电子飞行仪表系统知识点..
- 格式:doc
- 大小:41.00 KB
- 文档页数:9
efis的基本组成EFIS(Electronic Flight Instrument System)是一种电子飞行仪表系统,它由多个组件组成,为飞行员提供了丰富的飞行信息和导航功能。
本文将深入探讨EFIS的基本组成,包括主显示器、控制面板和数据处理单元。
一、主显示器主显示器是EFIS系统的核心部件,用于显示飞行仪表、导航图像和其他飞行信息。
它通常采用高分辨率液晶显示屏,可以同时显示多个仪表和导航信息。
主显示器通常分为主飞行显示器(Primary Flight Display,PFD)和导航显示器(Navigation Display,ND)两部分。
PFD显示飞行姿态、航向、高度、速度等基本飞行参数,以及飞行指引和警告信息。
它通过颜色、符号和指示器来传达飞行状态和趋势,使飞行员能够准确地了解飞机的动态情况。
ND显示地图、航路、导航点、天气雷达和其他导航信息。
它可以帮助飞行员进行航路规划、地面导航和气象监测,提高飞行的安全性和效率。
二、控制面板控制面板是EFIS系统的操作界面,用于控制和调整显示内容和功能。
它通常位于驾驶舱的中央控制台上,由旋钮、按钮和触摸屏等组成。
通过控制面板,飞行员可以选择显示的仪表和导航信息,调整显示方式和颜色,以及执行其他操作。
控制面板的操作界面通常简洁直观,方便飞行员快速操作和调整。
三、数据处理单元数据处理单元是EFIS系统的核心处理器,负责接收、处理和分发飞行数据和导航信息。
它与飞行管理计算机、惯导系统、气象雷达等飞行电子设备相连接,实时获取飞行数据和导航信息。
数据处理单元通过内部算法和逻辑,将飞行数据和导航信息转化为可显示的图像和指示器。
它还可以根据飞行员的操作和需求,实时更新显示内容和导航信息,确保飞行员始终获得准确、及时的信息。
EFIS的基本组成包括主显示器、控制面板和数据处理单元。
主显示器通过PFD和ND显示飞行仪表和导航信息,控制面板用于操作和调整显示内容和功能,数据处理单元负责接收、处理和分发飞行数据和导航信息。
飞机电子仪表系统复习1.真航向:指真北(地球经线方向)沿顺时针方向与飞机纵轴在水平面的投影之间的夹角。
2.磁航向:指磁北(磁子午线北端方向)沿顺时针方向与飞机纵轴在水平面的投影之间的夹角。
3.真航迹角:真北与地速矢量V S之间沿顺时针方向的夹角。
4.地速:是风速和空速V TAS的矢量和,它是飞机相对地面的实际运动速度,它的方向是飞机的航迹方向。
5.空速:是飞机相对气流的运动速度。
如果飞机有侧滑飞行,则空速与飞机纵轴在水平的夹角为侧滑角。
6.电台方位:以飞机所在位置为基准点观察地面电台时,飞机位置处真北顺时针量到飞机与电台连线的角度。
飞机方位角则是以电台为基准观测飞机时,电台处真北顺时针量到电台与飞机连线之间的夹角。
7.相对方位:指的是飞机纵轴在水平面的投影顺时针转到飞机与电台连线的角度。
8.偏流角:飞机纵轴与地速V S之间的夹角,表明飞机航迹与航向的偏差。
9.预选航向:是人工在方式控制板(MCP)上选择的航向,也显示在EFIS的显示器上。
10.飞机电子仪表系统同自动驾驶仪、飞行指引仪、飞行管理计算机等系统及一系列传感器组成的信号交连,采用标准数字数据传输总线ARINC429和ARINC453来接收标准信息格式的各种信息。
EFIS-700系统接口下的输入仪表源包括:测距机(DME),甚高频全向信标系统(VOR),仪表着陆系统(ILS),惯性基准系统(IRS),大气数据计算机(ADC),低量程无线电高度表(LRRA),气象雷达(WR),飞行控制计算机(FCC),飞行管理计算机(FMC),推力计算机(TMC),比较系统(数据比较器),离散量输入装置,自动定向仪(ADF),飞机增稳计算机(FAC),飞行控制组件(FCU)。
