2020年浙教版八年级数学上册 一次函数 单元测试卷二(含答案)
- 格式:doc
- 大小:121.00 KB
- 文档页数:8
《一次函数》 第一学期初二数学测试卷(3)( 试卷满分100分,考试时间90分钟)班级 姓名 成绩一、 选择题:(每小题3分,共30分)1、直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2、已知一次函数y=x+b 的图像经过一、二、三象限,则b 的值可以是( ).A.-2B.-1C.0D.23、函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠4、如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y > 时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >25、在平面直角坐标系中,把直线y=x 向左平移一个单位长度后,其直线解析式为(-1,1) 1y (2,2)2yx yOA .y=x+1 B.y=x-1 C.y=x D. y=x-26、已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为A .x<-1B .x> -1C . x>1D .x<17、已知梯形ABCD 的四个顶点的坐标分别为A (-1,0),B (5,0),C (2,2),D (0,2),直线y=kx+2将梯形分成面积相等的两部分,则k 的值为A. -32 B. -92 C. -74 D. -728、在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程 S (米)与所用时间 t (秒)之间的函数图象分别为线段OA 和折线OBCD . 下列说法正确的是( )A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后 180 秒时,两人相遇D.在起跑后 50 秒时,小梅在小莹的前面9、在平面直角坐标系中,已知直线y=-43x+3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )(A )(0,43) (B )(0,34) (C )(0,3) (D )(0,4) 10、如图,已知A 点坐标为(5,0),直线y=x +b (b>0)与y 轴交于点B ,连接AB ,∠α=75°,则b 的值为A.3B.335C.4D.435 二、填空题(每小题3分,共24分)11、写出一个具体的y 随x 的增大而减小的一次函数解析式____ 。
八年级数学上册《第五章一次函数》练习题-附答案(浙教版)一、选择题1.下列函数中,正比例函数是( )A.y=﹣8xB.y=1x C.y=8x2 D.y=8x﹣42.已知y关于x成正比例,且当x=2时,y=-6,则当x=1时,y的值为( )A.3B.-3C.12D.-123.下列函数中,“y是x的一次函数”的是( )A.y=2x﹣1B.y=12x2 C.y=1 D.y=1﹣x4.若y=x+2–b是正比例函数,则b的值是( )A.0B.–2C.2D.–0.55.下列函数中,是一次函数的有( )①y=12x;②y=3x+1;③y=4x;④y=kx-2.A.1个B.2个C.3个D.4个6.若函数y=(2-m)x|m|-1是关于x的正比例函数,则常数m的值等于( )A.±2B.﹣2C.± 3D.﹣ 37.函数y=(m﹣n+1)x|n﹣1|+n﹣2是正比例函数,则m,n应满足的条件是( ).A.m≠﹣1,且n=0B.m≠1,且n=0C.m≠﹣1,且n=2D.m≠1,且n=28.在y=(k+1)x+k2-1中,若y是x的正比例函数,则k值为( )A.1B.-1C.±1D.无法确定二、填空题9.若函数y=﹣2x m+2是正比例函数,则m的值是.10.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,•该函数的解析式为_______11.若函数y=(n﹣3)x+n2﹣9是正比例函数,则n的值为12.当m=___________时,函数y=(m+3)x2m+1+4x﹣5(x≠0)是一次函数.13.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k________时,它是正比例函数.14.如果函数y=(k﹣2)x|k﹣1|+3是一次函数,则k=_______.三、解答题15.已知y与2x+1成正比例函数,当x=2时,y=10.(1)求y与x的函数关系式;(2)若A(3,m)在此直线上,求m的值.16.已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数解析式,并说明此函数是什么函数;(2)当x=3时,求y的值.17.已知y与x+2 成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.18.已知y﹣1与x成正比例,且x=﹣2时,y=4(1)求出y与x之间的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a的值;(3)如果自变量x的取值范围是0≤x≤5,求y的取值范围.参考答案1.A2.B3.D4.C5.B6.B7.D8.A9.答案为:﹣1.10.答案为:2;y =2x.11.答案为:﹣312.答案为:﹣3,0,﹣12. 13.答案为:≠1,=-1.14.答案为:0.15.解:(1)y=4x+2;(2)m=14.16.解:(1)设y 1=k 1x ,y 2=k 2(x -2),则y =k 1x +k 2(x -2),依题意,得⎩⎨⎧k 1-k 2=0,-3k 1-5k 2=4,解得⎩⎪⎨⎪⎧k 1=-12,k 2=-12. ∴y =-12x -12(x -2),即y =-x +1. ∴y 是x 的一次函数.(2)把x =3代入y =-x +1,得y =-2. ∴当x =3时,y 的值为-2.17.解:(1)设y =k(x +2).∵x =4,y =12,∴6k =12.解得k =2.∴y=2(x+2)=2x+4.(2)当y=36时,2x+4=36,解得x=16.(3)当x=-7时,y=2×(-7)+4=-10 ∴点(-7,-10)是函数图象上的点. 18.解:(1)∵y﹣1与x成正比例∴设y﹣1=kx将x=﹣2,y=4代入,得∴4﹣1=﹣2k解得k=﹣3 2;∴y与x之间的函数关系式为:y=﹣32x+1;(2)由(1)知,y与x之间的函数关系式为:y=﹣32x+1;∴﹣2=﹣32a+1,解得,a=2;(3)∵0≤x≤5∴0≥﹣32x≥﹣152∴1≥﹣32x+1≥﹣132,即﹣132≤y≤1.。
浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每题3分,共30分)1.下列函数中是正比例函数的是()2+1D.y=0.6x−5 A.y=−7x B.y=−7x C.y=2x2.已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为()A.B.C.D.3.水滴进玻璃容器(滴水速度相同)实验中,水的高度随滴水时间变化的情况(下左图),下面符合条件的示意图是()A.B.C.D.4.如图,小刚骑电动车到单位上班,最初以某一速度匀速行进,途中由于遇到火车挡道,停下等待放行,耽误了几分钟,为了按时到单位,小刚加快了速度,仍保持匀速行进,结果准时到单位.小刚行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,你认为正确的是()A.B.C.D.5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)之间有如下关系(其中x≤12)x kg⁄012345y/cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.所挂物体质量x每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为14.5cm6.如图,直线l1:y=x+3与l2:y=kx+b相交于点P(1,m),则方程组{y=x+3y=kx+b的解是()A.{x=4y=1B.{x=1y=4C.{x=1y=3D.{x=3y=17.一次函数y=(m-2)x+2-m和y=x+m在同一平面直角坐标系中的图象可能是()A.B.C.D.8.如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PC⊥x轴于点C,则△PCO周长的最小值为()A.2√2B.4+2√2C.4D.4+4√29.若A(x1,y1),B(x2,y2)是一次函数y=ax+2x−2图象上的不同的两点,记m=(x1−x2)(y1−y2),则当m>0时,a的取值范围是()A.a<0B.a>0C.a<−2D.a>−210.如图,已知点P(6,2),点M,N分别是直线l1:y=x和直线l2:y=12x上的动点,连接PM,MN.则PM+MN的最小值为()A.2B.2√5C.√6D.2√3二、填空题填空题(每题4分,共24分)11.函数y=√x−3中,自变量x的取值范围是.12.若函数y=x m−1+m是关于x的一次函数,则常数m的值是.13.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为.14.已知一次函数y=kx+b,当−2≤x≤3时−1≤y≤9,则k=.15.已知A(a,b),B(c,d)是一次函数y=kx−3x+2图象上不同的两个点,若(c−a)(d−b)<0,则k的取值范围是.16.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3),有下列结论:①图象经过点(1,−3);②关于x的方程kx+b=0的解为x=2;③关于x的方程kx+b=3的解为x=0;④当x>2时y<0.其是正确的是.三、综合题(17-21每题6分,22、23每题8分,共46分)17.如图,在平面直角坐标系xOy中,直线y=−2x+4与直线y=kx相交于点E(m,2).(1)求m,k的值;(2)直接写出不等式−2x+4≥kx的解集.18.如图,一次函数y=12x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.若△PQB的面积为3,求点M的坐标.19.如图,直线AB与x轴,y轴分别交于点A和点B,点A的坐标为(−1,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移3个单位长度,得到△A1O1B1,求线段OB1的长;(3)在(2)中△AOB扫过的面积是.20.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(m,4),与x轴交于点B.(1)求直线l2的解析式y=kx+b;(2)直接写出不等式0<kx+b<x+3的解集;(3)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.21.北京园博园是一个集园林艺术、文化景观、生态休闲、科普教育于一体的大型公益性城市公园.小田和小旭在北京园博园游玩,两人同时从永定塔出发,沿相同的路线游览到达国际展园,路线如图所示.记录得到以下信息:a.小田和小旭从永定塔出发行走的路程y1和y2(单位:km)与游览时间x(单位:min)的对应关系如下图:b.在小田和小旭的这条游览路线上,依次有4个景点,从永定塔到这4个景点的路程如下表:景点济南园忆江南北京园锦绣谷路程(km)12 2.53根据以上信息,回答下列问题:(1)在这条游览路线上,永定塔到国际展园的路程为km;(2)小田和小旭在游览过程中,除永定塔与国际展园外,在相遇(填写景点名称),此时距出发经过了min;(3)下面有三个推断:①小旭从锦绣谷到国际展园游览的过程中,平均速度是245km/min;②小旭比小田晚到达国际展园30min;③60min时,小田比小旭多走了23km.所有合理推断的序号是.22.已知直线l1:y1=x−3m+15;l2:y2=−2x+3m−9.(1)当m=3时,求直线l1与l2的交点坐标;(2)若直线l1与l2的交点在第一象限,求m的取值范围;(3)若等腰三角形的两边为(2)中的整数解,求该三角形的面积.23.如图,已知直线y=kx+b经过A(6,0),B(0,3)两点.(1)求直线y=kx+b的解析式;(2)若 C 是线段OA 上一点,将线段CB 绕点 C 顺时针旋转90∘得到CD ,此时点D 恰好落在直线AB 上①求点C 和点D 的坐标;②若点P 在y 轴上,Q 在直线AB 上,是否存在以C,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点Q 的坐标,否则说明理由.参考答案1-5.【答案】ADDDD6-10.【答案】BBBDB11.【答案】x≥312.【答案】213.【答案】x≤114.【答案】2或−215.【答案】k<316.【答案】②③④17.【答案】(1)解:将点E(m,2)代入y=−2x+4可得:2=−2m+4解得:m=1∴E(1,2)∵E(1,2)过直线y=kx∴k×1=2,即k=2∴直线OE的解析式为:y=2x即:k=2,m=1;(2)解:结合函数图象可知:不等式−2x+4≥2x的解集为:x≤1.18.【答案】(1)解:对于y=12x+3当y=0时0=12x+3,解得x=−6,∴A(−6,0)当x=0时y=3,∴B(0,3)∵点C与点A关于y轴对称∴点C(6,0)设直线BC 的解析式为y =kx +b(k ≠0)∴{6k +b =0b =3,解得:{k =−12b =3∴直线BC 的解析式为y =−12x +3;(2)解:设M(m,0),则点P(m,12m +3),Q(m,−12m +3)如图,过点B 作BD ⊥PQ 于点D则PQ =|−12m +3−(12m +3)|=|m|,BD =|m|∵△PQB 的面积为3∴12PQ ⋅BD =12m 2=3解得:m =±√6∴点M 的坐标为(√6,0)或(−√6,0).19.【答案】(1)解:∵点A 的坐标为(−1,0)∴OA =1 ∵2OA =OB ∴OB =2OA =2 ∴B(0,2)设直线AB 解析式为 y =kx +b将 A(−1,0) 和 B(0,2) 代入 y =kx +b 中{0=−k +b 2=b解得 {k =2b =2∴y =2x +2 ;故直线AB 解析式为 y =2x +2(2)解:∵将△AOB 向右平移3个单位长度,得到△A 1O 1B 1∴B 1(3,2)∴OB 1=√(3−0)2+(2−0)2=√13 (3)720.【答案】(1)解:把C(m,4)代入直线l 1:y =x +3得到4=m +3,解得m =1∴点C(1,4)设直线l 2的解析式为y =kx +b 把A 和C 的坐标代入 ∴{k +b =43k +b =0 解得{k =−2b =6∴直线l 2的解析式为y =−2x +6; (2)1<x <3;(3)解:当y =0时x +3=0,解得x =−3 ∴点B 的坐标为(−3,0)AB =3−(−3)=6设M(a,a +3),由MN ∥y 轴,得N(a,−2a +6)MN =|a +3−(−2a +6)|=AB =6解得a =3或a =−1 ∴M(3,6)或(−1,2).21.