初中数学竞赛辅导讲义:第19讲-转化灵活的圆中角(含习题解答)
- 格式:pdf
- 大小:1.18 MB
- 文档页数:6
初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手第一讲 走进追问求根公式形如()的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。
而公式法是解一元二次方程的最普遍、最具有一般性的方法。
求根公式内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。
降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。
解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。
【例题求解】【例1】满足的整数n 有 个。
思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。
【例2】设、是二次方程的两个根,那么的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出、的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如,。
【例3】 解关于的方程。
思路点拨:因不知晓原方程的类型,故需分及两种情况讨论。
第十九讲 转化灵活的圆中角
性,使得角能灵活地互相转化.
,改变顶点在圆上的位置进行探索;由圆内接四边形的对角互补和外角等于内对角,可将与圆有关的角角,这两类角分别与它们的所夹弧度数有怎样的关系?读者可自行作一番探讨.
合),直线EC 交⊙O 于另一点D ,则使DE=DO 的点正共有 个. 个结论:①∠FMC=45°;②AE+AF =AB ;③BC
BA EF ED =;④2BM 2=BF ×BA ;⑤四边形AEMF 为矩形.其中正择.
外),直线CE 交⊙O 于点F ,连结AF 与直线CD 交于点G .
证明△QDE ∽△ACF ;(2)易证DE QC PE CP =,通过其他三角形相似并结合(1)把非常规问题
共圆的主要方法有:
与AB交于点F.给出下列四个结论:①CH2=AH×BH;②AD=AC;③AD2=DF×DP;④∠EPC=∠APD,其中
⌒⌒
已知CD=6,AD=3,BD=8,求⊙O的直径BE的长.
为( )
GDE相似的三角形的个数为( )
17.如图,已知四边形ABCD外接圆⊙O的半径为2,对角线AC与BD的交点为E,AE=EC,AB=2AE,且BD=3
2,求四边形ABCD的面积.
18.如图,已知ABCD为⊙O的内接四边形,E是BD上的一点,且有∠BAE=∠DAC.
点D不与点A、C重合),DE平分∠ADC,交⊙O于点E,交AC于点F.
⌒。
《圆》全章复习与巩固—知识讲解(基础)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系;探索并了解点与圆、直线与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积;【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的所有点组成的图形.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有 点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A L 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:(1)OA=OB=OC定在三角形内部(1)(2)OABAC心在三角形内部2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的有关概念及性质1.如图所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为.;【解析】由已知得BC ∥x 轴,则BC 中垂线为 那么,△ABC 外接圆圆心在直线x=1上,设外接圆圆心P(1,a),则由PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为P(1,0) 则【总结升华】 三角形的外心是三边中垂线的交点,由B 、C 的坐标知:圆心P (设△ABC 的外心为P )必在直线x=1上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到P (1,0);连接PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,∠DEB =60°,2412x -+==r PA ===求CD 的长.【思路点拨】作OF ⊥CD 于F ,构造Rt △OEF ,求半径和OF 的长;连接OD ,构造Rt △OFD ,求CD 的长. 【答案与解析】作OF ⊥CD 于F ,连接OD .∵ AE =1,EB =5,∴ AB =6. ∵ ,∴ OE =OA-AE =3-1=2. 在Rt △OEF 中,∵ ∠DEB =60°,∴ ∠EOF =30°, ∴ ,∴. 在Rt △DFO 中,OF =,OD =OA =3,∴ (cm). ∵ OF ⊥CD ,∴ DF =CF ,∴ CD =2DF =cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.