与数学应用能力,提高对概率论的兴趣。
三、教学难点与重点1. 教学难点:条件概率与独立事件的概率计算,这两个概念较为抽象,需要学生能够灵活运用。
2. 教学重点:等可能事件的概率计算,以及条件概率和独立事件概率的实际应用。
四、教具与学具准备1. 教具:多媒体教学设备,黑板,粉笔。
2. 学具:教材,笔记本,彩笔,计算器。
五、教学过程1. 实践情景引入:通过抛硬币、抽签等实际例子,引导学生思考随机事件的概率。
例如,抛硬币出现正面的概率是多少?抽签抽到红色的概率是多少?2. 讲解教材内容:详细介绍随机事件的定义,等可能事件的概率计算方法,条件概率和独立事件的概率概念。
我们将通过具体的例题来讲解这些概念的应用。
3. 例题讲解:挑选具有代表性的例题,讲解解题思路和方法。
例如,甲、乙两人分别抛一枚均匀的硬币,求甲抛出正面且乙抛出正面的概率。
4. 随堂练习:让学生在课堂上完成练习题,巩固所学知识。
例如,已知事件A和事件B相互独立,且P(A)=0.3,P(B)=0.4,求P(AB)。
5. 小组讨论:分组讨论实际问题,引导学生运用概率知识解决问题。
例如,某学校举行篮球比赛,已知甲队获胜的概率为0.6,乙队获胜的概率为0.4,求甲队连续获胜两次的概率。
六、板书设计1. 随机事件的定义及其实例。
2. 等可能事件的概率计算公式及其解释。
3. 条件概率的计算公式及其应用。
4. 独立事件的概率计算公式及其应用。
随机事件的概率教案一、教学目标1. 知识目标(1)理解随机事件的概念。
(2)掌握随机事件的基本性质。
(3)了解事件的互斥和独立性质,并能根据情况进行应用。
2. 能力目标(1)能运用概率论的知识预测和决策。
(2)培养学生的逻辑思维能力和判断能力。
3. 情感目标(1)培养学生的数学兴趣。
(2)在教学过程中,强调合作精神和探究精神。
二、教学重点1. 随机事件的概念和性质的理解。
2. 随机事件的互斥和独立性质的应用。
五、教学过程1. 引入(5分钟)教师出示一组未排序的数字 1、2、3、4、5,让学生思考如何判断这些数字中有多少个是偶数。
引导学生思考用何种方法可以推断出这些数字中有哪些是偶数。
通过引导,让学生发现这些数字是否是随机出现的。
引导学生思考:如果拿出一组数字,它们是随机出现的或是有规律出现的,那么可以如何计算它们的概率呢?2. 基础知识讲解(25分钟)(1)随机事件的概念随机事件是一个有可能发生或不发生的自然现象或过程。
概率是表示随机事件的可能性大小的数字,通常用百分数或小数表示。
(2)随机事件的性质① 必然性:事件必定发生。
② 不可能性:事件不可能发生。
③ 互斥性:两个事件不能同时发生。
④ 完备性:属于一定事件之一的事件一定会发生。
⑤ 加法:多个互斥事件的概率之和等于它们的总体概率。
(3)随机事件的互斥和独立性质互斥:若两事件不能同时发生,则称它们为互斥事件。
互斥事件概率的加法公式: P (A ∪ B) = P (A) + P (B)。
独立:若两事件的发生不相互影响,则称它们为独立事件。
独立事件乘法公式:P(A∩B)=P(A)×P(B)。
3. 例题演示(25分钟)例一:从扑克牌中任取两张牌,求它们都是红色的概率。
解:将此事件分解成两个子事件,设 event A 为第一张牌为红色,event B 为第二张牌为红色,则如下图所示,其中 26 为红色牌数,52 为总扑克牌数。
由于第一张牌选了一张红色牌后,第二张牌中还有 25 张红色牌,则有 P(A)=26/52,P(B|A)=25/51,因此有:P(A∩B)=P(A)×P(B|A)=26/52×25/51=1/2×25/51=25/102≈0.245。
教案:随机事件的概率教学目标:1. 了解必然事件、不可能事件、随机事件的概念。
2. 能够运用概率的知识解释生活中的随机现象。
3. 掌握概率的统计定义及其基本性质。
教学重点与难点:1. 重点:理解概率的统计定义及其基本性质。
2. 难点:认识频率与概率的区别和联系。
教学过程:一、导入(5分钟)1. 引导学生观察日常生活中的一些随机现象,如抛硬币、掷骰子等。
2. 提问:这些现象有什么共同特点?它们的结果是否确定?二、新课讲解(15分钟)1. 必然事件:在一定条件下一定会发生的事件。
2. 不可能事件:在一定条件下一定不会发生的事件。
3. 随机事件:在一定条件下可能发生也可能不发生的事件。