【答案】(1)4(2)忆江南(3)②③22.【答案】(1)解:将m =3代入直线l 1:y 1=x −3m +15,l 2:y 2=−2x +3m −9得y 1=x −9+15=x +6,y 2=−2x +9−9=−2x联立得{y =x +6y =−2x 解得{x =−2y =4∴直线l 1与l 2的交点坐标为(−2,4);(2)解:联立直线l 1与l 2得方程组{y =x −3m +15y =−2x +3m −9 解得{x =2m −8y =−m +7∴直线l 1与l 2的交点为(2m −8,−m +7)∵交点在第一象限∴{2m −8>0−m +7>0解得4<m <7即m 的取值范围为4<m <7 (3)解:∵4<m <7 ∴等腰三角形的两边为5,6①如图,当AB =AC =6,BC =5时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =52∴AD =√AB 2−BD 2=√62−(52)2=√1192∴S △ABC =12×5×√1192=5√1194;②如图,当AB =AC =5,BC =6时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =3 ∴AD =√AB 2−BD 2=√52−32=4∴S △ABC =12×6×4=12. 综上所述,该三角形的面积为5√1194或4.23.【答案】(1)解:将A(6,0),B(0,3)代入y =kx +b 得: {6k +b =0b =3解得{k =−12b =3∴直线AB 得表达式为y =−12x +3.(2)解:①过点D 作DE ⊥x 于点E∵∠BOC=∠BCD=∠CED=90°∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°∴∠BCO=∠CDE又BC=CD∴△BOC≅CED(ASA)∴OC=DE,BO=CE=3.设OC=DE=m,则点D得坐标为(m+3,m)∵点D在直线AB上∴m=−12(m+3)+3∴m=1∴点C得坐标为(1,0),点D得坐标为(4,1).②存在点Q得坐标为(3,32),(−3,92)或(5,12).理由如下:设点Q的坐标为(n,-12n+3).分两种情况考虑,如图2所示:当CD为边时∵点C的坐标为(1,0),点D的坐标为(4,1),点P的横坐标为0∴0-n=4-1或n-0=4-1∴n=-3或n=3∴点Q 的坐标为(3,32),点Q '的坐标为(-3,92); 当CD 为对角线时∵点C 的坐标为(1,0),点D 的坐标为(4,1),点P 的横坐标为0∴n+0=1+4∴n=5∴点Q″的坐标为(5,12). 综上所述:存在以C 、D 、P 、Q 为顶点的四边形是平行四边形,点Q 的坐标为(3,32),(-3,92)或(5,12)。
浙教版初中数学八年级上册第五章《一次函数》单元测试卷考试范围:第五章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A. 1个B. 2个C. 3个D. 4个2.根据如图所示的计算程序计算y的对应值,若输入变量x的值为12,则输出的结果为( )A. 12B. −12C. −32D. 543.在矩形ABCD中,动点P从A出发,沿A→D→C运动,速度为1m/s,同时动点Q从点A出发,以相同的速度沿路线A→B→C运动,设点P的运动时间为t(s),△CPQ的面积为S(m2),S与t的函数关系的图象如图所示,则△CPQ面积的最大值是( )A. 3B. 6C. 9D. 184.学枝组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈主陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是( )A. B.C. D.5.小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是( )A. B.C. D.6.下列函数中,一次函数是( )+2 B. y=−2xA. y=1xC. y=x2+2D. y=mx+n(m,n是常数)7.函数①y=πx,②y=−2x+1,③y=1,④y=x2−1中,是一次函数的有( )xA. 4个B. 3个C. 2个D. 1个8.下列函数:(1)y=πx2(2)y=2x−1(3)y=1(4)y=2−3x(5)y=x2−1中,x是一次函数的有( )A. 4个B. 3个C. 2个D. 1个9.一次函数y=2(x+1)−1不经过第象限.( )A. 一B. 二C. 三D. 四10.如图,已知直线l1:y=−2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(−2,0),则k的取值范围是( )A. −2<k<2B. −2<k<0C. 0<k<4D. 0<k<2x+4与x轴、y轴分别交于A、B两点,C、D分别为线段AB、OB的11.如图,直线y=23中点,P为OA上一动点,当PC+PD的值最小时,点P的坐标为( )A. (−52,0) B. (−3,0) C. (−32,0) D. (−6,0)12.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间x(秒)之间的函数关系如图所示,则下列结论中正确的个数是( )①乙的速度为5米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点60米;③甲、乙两人之间的距离为40米时,甲出发的时间为55秒和90秒;④乙到达终点时,甲距离终点还有80米.A. 4个B. 3个C. 2个D. 1个第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.一根长为20cm的蜡烛,每分钟燃烧2cm,蜡烛剩余长度y(厘米)与燃烧时间t(分)之间的关系式为______(不必写出自变量的取值范围).14.某公司生产一种产品,前期投资成本为100万元,在此基础上,每生产一吨又要投入5万元成本,那么生产的总成本y万元与产量x吨之间的数量关系是______.15.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程1x−1+1m=1的解为.16.如图,直线y=kx+b与y=mx+n分别交x轴于点A(−0.5,0),B(2,0),则不等式(kx+b)(mx+n)>0的解集为______.三、解答题(本大题共9小题,共72分。