举一反三: 【变式】如图,AB 、AC 都是圆O 的弦,OM⊥AB,ON⊥AC,垂足分别为M 、N ,如果MN =3,那么BC = .32ABOA ==112EF OE ==223OF OE EF =-=322223(3)6DF OD OF =-=-=26N MO C BA【答案】由OM⊥AB,ON⊥AC,得M、N分别为AB、AC的中点(垂径定理),则MN是△ABC的中位线,BC=2MN=6.3.如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB = 20°,则∠OCD =.【答案】65°.【解析】连结OD,则∠D OB = 40°,设圆交y轴负半轴于E ,得∠D OE= 130°,∠OCD =65°.【总结升华】根据同弧所对圆周角与圆心角的关系可求.举一反三:【变式】(2019•黑龙江)如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A.60°B.120°C.60°或120°D.30°或150°【答案】C.【解析】作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系yxOA BDC4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.请判断直线CE与⊙O的位置关系,并证明你的结论.【答案与解析】直线CE与⊙O相切理由:连接OE∵OE=OA∴∠OEA=∠OAE∵四边形ABCD是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线CE与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P为正比例函数图象上的一个动点,的半径为3,设点P的坐标为(x、y).(1)求与直线相切时点P的坐标.(2)请直接写出与直线相交、相离时x的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,(,).当与直线相切时,点的坐标为(5,7.5)或(,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.(2019•丽水)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°, ∵OA=OE , ∴∠AOE=90°, ∵⊙O 的半径为4,∴S 扇形AOE =4π,S △AOE=8 , ∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,所在圆的圆心为O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).【思路点拨】求覆盖棚顶的帆布的面积,就是求以为底面的圆柱的侧面积.根据题意,应先求出所对的圆心角度数以及所在圆的半径,才能求的长. 【答案与解析】连接OB ,过点O 作OE ⊥AB ,垂足为E ,交于点F ,如图(2). 由垂径定理,可知E 是AB 中点,F 是的中点, ∴EF =2. 设半径为R 米,则OE =(R-2)m .在Rt △AOE 中,由勾股定理,得.解得R =4. ∴ OE =2,,∴ ∠AOE =60°,∴ ∠AOB =120°. »AB »AB »AB »AB »AB »AB 12AE AB ==222(2)R R =-+12OE AO =∴ 的长为(m).∴ 帆布的面积为(m 2).【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽AB=16cm ,水最深的地方的高度为4cm ,求这个圆形截面的半径.【答案】①作法略.如图所示.②如图所示,过O 作OC ⊥AB 于D ,交于C ,∵ OC ⊥AB , ∴.由题意可知,CD=4cm. 设半径为x cm ,则. 在Rt △BOD 中,由勾股定理得:∴. ∴ .即这个圆形截面的半径为10cm.»AB 120481803ππ⨯=8601603ππ⨯=《圆》全章复习与巩固—巩固练习(基础)【巩固练习】一、选择题1.对于下列命题:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中,正确的有( ).A.1个 B.2个 C.3个 D.4个2.(2019•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30° C.75° D.60°3.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处踩板离地面2米(左右对称),如图所示,则该秋千所荡过的圆弧长为( ).A.米B.米C.米D.米4.在直角坐标平面中,M(2,0),圆M的半径为4,那么点P(﹣2,3)与圆M的位置关系是()A.点P在圆内 B.点P在圆上 C.点P在圆外 D.不能确定5.如图所示,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于E、F,OE=8,OF=6,则圆的直径长为( ).A.12 B.10 C.4 D.156.如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为( ). A.(2,-1) B.(2,2) C.(2,1) D.(3,1)7.