11.飞机电子仪表系统的特点:增强了显示的综合性;易理解性或是逻辑性和条理性的增加;增加了可靠性;增加显示的柔顺性;整套系统的价格便宜;可扩展性及可适应性。
12.CRT(Cathode Ray Tube)显像管的基本原理:使用电子枪发射高速电子,经过聚焦后,在经过垂直偏转线圈和水平偏转线圈控制高速电子的偏转角度,最后高速电子击打屏幕上的磷光物质使其发光,通过电压来调节电子束的功率,就会在屏幕上形成明暗不同的光点,从而形成各种图案和文字。
1.论述EFIS-700系统显示器:EFIS-700系统是装载在波音767和波音757飞机上的电子飞行仪表系统。
该系统有4个显示器,其中一个显示器提供正驾驶使用,分别显示飞行姿态参数、水平状态参数、图像。
另两个显示器在组成上与正驾驶使用的显示器完全相同,提供给副驾驶使用,而且显示信息也完全相同。
在提供给正驾驶使用的子系统中,两个显示器分别是EDU-766和EDU-776。
提供的色彩种类包括:红、黄、紫红、蓝、深蓝、品红(洋红)、白色、绿色-766和EDU-776都是阴极射线管显示器,所以工作原理完全相同-766/776显示组件的组成:①尾部接口电路卡A A②阴极射线管组件A A③EMF滤波器A A④视屏监控器电路卡A⑤会聚电路卡A⑥偏转放大器卡A⑦低压电源卡A⑧高压电源卡A(HVPS)-766/776是固态的受微处理器控制的电子显示组件,它用于提供可靠性极高的彩色显示。
5.在显示组件的A A卡上有许多输入信号,但功能归纳起来有以下几种:①115V-400HZ电源②亮度输入信号(在亮度输入信号中分三种)③视频输入信号④同步输入信号⑤偏转输入信号8.115V-400HZ电源:通过A A输入的电源经A A滤波器后进入组件中并输入给A卡低压电源电路。
9.亮度输入信号:①光传感器输入信号②远距离光传感器输入信号③人工调整信号9.视频输入信号:在视屏输入信号中,具体又可分为四个信号:①红电子枪视频信号②绿电子枪视频信号③蓝电子枪视频信号④电子束测试信号10.同步输入信号:它共有三个信号:①光栅笔画信号②同步信号③强速信号11.在A A卡上的输出信号种类:①远距离光传感器的电源输出②监控输出信号③光传感输出信号12.监控输出信号共有三个:①显示组件异常输出信号②电子束测试失效信号③显示组件超温信号。
图文教程:波音737电子飞行仪表系统EFIS(电子飞行仪表系统)主要由控制面板、符号发生器和显示器组成,飞机上有两套EFIS系统,一套用于机长,一套用于副驾驶,正常情况下,每套系统使用一组对应的符号发生器和控制面板,每套系统都有自己的信号输入源,但二者共用一套FMC(飞行管理计算机),因此,除了FMC,通常两套系统在正常使用时是各自独立的。
1、EFIS显示器分为PFD(主飞行显示)和ND(导航显示)2、EFIS控制面板包括:最小控制、飞行路径向量电门、计量电门、气压控制、VOR/ADF电门、模式控制、量程选择器、交通电门、气象雷达电门、地形电门、地图电门。
最小控制选择并设置无线电和气压最小高度。
包括:最小基准选择器、最小选择器、最小复位电门。
外圈的控制是最小基准选择器,它可以选择无线电或气压作为最小高度的基准。
中间的控制是最小选择器,可以选定高度。
内圈的控制是最小复位电门。
当最小基准选择器在无线电位置时,该电门复位无线电高度警戒。
当最小基准选择器在气压位置时,复位电门复位气压高度警戒,从琥珀色变为白色。
飞行航迹向量(FPV)电门可在姿态显示器上显示FPV符号。
计量电门(MTRS)是一个备用工作电门。
当选定MTRS时,以米和英尺显示下列指示:高度、MCP选择高度气压控制选择并设定气压基准。
包括:气压基准选择器、气压选择器、气压标准电门。
外圈控制是气压基准选择器,它可以选定英寸示柱(IN)或百帕(hpa)作为气压基准。
中间控制是气压选择器,可设定气压修正。