5.3 一次函数(二)1.已知铁的质量m 与体积V 成正比例,当V =5 cm 3时,m =39.5 g ,则铁的质量m 关于体积V 的函数表达式是m =7.9V .2. 已知一次函数y =kx +b ,当x =-1时,y 的值为2;当x =3时,y 的值为10,则这个一次函数的表达式为y =2x +4.3.已知y 与x +1成正比例,当x =5时,y =12,则y 关于x 的函数表达式是y =2x +2. 4.已知y 是x 的一次函数,下表给出了部分对应值,则m 的值是-7.x -1 2 5 y5-1m5.有一本书,每20页厚为1 mm ,设从第1页到第x 页的厚度为y (mm),则(A ) A .y =120x B .y =20xC .y =120+xD .y =20x6.在一次函数y =kx +3中,当x =2时, y 的值为5,则k 的值为(A ) A. 1 B. -1 C. 5 D. -57.设地面气温是25℃,如果高度每升高1 km ,气温下降6℃,那么气温t (℃)与高度h (km)之间的函数表达式是(A )A. t =25-6hB. t =25+6hC. t =6h -25D. t =625h8.若y 是x 的一次函数,当x =2时,y =2;当x =-6时,y =6. (1)求这个一次函数的表达式; (2)当x =8时,求函数y 的值; (3)当函数y 的值为零时,求x 的值; (4)当1≤y <4时,求自变量的取值范围.【解】 (1)设y =kx +b (k ≠0).∵当x =2时,y =2;当x =-6时,y =6, ∴⎩⎪⎨⎪⎧2=2k +b ,6=-6k +b , 解得⎩⎪⎨⎪⎧k =-12,b =3. ∴y =-12x +3.(2)当x =8时,y =-12×8+3=-1.(3)当y =0时,-12x +3=0,解得x =6.(4)当1≤y <4时,1≤-12x +3<4,∴-2<x ≤4.9.周日上午,小俊从外地乘车回嘉兴.一路上,小俊记下了如下数据:观察时间 9:00(t =0) 9:06(t =6) 9:18(t =18) 路牌内容嘉兴90 km嘉兴80 km嘉兴60 km(注:“嘉兴90 km ”表示离嘉兴的距离为90 km.)假设汽车离嘉兴的距离s (km)是行驶时间t (min)的一次函数,求s 关于t 的函数表达式. 【解】 设s =kt +b .由表知:当t =0时,s =90,当t =6时,s =80, ∴⎩⎪⎨⎪⎧b =90,6k +b =80, 解得⎩⎪⎨⎪⎧k =-53,b =90.∴s =-53t +90.10.某市自来水公司为限制单位用水,每月供给某单位计划内用水2500 m 3,计划内用水每立方米收费0.9元,超过计划部分每立方米按1.5元收费.(1)写出该单位水费y (元)与每月用水量x (m 3)之间的函数表达式: ①当用水量x ≤2500时,y =0.9x ;②当用水量x >2500时,y =2250+1.5(x -2500);(2)某月该单位用水2000 m 3,应付水费1800元;若用水3000 m 3,则应付水费3000元; (3)若某月该单位付水费3300元,则该单位用水为多少?【解】 (3)2250+1.5(x -2500)=3300,解得x =3200.即该单位用水3200 m 3.11.已知整数x 满足-5≤x ≤5,y 1=x +1,y 2=-2x +4.对任意一个x ,m 都取y 1,y 2中的较小值,则m 的最大值是(B )A .1B .2C .24D .-9【解】 当y 1<y 2时,x +1<-2x +4,得x <1;当y 1=y 2时,x +1=-2x +4,得x =1;当y 1>y 2时,x +1>-2x +4,得x >1.根据已知条件,对任意一个x ,m 都取y 1,y 2中的较小值,故当x ≤1时,m =x +1;当x >1时,m =-2x +4.故m 的最大值为2.12.已知一次函数y =kx +b ,当-3≤x ≤1时,对应的y 的取值范围为-1≤y ≤8,则b 的值是(C )A. 54B. 234C. 54或234D. 414 【解】 分两种情况:(1)把x =-3,y =-1;x =1,y =8代入y =kx +b ,得⎩⎪⎨⎪⎧-3k +b =-1,k +b =8,解得⎩⎨⎧k =94,b =234.(2)把x =-3,y =8;x =1,y =-1代入y =kx +b ,得⎩⎪⎨⎪⎧-3k +b =8,k +b =-1,解得⎩⎨⎧k =-94,b =54.∴b =234或54.13.爸爸准备为小强买一双新的运动鞋,但要小强自己计算穿几码的鞋.小强回家量了一下爸爸41码的鞋子长25.5 cm ,妈妈36码的鞋子长23 cm.小强穿21.5 cm 长的鞋子,是多少码?【解】 设x (cm)长的鞋子的码数为y 码,由题意,设y =kx +b (k ≠0).把x =25.5,y =41;x =23,y =36代入y =kx +b ,得⎩⎪⎨⎪⎧25.5k +b =41,23k +b =36, 解得⎩⎪⎨⎪⎧k =2,b =-10.∴y =2x -10.当x =21.5时,y =2×21.5-10=33. 答:他穿的鞋子是33码.14.某乡镇为了解决抗旱问题,要在某河道上建一座水泵站,分别向河的同一侧张村A 和李村B 送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O 为坐标原点,以河道所在的直线为x 轴建立平面直角坐标系(如图,河道宽度忽略不计).两村的坐标分别为A (2,3),B (12,7).(1)若从节约经费方面考虑,水泵站建在距离大桥多远的地方可使所用输水管道最短? (2)水泵站建在距离大桥多远的地方,可使它到张村、李村的距离相等?(第14题)【解】 (1)作点B 关于x 轴的对称点E ,连结AE ,则点E(12,-7).设直线AE 的表达式为y =kx +b ,则⎩⎪⎨⎪⎧2k +b =3,12k +b =-7,解得⎩⎪⎨⎪⎧k =-1,b =5.∴y =-x +5.当y =0时,x =5.∴水泵站建在距离大桥5 km 的地方,可使所用输水管道最短.(2)作线段AB 的垂直平分线GF ,交AB 于点F ,交x 轴于点G .过点A 作AD ⊥x 轴于点D ,过点B 作BC ⊥x 轴于点C .设点G 的坐标为(x ,0).在Rt △AGD 中,AG 2=AD 2+DG 2=32+(x -2)2, 在Rt △BCG 中,BG 2=BC 2+GC 2=72+(12-x )2. ∵AG =BG ,∴32+(x -2)2=72+(12-x )2, 解得x =9.∴水泵站建在距离大桥9 km 的地方,可使它到张村、李村的距离相等.15.某中学九年级300名同学毕业前夕给灾区90名同学捐赠了一批学习用品(书包和文具盒).由于零花钱有限,每6人合买一个书包,每2人合买一个文具盒(每个同学都只参加一件学习用品的购买),书包和文具盒的单价分别是54元和12元.(1)若有x 名同学参与购买书包,试求出购买学习用品的总件数y 与x 之间的函数表达式(不要求写出自变量的取值范围);(2)若捐赠学习用品总金额超过2300元,且灾区90名同学每人至少能得到一件学习用品,请问:同学们该如何安排购买书包和文具盒的人数?此时选择其中哪种方案,能使购买的学习用品的总件数最多?【解】 (1)有x 名同学参与购买书包,则有(300-x )名同学参与购买文具盒,所以可购买书包x 6个,购买文具盒300-x2个.∴购买学习用品的总件数y 与x 之间的函数表达式为y =x 6+300-x 2,即y =-13x +150.(2)设有x 名同学参与购买书包,根据题意,得⎩⎪⎨⎪⎧x 6×54+300-x 2×12>2300,-13x +150≥90, 解得16623<x ≤180.又∵6人合买一个书包,故购买书包的人数应为6的倍数,∴安排购买书包的人数应为168或174或180,相应购买文具盒的人数为132或126或120. 当x =168时,y =-13x +150=94;当x =174时,y =-13x +150=92;当x =180时,y =-13x+150=90,∴当x =168时,总件数最多.∴安排168人购买书包,132人购买文具盒能使购买的学习用品的总件数最多.。