三、实例分析(10分钟)1. 让学生举例说明必然事件、不可能事件和随机事件的实际应用。
2. 引导学生分析这些事件发生的可能性大小。
四、概率的统计定义(10分钟)1. 介绍概率的统计定义:事件发生的次数与总次数的比值。
2. 讲解如何通过实验来估计事件的概率。
五、频率与概率的关系(5分钟)1. 解释频率与概率的区别:频率是实验中观察到的事件发生的次数与总次数的比值,而概率是根据事件的性质估计的事件发生的可能性大小。
2. 引导学生理解频率与概率之间的联系:频率可以用来估计概率,随着实验次数的增加,频率会逐渐接近概率。
六、课堂练习(5分钟)1. 让学生运用概率的知识解决一些实际问题。
2. 引导学生运用频率与概率的关系来解释一些随机现象。
七、总结与反思(5分钟)1. 回顾本节课所学的内容,让学生总结必然事件、不可能事件和随机事件的定义及特点。
2. 提问:如何运用概率的知识解决实际问题?频率与概率之间有什么关系?教学评价:1. 课后作业:让学生运用概率的知识解决一些实际问题,巩固所学内容。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习效果。
教学反思:本节课通过导入、新课讲解、实例分析、概率的统计定义、频率与概率的关系、课堂练习和总结与反思等环节,让学生了解必然事件、不可能事件和随机事件的概念,并能够运用概率的知识解决实际问题。
随机事件的概率教案随机事件的概率教案一、教学目标:1. 了解随机事件的定义和特征;2. 掌握计算随机事件概率的方法;3. 发展学生的逻辑思维和数学推理能力。
二、教学重点与难点:1. 随机事件的定义和特征;2. 计算随机事件概率的方法。
三、教学方法:1. 概念讲解与示范引导相结合;2. 案例分析与讨论互动;3. 小组合作探究。
四、教学过程:1. 引入:教师出示两个骰子,向学生提问:“如果我抛掷这两个骰子,这样的一次实验的结果有哪些?请举例说明。
”提供几个例子后,引导学生发现实验的结果并不是唯一的,可能出现的结果很多。
2. 讲解随机事件的概念:教师解释随机事件的定义,即在一次试验中,可能发生的结果的集合称为这个试验的随机事件。
然后,说明随机事件的两个特征:“随机性”和“不确定性”。
3. 单个随机事件的概率计算:教师以实际问题为例,介绍如何计算单个随机事件的概率。
引导学生找出可能的结果数量和总的可能结果数量,并进行计算。
然后,通过多个实例讲解不同类型的概率计算方法。
4. 复合随机事件的概率计算:教师介绍复合随机事件的概念,即由几个简单事件组成的事件。
通过数学公式和实例分析,讲解如何计算复合随机事件的概率。
重点讲解“与事件”和“或事件”的计算方法。
5. 综合练习:教师组织学生进行综合练习,通过实际问题的解答,巩固并应用所学的概率计算方法。
鼓励学生进行小组合作,激发学生的主动性和创造力。
6. 案例分析:教师提供一个复杂的实际问题,引导学生运用所学的概率计算方法进行分析和解答。
鼓励学生提出自己的解题思路和方法,并进行讨论和交流。
7. 总结与评价:教师与学生一起总结所学的内容,强调随机事件概率计算的基本方法和注意事项。
同时,通过评价学生的回答和讨论情况,评价教学效果,并指导学生的学习方向。
五、教学资源:1. 骰子;2. 实际问题的案例;3. 小组合作讨论材料。
六、教学评价与反思:本节课采用了讲解与实践相结合的教学方法,通过引导学生发现问题、引导学生探索解决问题的方法,培养了学生的逻辑思维和数学推理能力。
教学对象:大学本科生教学时间:2课时教学目标:1. 理解随机事件的定义和随机事件的概率的概念。
2. 掌握随机事件的分类,并能判断一个事件是随机事件、必然事件还是不可能事件。
3. 熟悉随机事件的概率的计算方法,包括古典概型和几何概型。
4. 学会运用随机事件的概率解决实际问题。
教学重点:1. 随机事件的定义和概率的计算方法。
2. 随机事件的分类和判断。
教学难点:1. 随机事件的概率的计算。
2. 随机事件在现实生活中的应用。
教学准备:1. 多媒体课件2. 纸张、笔3. 随机事件的实际案例教学过程:第一课时一、导入1. 提出问题:什么是随机事件?随机事件的概率是如何计算的?2. 引导学生回顾初中阶段所学的概率知识,为学习本节课做好铺垫。