内圈控制是气压标准电门。
它选择标准气压设定为29.92英寸汞柱或1013百帕。
VOR/ADF电门是一个三位置肘节电门,电门可以选择在显示器上显示VOR或ADF航向点。
所有模式在导航显示(ND)上显示这些航向点,但PIAN(计划)模式除外。
模式控制选择在ND上显示的模式。
模式控制是由模式选择器和中央电门组成,模式选择器是一个四位置电门,包括:APP(进近)、VOR、MAP(地图)、PLN(计划),中央电门可以显示扩展的或集中的VOR,APP和MAP模式。
电子飞行仪表系统课程知识点1、航空仪表担负着测量飞机飞行状态参数的重担, 是操作飞机实现安全可靠飞行所必不可少的重要设备。
众多飞机测量参数中, 根据描述功能的不同分为两类:一类是用于描述飞机飞行状态的擦数(如:飞行字体参数、航向参数、大气数据参数、自动飞行系统的状态参数, 用于测量这些参数的仪表称为飞行仪表或航行仪表);另一类用于描述飞机上各机载系统工作运转情况的参数(涉及发动机状态参数、电源、氧气、增压等其他系统的监测参数及告警参数等, 相应的仪表归类为发动机系统参数和告警仪表和其他机载设备(装置)仪表)。
航空仪表按功能分为三类: 飞行仪表、发动机仪表、其他系统的监控仪表。
按工作原理分为三类: 测量仪表、计算仪表、调节仪表。
测量仪表可以用来测量飞机的各种运营参数和机载系统状态参数, 如发动机工作参数——压力比, 飞行运营参数——空速等。
2、计算仪表指飞机上的一些领航(或称导航)和系统性能方面的计算仪表, 如自动领航仪、惯性导航系统、飞行管理计算机系统等。
3、调节仪表是指机载的某些特定自动控制系统, 在机务维修工作中仍由仪表或电子专业人员负责, 如自动驾驶仪、马赫配平系统等。
以下一些飞行参数的定义:真航向: 指真北(地球经线方向)沿顺时针方向与飞机纵轴在水平面的投影之间的夹角。
磁航向: 指磁北(磁子午线北端方向)沿顺时针方向与飞机纵轴在水平面的投影之间的夹角。
真航迹角: 真北与地速矢量VS之间沿顺时针方向的夹角。
地速: 是风速和空速VTAS的矢量和, 它是飞机相对地面的实际运动速度, 它的方向是飞机的航迹方向。
空速:是飞机相对气流的运动速度。
假如飞机有侧滑飞行, 则空速与飞机纵轴在水平的夹角为侧滑角。
电台方位: 以飞机所在位置为基准点观测地面电台时, 飞机位置处真北顺时针量到飞机与电台连线的角度。
飞机方位角则是以电台为基准观测飞机时, 电台处真北顺时针量到电台与飞机连线之间的夹角。
相对方位: 指的是飞机纵轴在水平面的投影顺时针转到飞机与电台连线的角度。
四个EFIS显示(电子式飞行仪表系统)给飞行员提供飞行数据,并且提供了一种安全、有效的方法操纵飞机。
主飞行显示(PFD)显示飞行数据,导航
显示(ND)显示导航数据。
ELECTRONIC FLIGHT INSTRUMENT SYSTEM
ND1ND2
PFD1PFD2
每个飞行员有一个EFIS控制面板,用于选择EFIS屏幕上的显示内容。
EFIS控制面板分成两个部分:一部分控制PFD,另一部分控制ND。
在遮光板的中部是飞行控制组件(FCU)。
FCU是飞行员与自动飞行系统之间的接口组件。
FCU的使用将在自动飞行部分中讲述。
FCU上有一些选择器,这些选择器会影响到PFD和ND上的指示。
在EFIS章节中我们只讨论这些选择器。
这些选择器与相应的指示用于:
•速度
•航向
•高度
在本章节和以下的部分中你将看到这些选择器是如何影响EFIS显示的。
SPEED HEADING ALTITUDE
在遮光板上有两个计时(CHRONO)按钮开关,它们控制显示在ND上的计时器。
按钮开关的操作方式是常用的秒表计时方式。
在本章节中,我们介绍了电子式飞行仪表系统(
EFIS)。
在以后的章节中,我们将具体的介绍PFD
和ND。
本章已完成
主题列表