浙教版2022年八年级上册第5章《一次函数》单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.在圆的面积公式S=πr2中,变量是()A.S,πB.S,r C.π,r D.只有r2.如图图象中,表示y是x的函数的是()A.B.C.D.3.下列y关于x的函数中,一次函数为()A.y=(a﹣2)x+b B.y=(1+k2)x+1C.D.y=2x2+14.小亮用100元钱去买单价是5元的笔记本,则他剩余的钱y(元)与他买这种笔记本的本数x之间的表达式是()A.y=5x B.y=100﹣5x C.y=5x﹣100D.y=5x+1005.若正比例函数y=kx的图象经过点(﹣2,2),则k的值是()A.﹣1B.1C.﹣4D.46.下列函数其图象经过一、二、四象限的是()A.y=﹣2x+1B.y=3x+5C.y=﹣x﹣3D.y=4x﹣37.在平面直角坐标系中,一次函数y=2x﹣1和y=x+1图象交点坐标为()A.(﹣2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(2,3)8.周日,东东从家步行到图书馆查阅资料,查完资料后,东东立刻按原路回家.已知回家时的速度是去时速度的1.5倍,在整个过程中,东东离家的距离s(单位:m)与他所用的时间t(单位:min)之间的关系如图所示,则东东在图书馆查阅资料的时间为()A.55min B.40min C.30min D.25min9.点P1(x1,y1),点P2(x2,y2)是一次函数y=kx+b(k<0)图象上两点,x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定10.若m<﹣2,则一次函数y=(m+1)x﹣m+1的图象可能是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.函数y=﹣2x中的常量是.12.若函数y=(m﹣2)x+|m|﹣2是正比例函数,则m=.13.某工厂剩余煤量y吨与烧煤天数x天满足函数关系y=90﹣6x,则工厂每天烧煤量是吨.14.在一次函数y=(m﹣3)x+6中,y随x的增大而增大,则m的取值范围是.15.将正比例函数y=﹣7x的图象向下平移3个单位长度,则平移后所得到的一次函数的解析式为.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(﹣1,2),则当y1<y2时,x的取值范围是.三.解答题(共7小题,满分66分)17.(8分)已知y与x之间成正比例关系,且当x=﹣1时,y=3.(1)求y与x之间的函数关系式;(2)当x=2时,求y的值.18.(8分)已知一次函数y=kx+5的图象经过点A(2,﹣1).(1)求k的值;(2)在平面直角坐标系中画出这个函数的图象.19.(9分)如图,在平面直角坐标系中,点B(2,0)、点C(6,0),点A(x,y)是直线y=2x上的一点,设△ABC的面积为S,求:(1)当点A在第一象限时,S与x的函数关系式;(2)当S=8时,求A点的坐标.20.(9分)如图,正方形ABCD的边长为8cm,动点P、Q同时从点A出发,以2cm/s的速度分别沿A→B→C,和A→D→C的路径向点C移动.设运动时间为,由点P、B、D、Q确定的图形的面积为scm2,求s与t(0≤t ≤8)之间的函数关系式.21.(10分)李老师一家去离家200千米的某地自驾游,周六上午8点整出发.下面是他们离家的距离y(千米)与汽车行驶时间x(千米)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等另一家人一同前往,等到后以每小时80千米的速度直达目的地;求等候的时间及直线BC的解析式;(3)上午11点时,离目的地还有多少千米?22.(10分)如图,已知直线y=﹣x+2与x轴,y轴分别交于点A和点B,另一直线y=kx+b(k≠0)经过C(1,0),且把△AOB分成两部分.(1)若直线y=kx+b也经过点B,试说明△BOC与△ABC的面积相等;(2)若△AOB被分成的两部分面积比为1:5,求k和b的值.23.(12分)如图1,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a,b满足(a+b)2+(a﹣4)2=0.(1)如图1,若C的坐标为(﹣1,0),且AH⊥BC于点H,AH交OB于点P,求点P的坐标;(2)如图2,连接OH,求证:∠AHO=45°;(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连接MD,过D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,式子S△BDM﹣S△ADN的值是否发生改变,如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.浙教版2022年八年级上册第5章《一次函数》单元检测卷参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:根据常量和变量的定义得S、R是变量,π是常量.故选:B.2.【解答】解:A、B、C中对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x 的函数;D选项中对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数.故选:D.3.【解答】解:A.当a=0时,y=(a﹣2)x+b不是一次函数,故本选项不符合题意;B.y=(1+k2)x+1是一次函数,故本选项符合题意;C.等式的右边是分式,不是整式,不是一次函数,故本选项不符合题意;D.y=2x2+1是二次函数,不是一次函数,故本选项不符合题意;故选:B.4.【解答】解:∵小亮用100元钱去买单价是5元的笔记本,∴买这种笔记本的本数x花去的钱为:5x,∴剩余的钱为:100﹣5x,∴他剩余的钱(y元)与他买这种笔记本的本数x之间的函数关系式是:y=100﹣5x,故选:B.5.【解答】解:∵正比例函数y=kx的图象经过点(﹣2,2),∴2=﹣2k,解得:k=﹣1.故选:A.6.【解答】解:A选项,图象过第一、二、四象限,符合题意;B选项,图象过第一、二、三象限,不符合题意;C选项,图象过第二、三、四象限,不符合题意;D选项,图象过第一、三、四象限,不符合题意;故选:A.7.【解答】解:联立解得:,∴函数y=2x﹣1与y=x+1的图象的交点坐标为(2,3).故选:D.8.【解答】解:根据图象可知,东东从家步行到图书馆的速度为:=80(m/min),∵回家时的速度是去时速度的1.5倍,∴回家时的速度为:1.5×80=120(m/min),则回家所用的时间为:=10(m/min),∴东东在图书馆查阅资料的时间为:55﹣(15+10)=30(min),故选:C.9.【解答】解:∵一次函数y=kx+b(k<0),∴此函数中y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.10.【解答】解:∵m<﹣2,∴m+1<0,﹣m+1>0,∴一次函数y=(m+1)x﹣m+1的图象经过一二四象限.故选:D.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:y=﹣2x中的常量是﹣2,故答案为:﹣2.12.【解答】解:由题意得:|m|﹣2=0且m﹣2≠0,∴m=±2且m≠2,∴m=﹣2,故答案为:﹣2.13.【解答】解:某工厂剩余煤量y吨与烧煤天数x天满足函数关系y=90﹣6x,则工厂每天烧煤量是6吨,故答案为:6.14.