二、新课讲授1. 随机事件的定义:随机事件是指在相同条件下,可能出现也可能不出现的事件。
2. 随机事件的分类:a. 必然事件:在相同条件下,一定会发生的事件。
b. 不可能事件:在相同条件下,一定不会发生的事件。
c. 随机事件:在相同条件下,可能出现也可能不发生的事件。
3. 随机事件的概率计算:a. 古典概型:将所有可能的结果等可能地列举出来,计算某个事件发生的概率。
b. 几何概型:利用几何图形的性质计算某个事件发生的概率。
三、例题讲解1. 举例说明古典概型和几何概型的计算方法。
2. 讲解随机事件在实际生活中的应用案例。
四、课堂练习1. 学生独立完成课堂练习题,巩固所学知识。
2. 教师巡视指导,解答学生疑问。
第二课时一、复习导入1. 回顾上节课所学内容,检查学生对随机事件的定义、分类和概率计算方法的掌握情况。
2. 引导学生思考随机事件在实际生活中的应用。
二、新课讲授1. 随机事件在实际生活中的应用:a. 概率论在经济学中的应用,如风险评估、投资决策等。
b. 概率论在医学中的应用,如疾病预测、药物疗效评估等。
c. 概率论在工程技术中的应用,如可靠性分析、优化设计等。
2. 随机事件的概率在实际问题中的应用:a. 举例说明概率论在现实生活中的应用案例。
随机事件的概率教案教案标题:随机事件的概率教学目标:1. 了解随机事件的概念和基本术语;2. 掌握随机事件概率的计算方法;3. 进一步培养学生的逻辑思考能力和问题解决能力。
教学重点:1. 学习随机事件的定义和基本概念;2. 掌握求解单个和多个随机事件概率的方法;3. 培养学生运用概率概念解决实际问题的能力。
教学准备:1. 教师:黑板、白板、多彩笔等;2. 学生:教材、练习题、计算器。
教学过程:Step 1:引入概念(5分钟)1. 教师向学生简要介绍随机事件的概念和基本术语,比如样本空间、随机事件、试验等;2. 引导学生回答以下问题:在日常生活中,哪些事件是具有不确定性的?Step 2:随机事件的概率计算方法(15分钟)1. 教师通过实例讲解单个事件的概率计算方法:a. P(A) = 事件A发生的可能结果数 / 样本空间的可能结果数;b. 引导学生根据实例计算单个事件的概率;2. 引导学生探讨多个随机事件的概率计算方法:a. P(A和B) = P(A) × P(B|A);b. P(A或B) = P(A) + P(B) - P(A和B);c. 引导学生根据实例计算多个事件的概率。
Step 3:练习与拓展(15分钟)1. 学生个人或小组完成教材上的练习题,巩固对单个和多个事件概率计算的掌握;2. 教师提供一些拓展问题,让学生应用概率概念解决实际问题,如扔硬币的概率、抽奖的概率等。
Step 4:总结与归纳(10分钟)1. 教师与学生共同总结单个和多个随机事件的概率计算方法;2. 引导学生思考随机事件的概率与事件发生的可能性之间的关系;3. 教师提供相关案例,让学生讨论和总结概率在实际生活中的应用。
Step 5:作业布置(5分钟)1. 布置相关的书面作业,要求学生运用所学的概率知识解答题目;2. 鼓励学生积极尝试解决与概率相关的问题,扩展认识。
教学延伸:1. 教师可以组织学生进行小组活动,设计随机事件的概率实验并分析结果;2. 引导学生使用电脑或在线模拟器进行更多的概率实验,探索更复杂的概率问题。
随机事件的概率教案教案标题:随机事件的概率教案教案目标:1. 理解随机事件和概率的基本概念。
2. 掌握计算简单随机事件的概率方法。
3. 能够应用概率概念解决实际问题。
教学时长:2个课时教学步骤:第一课时:步骤一:引入概率概念(10分钟)1. 向学生解释随机事件的概念,例如掷骰子、抽卡片等。
2. 引导学生思考,随机事件的结果可能有哪些?步骤二:介绍概率的定义(10分钟)1. 解释概率的定义:某个事件发生的可能性大小。
2. 引导学生思考,概率的取值范围是什么?步骤三:计算概率的方法(20分钟)1. 介绍计算概率的方法:概率=有利结果数/总结果数。
2. 通过示例,引导学生计算简单随机事件的概率。
步骤四:练习与巩固(15分钟)1. 分发练习题,让学生自行计算各种随机事件的概率。
2. 随堂检查学生的答案,并解答学生疑惑。
第二课时:步骤一:复习概率计算方法(10分钟)1. 复习上节课学习的概率计算方法。
2. 提醒学生注意计算时的注意事项。