EXIT GLOSSARY AUDIO FCOM RETURN EFIS 概况
EFIS 控制
FCU
时钟。
第一章飞行仪表概述1.测量仪表是一种装置,它代替人类测定被测物理量并给出示数,其目的是使系统操作者根据仪表指示更有效地实施控制。
2.航空仪表担负着测量飞机飞行状态的参数的重任。
3.航空仪表就是一种专用仪表4.飞行测量参数分类:①用于描述飞机飞行状态的参数②用于描述飞机上各机载系统工作运转情况的工作5.飞行仪表:用于测量飞机各种运动参数6.航空仪表按功能不同可分为①飞行仪表②监控仪表7.航空仪表按功能不同也可以分为:①飞行仪表(位于正副驾驶仪表板上)②发动机仪表(位于中央仪表板上)③其它系统的监控仪表(位于驾驶舱顶板上)8.航空仪表按工作原理进行分类:①测量仪表②计算仪表③调节仪表9.飞行参数是驾驶飞机的依据,按功用分为:①描述飞机在空中的位置及运动的参数②描述飞机在水平面投影的状态参数。
10.航向参数:描述各种方位的参数11.真北或磁北确定的航向参数:(P6图角度)①真航向②磁航向③真航迹角④地速⑤空速⑥电台方位⑦相对方位⑧偏流角:飞机纵轴与地速Vs之间的夹角⑨预选航向12.最重要的参数仪表安排在飞行员最便于观察的位置,所谓飞行员最便于观察指的是,仪表应处于飞行员的平视场内13.P7图1-314.在指引地平仪上(姿态指引仪ADI),主要反映俯仰、倾斜、侧滑和指引信息。
15.在图1-5飞机符号固定不动,而背景画面随飞机的俯仰和倾斜而变化。
16.当俯仰指引杆和倾斜指引杆交叉点与飞机符号中心点重合时,说明此时操作正确。
17.飞行员驾驶飞机时,只要尽可能地使两指引杆靠近小飞机符号即可。
18.P9 1-6图19.预选方位:即选定的方位这条方位线称为航道20.当操作飞机转弯使得预选方位指针随罗盘一起转动到航向指针位置时,表明飞机沿预选方位飞行,但并不代表在预选航道上,应使航道偏离杆与预选航向指针重合时,表明无航道偏离,飞机在预选航道上飞行。
因此,航道偏离杆和预选方位指针都具有指引的意义。
21.飞行仪表的发展过程:①机械仪表时代:直读机、机械构成开环,重量体积大,精度差,可靠性高②电气仪表阶段:远程式仪表,提高仪表的开环,精度差③机电伺服仪表阶段:闭环,抗干扰能力强,带载能力强(电容式油量表)④综合指示仪表阶段:功能相同的仪表指示器有机结合,警告、指引、综合性强(ADI、HSI)⑤电子综合显示仪表阶段:综合化、标准化、数字化、多功能22.民航机上第一代仪表为机械仪表,第二代为电气仪表,此后与军用机一致发展到第三代机电伺服式仪表和第四代综合指引仪表23.民航机电子显示经历的三代变革①八十年代初期为第一代,特点是电子显示已成为座舱的主要仪表,但由于综合程度有限,仍配置较多的机电仪表和备用仪表。
第 1 章飞机姿态仪表飞行—使用电子飞行显示1.1 介绍姿态仪表飞行定义为通过使用仪表而不是外部目视参考来控制飞机的空间位置。
当今的飞机一般装配的是指针式仪表或数字式仪表。
本章是为了使飞行员熟悉被称为电子飞行显示(EFD)的数字仪表。
航空电子设备的改进以及在通用飞机上引入EFD,给如今的飞行员提供了一种新颖精确的仪表显示方式来进行仪表飞行。
大多数的通用飞机装备的都是独立的仪表,通过参考这些独立仪表,并综合运用来安全地操纵飞机。
电子飞行显示系统的出现,使多个液晶显示屏(LCD)代替了传统的仪表。
第一个屏幕安装在左座飞行员的正前方,作为主飞行显示(PFD)。
『图5-1』第二个屏幕大约位于仪表面板的中心位置,作为多功能显示器(MFD)。
『图5-2』飞行员可以使用MFD来显示导航信息(包含可移动的地图)、飞机系统信息(包括发动机参数),在需要的时候,也可转换为PFD显示。
『图5-3』因为只有,飞机设计者用这两块屏幕简化了仪表面板,同时增强了安全性。
因为这些基于晶体管的仪表的故障率远比传统模拟式仪表要低。
图 5-1 和主飞行显示(PFD)相对应的指针式仪表。