【解答】解:根据题意得:m﹣3>0,解得m>3.故答案为:m>3.15.【解答】解:将正比例函数y=﹣7x的图象向下平移3个单位长度,所得的函数解析式为y=﹣7x﹣3.故答案为:y=﹣7x﹣3.16.【解答】解:∵函数y1=﹣2x与y2=ax+3的图象相交于点A(﹣1,2),∴当y1<y2时,x的取值范围是x>﹣1.故答案为:x>﹣1.三.解答题(共7小题,满分66分)17.【解答】解(1)设y=kx(k≠0),把x=﹣1,y=3代入y=kx,得k=﹣3,所以y=﹣3x.(2)把x=2代入y=﹣3x,得y=﹣3×2=﹣6.18.【解答】解:(1)把点A(2,﹣1)代入一次函数y=kx+5,得﹣1=2k+5,解得k=﹣3.(2)当x=0时,y=5,可知直线与y轴交点为(0,5),作过B、C的直线可得如图所示直线,即为所求.19.【解答】解:(1)∵B(2,0)、C(6,0),∴BC=6﹣2=4,∵第一象限内的点A(x,y)是直线y=2x上一点,∴△P AO的面积为S=×4×2x=4x;(2)S=4x=8,解得x=2,∴y=2×2=4,∴A点的坐标(2,4).20.【解答】解:①0≤t≤4时,∵正方形的边长为8cm,∴y=S△ABD﹣S△APQ,=×8×8﹣•2t•2t,=﹣2t2+32,②4≤t≤8时,y=S△BCD﹣S△CPQ,=×8×8﹣•(16﹣2t)•(16﹣2t),=﹣2t2+32t﹣96.综上所述,S=.21.【解答】解:(1)由图象知,李老师从家到服务区时的速度为=60千米/小时,∴李老师出发半小时离家的距离为:60×0.5=30(千米),答:他们出发半小时时,离家30千米;(2)李老师一家从服务区B到C地所用时间为:(100﹣60)÷80=0.5(小时),∴李老师一家在服务区等了2﹣1﹣0.5=0.5(小时);设线段BC的函数表达式为y=kx+b,因为B(1.5,60),C(2,100)在BC上,∴,解得,∴直线BC的解析式为y=80x﹣60;(3)上午11点时,即x=3时,y=80×3﹣60=180,∴200﹣180=20(千米),答:上午11点时,离目的地还有20千米.22.【解答】解:(1)在y=﹣x+2中,令y=0,则﹣x+2=0,解得x=2,∴A(2,0),∴OA=2,∵C(1,0),∴OC=1,∴点C是线段OA的中点,∴△BOC与△ABC的面积相等;(2)∵S△AOB=×2×2=2,∵△AOB被分成的两部分面积比为1:5,那么直线y=kx+b(k≠0)与y轴或AB交点的纵坐标就应该是:2×2×=,①当y=kx+b(k≠0)与直线y=﹣x+2相交时,交点为D,如图(2)所示,当y=时,直线y=﹣x+2与y=kx+b(k≠0)的交点D的横坐标就应该是﹣x+2=,∴x=,即交点D的坐标为(,),又根据C点的坐标为(1,0),可得:∴,②当y=kx+b(k≠0)与y轴相交时,交点为E,如图(3)所示,∴交点E的坐标就应该是(0,),又有C点的坐标(1,0),可得:,∴,综上所述,k=2,b=﹣2或k=﹣,b=.23.【解答】解:(1)如图1,∵(a+b)2+(a﹣4)2=0.∴a+b=0,a﹣4=0,∴a=4,b=﹣4,则OA=OB=4.∵AH⊥BC即∠AHC=90°,∠COB=90°∴∠HAC+∠ACH=∠OBC+∠OCB=90°,∴∠HAC=∠OBC.在△OAP与△OBC中,,∴△OAP≌△OBC(ASA),∴OP=OC=1,则P(0,﹣1);(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,如图2.在四边形OMHN中,∠MON=360°﹣3×90°=90°,∴∠COM=∠PON=90°﹣∠MOP.在△COM与△PON中,,∴△COM≌△PON(AAS),∴OM=ON.∵OM⊥CB,ON⊥HA,∴HO平分∠CHA,∴∠OHP=∠CHA=45°;(3)S△BDM﹣S△ADN的值不发生改变,等于4.理由如下:连接OD,如图3.∵∠AOB=90°,OA=OB,D为AB的中点,∴OD⊥AB,∠BOD=∠AOD=45°,OD=DA=BD,∴∠OAD=45°,∠MOD=90°+45°=135°,∴∠DAN=135°=∠MOD.∵MD⊥ND即∠MDN=90°,∴∠MDO=∠NDA=90°﹣∠MDA.在△ODM与△ADN中,,∴△ODM≌△ADN(ASA),∴S△ODM=S△ADN,∴S△BDM﹣S△ADN=S△BDM﹣S△ODM=S△BOD=S△AOB=×AO•BO=××4×4=4.。
浙教版八年级上册数学第5章一次函数含答案一、单选题(共15题,共计45分)1、在同一平面内,不重合的两条直线的位置关系是( )。
A.平行B.相交C.平行或相交D.平行、相交或垂直2、已知函数,当自变量x增加m时,相应函数值增加( )A.3m+1B.3mC.mD.3m-13、某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是()A.18(42﹣x)=12xB.2×18(42﹣x)=12xC.18(42﹣x)=2×12x D.18(21﹣x)=12x4、若函数的解析式为y= ,则当x=2时对应的函数值是()A.4B.3C.2D.05、李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是()A.金额B.数量C.单价D.金额和数量6、一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2xB.y=2xC.D.7、一次函数y=kx+b与y=x+2的图象相交于如图点P(m, 4),则关于x,y的二元一次方程组的解是()A. B. C. D.8、为了鼓励节约用水,按以下规定收取水费:(1)每户每月用水量不超过20立方米,则每立方米水费1.8元;(2)若每户每月用水量超过20立方米,则超过部分每立方米水费3元.设某户一个月所交水费为y(元),用水量为x(立方米),则y与x的函数关系用图象表示为( )A. B. C. D.9、一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是()A.x>0B.x<0C.x>2D.x<210、在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBnCnCn﹣1,使得点A1、A2、A 3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是()A.(2 n﹣1, 2 n﹣1)B.(2 n, 2 n﹣1)C.(2 n﹣1, 2 n+1)D.(2 n﹣1, 2 n)11、在平面直角坐标系中,一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限12、已知,一次函数与反比例函数在同一直角坐标系中的图象可能()A. B. C.D.13、一次函数y=kx+b的图象如图所示,则k、b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<014、正比例函数y=x的大致图象是()A. B. C.D.15、已知y与x+1成正比,当x=2时,y=9;那么当y=-15时,x的值为().A.4B.-4C.6D.-6二、填空题(共10题,共计30分)16、已知正比例函数的函数值y随着自变量的值增大而减小,那么符合条件的正比例函数可以是________.