步骤二:应用概率解决实际问题(15分钟)1. 给出一些实际问题,例如抽奖概率、赌博概率等。
2. 引导学生运用概率的概念解决这些问题。
步骤三:讨论与总结(10分钟)1. 学生分享他们解决实际问题的方法和思路。
2. 教师总结本节课的重点内容和学生的表现。
步骤四:拓展与延伸(10分钟)1. 引导学生思考更复杂的随机事件和概率计算方法。
2. 鼓励学生自主学习和探索更多相关知识。
教学资源:1. PowerPoint演示文稿,用于引入概念和示例演示。
2. 练习题,用于学生练习和巩固。
3. 实际问题案例,用于应用概率解决问题。
评估方法:1. 随堂检查学生对概率概念的理解和计算方法的掌握程度。
2. 通过学生的练习题答案和解决实际问题的表现评估学生的应用能力。
3. 学生之间的讨论和分享,评估他们对概率概念的理解深度。
教学延伸:1. 鼓励学生自主学习更复杂的概率计算方法,如条件概率和独立性等。
随机事件的概率教案
[课题]随机事件的概率(高中数学第二册第十章第二节)
[教学类型] 新知课
[教学目的]
1了解随机事件`必然事件`不可能事件的概念;
2 了解随机事件在大量重复试验时,它的发生所呈现出的规律性;
3 了解概率的统计定义及概率的定义;
4 利用概率知识正确理解现实生活中的实际问题。
[教学方法]
1 研究法:引导学生对身边的事件加以注意`分析,结果可定性为分为三类事件:必然事件,不可能事件,随机事件;
2 发现法:通过观察课本上给出的实验数据,让学生无意识地发现随机事件的某一结果发生的规律性。
[重点与难点]
(1)教学重点:1 事件的分类;2 概率的定义;3 概率的性质(2)教学难点:随机事件的发生所呈现的规律性。
[教具]
硬币一枚
[教学过程]
(一)介绍概率论的由来。
(问题的引入)
概率论产生于十七世纪,但数学家思考概率论问题的源泉,却来自赌博。
传说早在1654年,有一个赌徒向当时的数学家提出一个使他苦
恼了很久的问题:“两个赌徒相约赌若干局,谁先赢3局就算赢,全部赌本就归谁。
但是当其中一个人赢了2局,另一个人赢了1局的时候,由于某种原因,赌博终止了。
问:‘赌本应该怎样分才合理。
’”这们数学家是当时著名的数学家,但这个问题却让他苦苦思索了三年,三年后,荷兰著名的数学家企图自己解决这一问题,结果写成了《论赌博中的计算》一书,这就是概率论最早的一部著作。
我们知道赌博中有赢有输,可能赢也可能输。
现实生活中也一样,有些事情一定会发生,有些事情不一定发生,有些事情可能发生也可能不发生。
那么在数学中如何定义这些事情呢?
(二)讲授新课
1 学生自学第112页的内容,回答下列问题:事件分成哪三类及这三类事件的主要区别
板书:
事件的分类:必然事件:在一定的条件下必然发生的事件;
不可能事件:在一定的条件下不可能发生的事件;
随机事件:在一定的条件下可能发生也可能不发生的事件。
练习:
判断下列事件是什么事件
(1)没有水分,种子发芽;
(2)在标准大气压下,水的温度达到50摄氏度时,沸腾;
(3)同性电荷,相互排斥;
(4)姚明投篮一次,进球;
(5)温家宝总理来我校参观;
(6)掷骰子出现4点。
2 让学生观察课本上给出的3组实验数据,通过观察发现概率的存在规律:在一次试验中,随机事件的发生与否不是确定的,但是随试验次数的不断增加,它的发生就会呈现一种规律性,即:它发生的频率越来越接近于某个常数,并在这个数附近摆动。
板书:概率的定义:一般地,在大量重复进行同一个试验时,事件A 发生的频率总接近于某个常数,在它附近摆动,这个常数叫做事件A 的概率,记做P(A)。
3 根据概率定义推导随机事件概率的性质
板书:P(A)=m/n,其中,0<=P(A)<=1
让学生思考P(A)=0和P(A)=1分别表示什么含义?
巩固练习:课本第114页的练习2、3
4、课堂小结:
学生小结:总结归纳本节课的教学目标、教学重点和难点
教师补充完善
5、补充练习:
随机事件由事件发生概率的大小分为大概率事件和小概率事件。
1)举出一个小概率事件的例子。
如:买一张彩票中特等奖。
2)举出一个大概率事件的例子。
如:买一张彩票没中奖。
3)大家都知道“守株待兔”的故事吧?你会像农夫一样吗?为什么?
4)为什么彩票中奖概率那么小,还有那么多人买?
[设出悬念]
掷一枚均匀的硬币,可能出现的结果可能有两个,这两个结果发生的概率相等吗?分别为多少?那掷骰子呢?
[教学后记]。