当然,在电气失效的情况下,飞行员仍有备用的应急仪表。
这些仪表要么不需要电源,要么像多数的备份地平仪一样单独安装有电池。
『图5-4』在目视飞行中,飞机姿态通过飞机上的某个参考点相对于自然天地线的关系来控制。
为了在非目视气象条件下操纵飞机,飞行员需要提高参考飞行仪表来操纵飞机的能力。
这些飞行仪表本质上提供了和目视飞行中外部参考相同的关键信息。
通过人工天地线,在姿态指示器上重现了自然天地线。
图 5-2 多功能显示器(MFD)。
图 5-3 备份显示。
在学习姿态仪表飞行的过程中,要懂得每个飞行仪表是如何运转的,以及它们在控制飞机姿态中所起的作用。
在懂得了所有的仪表对保持飞机姿态的作用后,当进入了仪表飞行条件或者某些关键仪表失效时,飞行员才能更好地操纵飞机,保证安全。
电子飞行仪表系统课程知识点1、航空仪表担负着测量飞机飞行状态参数的重担,是操作飞机实现安全可靠飞行所必不可少的重要设备。
2、众多飞机测量参数中,根据描述功能的不同分为两类:一类是用于描述飞机飞行状态的擦数(如:飞行字体参数、航向参数、大气数据参数、自动飞行系统的状态参数,用于测量这些参数的仪表称为飞行仪表或航行仪表);另一类用于描述飞机上各机载系统工作运转情况的参数(包括发动机状态参数、电源、氧气、增压等其他系统的监测参数及告警参数等,对应的仪表归类为发动机系统参数和告警仪表和其他机载设备(装置)仪表)。
3、航空仪表按功能分为三类:飞行仪表、发动机仪表、其他系统的监控仪表。
按工作原理分为三类:测量仪表、计算仪表、调节仪表。
测量仪表可以用来测量飞机的各种运行参数和机载系统状态参数,如发动机工作参数——压力比,飞行运行参数——空速等。
计算仪表指飞机上的一些领航(或称导航)和系统性能方面的计算仪表,如自动领航仪、惯性导航系统、飞行管理计算机系统等。
调节仪表是指机载的某些特定自动控制系统,在机务维修工作中仍由仪表或电子专业人员负责,如自动驾驶仪、马赫配平系统等。
4、以下一些飞行参数的定义:真航向:指真北(地球经线方向)沿顺时针方向与飞机纵轴在水平面的投影之间的夹角。
磁航向:指磁北(磁子午线北端方向)沿顺时针方向与飞机纵轴在水平面的投影之间的夹角。
真航迹角:真北与地速矢量VS之间沿顺时针方向的夹角。
地速:是风速和空速VTAS的矢量和,它是飞机相对地面的实际运动速度,它的方向是飞机的航迹方向。
空速:是飞机相对气流的运动速度。
如果飞机有侧滑飞行,则空速与飞机纵轴在水平的夹角为侧滑角。
电台方位:以飞机所在位置为基准点观察地面电台时,飞机位置处真北顺时针量到飞机与电台连线的角度。
飞机方位角则是以电台为基准观测飞机时,电台处真北顺时针量到电台与飞机连线之间的夹角。
相对方位:指的是飞机纵轴在水平面的投影顺时针转到飞机与电台连线的角度。
偏流角:飞机纵轴与地速VS之间的夹角,表明飞机航迹与航向的偏差。
预选航向:是人工在方式控制板(MCP)上选择的航向,也显示在EFIS的显示器上。
5、军机和民航机飞行仪表的发展,均可分成五代。
6、飞机仪表系统的四种配置:单管配置、四管配置、五管配置和六管配置。
7、飞机电子仪表系统同自动驾驶仪、飞行指引仪、飞行管理计算机等系统及一系列传感器组成的信号交连,采用标准数字数据传输总线ARINC429和ARINC453来接收标准信息格式的各种信息。
EFIS-700系统接口下的输入仪表源包括:DME,VOR,ILS,IRS,ADC,LRRA低量程无线电高度表,WR,FCC,FMC,TMC推力计算机,比较系统(数据比较器),离散量输入装置,ADF,FAC飞机增稳计算机,FCU飞行控制组件。
8、飞机电子仪表系统的特点:增强了显示的综合性;易理解性或是逻辑性和条理性的增加;增加了可靠性;增加显示的柔顺性;整套系统的价格便宜;可扩展性及可适应性。