(只需写出一个)17、已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________.18、若函数是一次函数,则m=________,且随的增大而________19、函数的自变量x的取值范围是________.20、如图,在坐标系中,有,且A(﹣1,3),B(﹣3,﹣1),C (﹣3,3),已知是由旋转得到的.请写出旋转中心的坐标是________,旋转角是________度.21、一个阳光明媚的上午,小明和小兰相约从鲁能巴蜀中学沿相同的路线去龙头寺公园写生,小明出发5分钟后小兰才出发,此时小明发现忘记带颜料,立即按原速原路回学校拿颜料,小明拿到颜料后,以比原速提髙20%的速度赶去公园,结果还是比小兰晚2分钟到公园(小明拿颜料的时间忽略不计).在整个过程中,小兰保持匀速运动,小明提速前后也分别保持匀速运动,如图所示是小明与小兰之间的距离(米)与小明出发的时间(分钟)之间的函数图象,则学校到公园的距离为________米.22、当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.已知点A(1,6)与点B的坐标满足y=﹣x+b,且点B是“完美点”.则点B的坐标是________.23、声音在空气中的传播速度与温度的关系如表:温度(℃)0 5 10 15 20速度331 336 341 346 351若声音在空气中的传播速度是温度的一次函数;当时,声音的传播速度为________ .24、如图,在平面直角坐标系中,,,经过两点的圆交轴于点(在上方),则四边形面积的最小值为________.25、如图,一次函数与的图象相交于点,则关于x的不等式的解集是________.三、解答题(共5题,共计25分)26、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.27、已知矩形中,米,米,为中点,动点以2米/秒的速度从出发,沿着的边,按照A E D A顺序环行一周,设从出发经过秒后,的面积为(平方米),求与间的函数关系式.28、游泳池常需进行换水清洗,图中的折线表示的是游泳池换水清洗过程“排水——清洗——灌水”中水量y(m3)与时间t(min)之间的函数关系式.(1)根据图中提供的信息,求整个换水清洗过程水量y(m3)与时间t(min)的函数解析式;(2)问:排水、清洗、灌水各花多少时间?29、如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.30、如图,正方形ABCD的边长为2,P为DC上的点(不与C,D点重合).设线段DP的长为x,求梯形ABCP的面积y关于x的函数关系式,并写出自变量x 的取值范围.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、A6、C7、D8、D9、C10、A11、C12、A13、A14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、30、。
浙教版八年级数学上册《一次函数》单元练习检测试卷及答案解析一、选择题1、如图所反映的两个量中,其中y是x的函数的个数有()A.4个B.3个C.2个D.1个2、下列函数:①y=–2x,②y=–3x2+1,③y=x–2,其中一次函数的个数有()A.0个B.1个C.2个D.3个3、若y=(m-3)x+1是一次函数,则( )A.m=3 B.m=-3 C.m≠3 D.m≠-34、若函数是一次函数,则m的值为( )A.B.-1 C.1 D.25、若kb<0,且b﹣k>0,则函数y=kx+b的图象大致是()A.B.C.D.6、正比例函数y=kx(k≠0)的图像经过第二、四象限,则一次函数y=x+k的图像大致是( )A.B.C.D.7、一次函数y=(m﹣2)x+3的图象如图所示,则m的取值范围是()A.m<2 B.0<m<2C.m<0 D.m>28、某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费 ( )A.64元B.66元C.72元D.96元9、如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象.下列结论中,错误的是( )A.轮船的速度为20 km/h B.快艇的速度为40 km/hC.轮船比快艇先出发2 h D.快艇不能赶上轮船二、填空题10、在平面直角坐标系,A(-2,0),B(0,3),点M在直线y=x 上,且SΔMAB=6,则点M 的坐标为_____.(第10题图) (第11题图) (第14题图)11、如图,已知A地在B地正南方3千米处,甲乙两人同时分别从A,B两地向正北方向匀速直行,他们与A地的距离s(千米)与所行的时间t(小时)之间的函数关系图象用如图所示的AC和BD表示,当他们行走3小时后,他们之间的距离为_____千米.12、若直线y=-4x+b与两坐标轴围成的三角形的面积是5,则b的值为_____.13、一次函数y=2x-3与y=-x+1的图象的交点坐标为_______.14、小明和小刚在直线跑道上匀速跑步,他们同起点、同方向跑600米,先到终点的人原地休息.已知小明先出发2秒.在跑步过程中,两人之间的距离(米)与小刚出发的时间(秒)之间的关系如图所示,则当=50秒时,=__________米.15、某水池有水15m3,现打开进水管进水,进水速度5m3/h;xh后这个水池内有水y m3,则y关于x的关系式为.16、如图,表示某产品一天的销售收入与销售量的关系;表示该产品一天的销售成本与销售量的关系。
2020年浙教版八年级数学上册一次函数单元测试卷二
一、选择题(共10题;共30分)
1、下列函数中,自变量的取值范围选取错误的是()
A、y=2x2中,x取全体实数
B、y=中,x取x≠-1的实数
C、y=中,x取x≥2的实数
D、y=中,x取x≥-3的实数
2、如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为
A、 B、C、 D、
3、函数y=+1中,自变量x的取值范围是()
A、x>2
B、x<2
C、x≥2
D、x≤2
4、下列函数:①y=﹣πx,②y=﹣0.125x,③y=8,④y=﹣8x2+6,⑤y=﹣0.5x﹣1中,一次函数有()
A、1个
B、2个
C、3个
D、4个
5、若一次函数y=kx+17的图象经过点(﹣3,2),则k的值为()
A、-6
B、6
C、-5
D、5
6、已知正比例函数y=kx(k≠0)的图象经过点(1,﹣3),则此正比例函数的关系式为()
A、y=3x
B、y=﹣3x
C、y=x
D、y=-x
7、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:
下列说法不正确的是()
A、x与y都是变量,且x是自变量,y是因变量
B、所挂物体质量为4kg时,弹簧长度为12cm
C、弹簧不挂重物时的长度为0cm
D、物体质量每增加1kg,弹簧长度y增加0.5cm
8、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()
A、 B、 C、 D、
9、已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()
A、y=2x
B、y=﹣2x
C、
D、
10、关于一次函数y=2x﹣1的图象,下列说法正确的是()
A、图象经过第一、二、三象限
B、图象经过第一、三、四象限
C、图象经过第一、二、四象限
D、图象经过第二、三、四象限
二、填空题(共8题;共33分)
11、一次函数的图象过点(0,3)且与直线y=-x平行,那么函数解析式是________.
12、已知,函数y=(k-1)x+k2-1,当k________时,它是一次函数.
13、一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1>y2中,正确的序号是________
14、如图,直线L1, L2交于一点P,若y1≥y2,则x的取值范围是________
15、已知f(x)=,那么f(1)=________
16、如图,已知函数y=﹣2x+4,观察图象回答下列问题
(1)x________ 时,y>0;(2)x________ 时,y<0;
(3)x________时,y=0;(4)x________ 时,y>4.
17、若函数y=(a+3)x+a2﹣9是正比例函数,则a=________
18、下列函数关系式:①y=2x﹣1;②;③;④s=20t.其中表示一次函数的有________(填序号)
三、解答题(共5题;共28分)
19、已知,直线y=kx﹣3经过点A(2,﹣2),求关于x的不等式kx﹣3≤0的解集.
20、已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:
底面半径x(cm)1.6 2.0 2.4 2.8 3.2 3.6 4.0
用铝量y(cm3) 6.9 6.0 5.6 5.5 5.7 6.0 6.5
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?
(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.
(4)粗略说一说易拉罐底面半径对所需铝质量的影响.
21、若x,m都为非负数,x﹣y﹣m=﹣1,2x+m=3.求y与x的函数关系式,并画出此函数的图象.
22、我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.
(1)求购买A,B两种树苗每棵各需多少元?
(2)考虑到绿化效果和资金周转,购进A种树苗不能少于50棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?
(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?
23、如图,已知直线l1:y=﹣3x+3与直线l2:y=mx﹣4m的图象的交点C在第四象限,且点C到y轴的距离为2.
(1)求直线l2的解析式;
(2)求△ADC的面积.
24、如图,一次函数y1=kx+b的图象与x轴、y轴分别交于点A、B,与一次函数y2=x的图象交于点M,点A 的坐标为(6,0),点M的横坐标为2,过点P(a,0),作x轴的垂线,分别交函数y=kx+b和y=x的图象于点C、D.
(1)求一次函数y1=kx+b的表达式;
(2)若点M是线段OD的中点,求a的值.
答案
1、D.
2、A。
3、C.
4、C.
5、D
6、B.
7、C.
8、D.
9、B.
10、B.
11、y=-x+3
12、答案为:≠1
13、答案为:①③.
14、答案为x≤3.
15、答案为:1.
16、答案为<2,>2,=2,<0.
17、答案为:3.
18、答案为:①②④
19、解:把点A(2,﹣2)的坐标代入直线解析式y=kx﹣3中,
2k﹣3=﹣2,解得:k=,则直线的函数解析式为:y=x﹣3,
由x﹣3≤0,得:x≤6.
20、解:(1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量;
(2)当底面半径为2.4cm时,易拉罐的用铝量为5.6cm3
(3)易拉罐底面半径为2.8cm时比较合适,因为此时用铝较少,成本低
(4)当易拉罐底面半径在1.6~2.8cm变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm间变化时,用铝量随半径的增大而增大.
21、解:∵2x+m=3,
∴m=3﹣2x.
∵x,m都为非负数,
∴3﹣2x≥0,x≥0,
∴0≤x≤.
把m=3﹣2x代入x﹣y﹣m=﹣1得,y=3x﹣2,
其函数图象如图.
22、解:(1)设购买A种树苗每棵需要x元,B种树苗每棵需要y元,
由已知得:,解得:.
答:购买A种树苗每棵需要100元,B种树苗每棵需要50元.
(2)设购买A种树苗m棵,则购买B种树苗100﹣m棵,
根据已知,得,解得:50≤m≤53.
故有四种购买方案:1、购买A种树苗50棵,B种树苗50棵;2、购买A种树苗51棵,B种树苗49棵;3、购买A种树苗52棵,B种树苗48棵;4、购买A种树苗53棵,B种树苗47棵.
(3)设种植工钱为W,由已知得:
W=30m+20(100﹣m)=10m+2000,
∴当m=50时,W最小,最小值为2500元.
故购买A种树苗50棵、B种树苗50棵时所付的种植工钱最少,最少工钱是2500元.
23、解(1)∵点C到y轴距离为2,点C在直线l1上,
∴y=﹣3×2+3=﹣3.
∴点C(2,﹣3).
∵点C在直线l2上,
∴﹣3=2m﹣4m,解得m=,
∴l2的解析式为y=x﹣6;
(2)∵点D是直线y=﹣3x+3与x轴的交点,
∴点D的坐标为(1,0).
∵点A是直线y=x﹣6与x轴的交点,
∴点A的坐标为(4,0),
∴AD=4﹣1=3,
∴S△ADC=×3×3=.
24、(1)解:∵M的横坐标为2,点M在直线y=x上,∴y=2,∴M(2,2)
把M(2,2)、A(6,0)代入y1=kx+b中,
可得:,解得:∴函数的表达式为:y1=﹣ x+3
(2)解:∵PD⊥x轴,∴PC∥OB∴∠BOM=∠CDM,
∵点M是线段CD的中点,∴MO=MD
在△MBO与△MCD中∴△MBO≌△MCD(ASA)∴OB=CD 当x=0时,y1= x+3=3,∴OB=2,∴DC=3,
当x=a时,y1=﹣ x+3=3﹣ a,∴y2=x=a
即D(a,a),C(a,﹣ a+3)
∴DC=a﹣(﹣ a+3)= a﹣3=3,∴a=4。