9、CRT(Cathode Ray Tube)显像管的基本原理:使用电子枪发射高速电子,经过聚焦后,在经过垂直偏转线圈和水平偏转线圈控制高速电子的偏转角度,最后高速电子击打屏幕上的磷光物质使其发光,通过电压来调节电子束的功率,就会在屏幕上形成明暗不同的光点,从而形成各种图案和文字。
10、CRT电子枪产生的电子束应满足下列条件:足够的电流强度;电子流的大小和有无必须是可控的;电子流必须具有很高的速度;电子束在荧光屏上应能聚成很小的光点,以保证显示器具有足够的分辨率。
11、热电子发射:若对金属加热,则金属内部质点运动加剧,一部分自由电子因为动能加大,速度提高,便可逸出金属表面,这类现象称为热电子发射。
CRT就是利用“热电子发射”的原理产生自由电子的。
12、CRT电子束的聚焦原理:在阴极射线管中,由阴极发出的电子流通过电子枪时会聚成直径很细的电子束,这称为电子束的聚焦。
13、实现电子束聚焦的方式:静电聚焦和磁聚焦。
静电聚焦:是通过管内电子枪各电极间所产生的不均匀电场实现对电子流的聚焦;磁聚焦则是依靠套在管颈上的聚焦线圈所产生的聚焦磁场来实现聚焦的。
14、为了在荧光屏上相应的位置显示图形及字符,必须使电子束偏转,偏转有静电偏转和磁偏转两种方式。
15、像素(pixel或pel,是picture element):是指组成图像的最小单位,也即上面提到的发光点。
分辨率指屏幕上像素的数目。
16、形成彩色图像的方法,可以是相加混色法,也可以是相减混色法。
17、彩色成像的原理:利用电子束去轰击能发出不同颜色辉光的荧光质,屏上各处均应布满包括多种荧光质的荧光质点组,设法在彩色显像管的电子枪中产生三条聚焦电子束,并使这些电子束只能轰击各自对应的荧光质,而不会轰击同一组中的其他荧光质点,则可以确定图像颜色。
因此,只要利用信号电路来控制由哪一个电子束或哪几个电子束来轰击对应的荧光质,就能达到控制图像颜色的目的。
18、阴罩是彩色显像管的关键部件,主要起选色作用。
19、液晶显示器(LCD)的显像原理:将液晶置于两片导电玻璃之间,靠两个电极间电场的驱动引起液晶分子扭曲向列的电场效应,以控制光源透射或遮蔽功能,在电源关/开之间产生明暗而将影像显示出来,若加上彩色滤光片,则可显示彩色影像。
20、液晶分子的排列不像晶体结构那样牢固,它柔软易变形。
当液晶分子受电场、磁场、温度、应力等外部条件作用时,液晶分子就会重新排列,基于液晶光学各向异性的各种特性也随着变化。
液晶的这种柔软的分子排列特性是液晶器件的应用基础。
21、LCD液晶显示器主要技术指标:电光响应特性——反映显示器的显示信息容量和对比度;对比度——是指液晶显示器的显示状态(有显示内容)和非显示状态(底色)相对透光率的比较,常代表图像的清晰度;视角——是液晶显示器区别于其他显示器的主要特点;响应时间;功耗——液晶显示器工作时所消耗的能量;温度特性。
22、等离子显示器PDP(Plasma Display Panel)又称电浆显示器:指所有利用气体放电而发光的平板显示器件的总称。
它是用许多小氖气灯泡构成的平板阵列,利用加在阴极和阳极间的一定电压,使气体产生辉光放电,单色PDP通常直接利用气体放电时发出的可见光来实现单色显示;彩色PDP通过惰性气体(Ne,He,Xe等)放电发射的真空紫外线照射红、绿、蓝三基色荧光粉,使荧光粉发光来实现彩色显示。
23、在阴极射线管荧光屏上显示图形和文字是通过偏转系统控制电子束的运动并在荧光屏上规定的位置控制发光强度来实现。
计算机图形显示系统中常用的电子束偏转方式有光栅扫描和随机扫描两种。
24、设位平面个数为N,则可显示的颜色或灰度等级为2N。
25、颜色表:用来定义像素的颜色。
26、利用位平面实现彩色显示的帧缓存结构有两种:不带调色板的帧缓存结构和带调色板的帧缓存结构。
27、光栅扫描显示系统工作原理:图像生成器根据主机发送来的画图命令,把图画在显存中,在现场中生成所显示画面的位图;CRT控制器一方面产生水平和垂直同步信号送到显示器,使CRT电子束不断自上而下、自左向右进行扫描,形成光栅;另一方面有根据电子束在屏幕上的行、列位置,自动计算并生成显示存储器中的相应位置,不断读出显存中的位图数据;显存中读出的像素值经过查颜色表后,转换成红绿蓝三原色的亮度值;颜色亮度信号也叫图像信号或视频信号,它控制着CRT电子束的通、断、强、弱,从而在显示屏幕上形成一帧与显存中所存映像相对应的可见显示画面。
28、随机扫描是用随机定位方式来控制电子束的运动的。
在随机扫描显示中,电子束的运动完全是按实现存放在刷新存储器中的显示指令进行的,没有确定的规律,完全是程序编制者任意规定的,也就是说是随机显示。
29、电子仪表系统的图像和图形发生组件(即彩色/图像监视器适配器),是连接计算机主机和显示器CRT之间的接口和控制部件,它接受主机发送来的显示指令,根据该指令含义控制CRT的辉亮以及电子束的片中,从而产生需要的图形和符号。
30、字符发生器功能:把显示指令(指字符指令)中以字符编码形式表示的字符(包括英文字母、数字、专用符号及汉字等)变化为字符的图形,即控制电子束在显示屏上按一定方式扫描,并加以辉亮控制后,显示所需的字符,连续给出字符指令,便可显示出字符串。
31、随机扫描字符产生器,在随机扫描显示系统中,产生字符的方法有:点阵法和矢量法。
根据控制电子束扫描方式的不同,点阵法又分为固定点阵法和程序点阵法两种。
32、矢量法字符产生器(或称笔画法):以矢量组合的方式产生字符,即用若干个具有不同方向(水平、垂直和倾斜45度)的单位矢量或若干段任意方向、长度的矢量来组成字符图形,根据组成字符所用矢量的形式不同,矢量法包括单位矢量法和逐次矢量法等。
33、矢量产生器:在计算机图形显示系统中,图形通常是由各种曲线和直线来描绘的,而任何曲线又可以用许多较短的直线来逼近。
具有一定长度和一定方向的直线段称为矢量,产生这些直线段的逻辑功能部件叫做矢量产生器。
34、矢量产生的要求:直线应具有良好的直线性,即逼近精度越高;所画直线的起点和终点位置应准确;各种直线以及直线上各点亮度要均匀,即要求点之间应等间距;产生直线应当快,即画线速度要高。
35、矢量产生器的分类:数字乘法器矢量产生器;速率乘法器矢量产生器;累加法矢量产生器。
36、显示计算机的主要功能是完成信号处理及显示驱动,现代飞机电子仪表系统的主机有两类:符合发生器;显示管理计算机。
37、符号发生器(Symbol Generator):接收外部来的信号,经内部处理后产生视频信号,送往主飞行显示器EADI和电子式水平状态显示器EHSI上显示各种字符、背景图形和气象信息。
内部主要包括:电源组件,输入/输出接口电路,微处理器CPU,存储器,温度传感器,自测试/监控电路,显示控制器,光栅/笔划发生器和显示驱动电路组成。
电源组件将机上115V、400Hz电源变为符号发生器所需电源。
符号发生器提供的电子显示符号信息分为:光栅信息和笔划书写信息两大类。
38、显示管理计算机DMC(Display Management Computer)图像产生器接收PFD和ND重新格式化的数据,然后转换成视频格式,通过接口送到显示器上显示。
PFD只有一个格式,ND有7种格式:两种进近(APP)或ILS,两种全向信标VOR,两种地图MAP,和一种计划PLAN方式。
PFD故障时,运行转换到ND上显示,或ND转换到ECAM的E/W显示器上显示。
39、现代飞机电子仪表系统主要由电子飞行仪表系统(EFIS)和电子中央飞机监控系统(ECAM)或发动机指示机组警告系统(EICAS)组成。
40、电子飞行仪表系统(EFIS)是综合电子仪表系统的子系统,是综合的彩色电子显示系统,完全取代了独立式的机电式地平仪、航道罗盘、电动高度表、马赫空速表和其他机电式仪表等,提供最重要的飞行信息。