如图所示,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于( ).A.55° B.90° C.110° D.120°8.正多边形的中心角是36°,那么这个正多边形的边数是()A.10 B.8 C.6 D.5二、填空题9.如图,已知直线AB与⊙O相交于A、B两点,∠OAB=30°,半径OA=2,那么弦AB= .10.如图,CD是⊙O的直径,A,B是⊙O上任意两点,设∠BAC=y,∠BOD=x,则y与x之间的函数关系式是__________ .11.如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.12.如图所示,⊙O 的内接四边形ABCD 中,AB=CD ,则图中与∠1相等的角有________________.13.点M 到⊙O 上的最小距离为2cm ,最大距离为10 cm ,那么⊙O 的半径为___ _____. 14.已知半径为R 的半圆O ,过直径AB 上一点C ,作CD ⊥AB 交半圆于点D ,且,则AC 的长 为_____ ___.15.如图所示,⊙O 是△ABC 的外接圆,D 是弧AB 上一点,连接BD ,并延长至E ,连接AD ,若AB =AC ,∠ADE =65°,则∠BOC =___ _____.16.(2019•酒泉)如图,半圆O 的直径AE=4,点B ,C ,D 均在半圆上,若AB=BC ,CD=DE ,连接OB ,OD ,则图中阴影部分的面积为 .三、解答题17.如图,是半圆的直径,过点作弦的垂线交半圆 于点,交于点使.试判断直线与圆的位置关系,并证明你的结论;18.在直径为20cm 的圆中,有一弦长为16cm ,求它所对的弓形的高。
第十九讲 * 平面几何中的几个有名定理几何学发源于土地丈量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门拥有严实的逻辑系统的数学分支.人们从少许的公义出发,经过演绎推理获得许多结论,这些结论一般就称为定理.平面几何中有许多定理,除了教科书中所论述的一些定理外,还有很多有名的定理,以这些定理为基础,能够推出许多几何事实,获得完满的结论,以致奇妙而简捷地解决许多问题.而这些定理的证明自己,给我们很多有价值的数学思想方法,对宽阔眼界、活跃思想都很是有利.有些定理的证明方法及其引伸出的结论表现了数学的美,令人们感觉对这些定理的理解也能够看作是一种享受.下边我们来介绍一些有名的定理.1.梅内劳斯定理亚历山大里亚的梅内劳斯 (Menelaus ,约公元 100 年,他和斯巴达的Menelaus 是两个人 ) 曾著《球面论》,侧重议论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理” 现载在初等几何和射影几何的书中,是证明点共线的重要定理.定理向来线与△ ABC的三边 AB,BC, CA或延伸线分别订交于X,Y,Z,则证过 A,B,C 分别作直线 XZY的垂线,设垂足分别为Q,P,S,见图 3-98.由△ AXQ∽△ BXP得同理将这三式相乘,得说明 (1) 假如直线与△ ABC的边都不订交,而订交在延伸线上,相同可证得上述结论,但必定要有交点,且交点不在极点上,不然定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为AX×BY× CZ=XB×YC×ZA,仍旧建立.(2)梅内劳斯定理的逆定理也建立,即“在△ ABC的边 AB和 AC上分别取点 X,Z,在 BC的延伸线上取点 Y,假如那么 X,Y,Z 共线”.梅内劳斯定理的逆定理常被用来证明三点共线.例 1 已知△ ABC的内角∠ B 和∠ C 的均分线分别为 BE和 CF,∠A 的外角均分线与 BC的延伸线订交于 D,求证: D,E,F 共线.证如图 3-99 有相乘后得由梅内劳斯定理的逆定理得F,D,E 共线.例 2( 戴沙格定理 ) 在△ ABC和△ A′B′C′中,若 AA′,BB′,CC′订交于一点 S,则 AB与 A′ B′,BC与 B′C′,AC与 A′C′的交点 F,D,E共线.证如图 3- 100,直线 FA′ B′截△ SAB,由梅内劳斯定理有同理,直线 EC′ A′和 DC′B′分别截△ SAC和△ SBC,得将这三式相乘得所以 D,E,F 共线.2.塞瓦定理意大利数学家塞瓦 (G.Ceva)在 1678 年发布了下边的十分实用的定理,它是证明共点线的重要定理.定理在△ ABC内任取一点 P,直线 AP,BP,CP分别与边 BC,CA,AB订交于 D,E,F,则证如图 3- 101,过 B, C分别作直线 AP的垂线,设垂足为H和 K,则因为△ BHD∽△ CKD,所以同理可证将这三式相乘得说明 (1) 假如 P 点在△ ABC外,相同可证得上述结论,但 P 点不可以在直线 AB,BC,CA上,不然,定理的结论中的分母出现零,分子也出现零,这时,定理的结论应改为BD×CE× AF=DC×EA×FB,仍旧建立.(2)塞瓦定理的逆定理也建立,即“在△ ABC的边 BC, CA,AB上分别取点 D,E,F,假如那么直线 AD,BE,CF订交于同一点.”证如图 3- 102,设 AD和 BE订交于 P,作直线 CP,交直线 AB于F′,由塞瓦定理得所以 F ′ B=FB,即 F′与 F 重合,所以 AD,BE, CF订交于同一点.塞瓦定理的逆定理常被用来证明三线共点.例 3 求证:三角形的三条中线、三条内角均分线和三条高所在的直线分别订交于同一点.证 (1) 假如 D, E, F 分别是△ ABC的边 BC, CA,AB的中点,则由塞瓦定理的逆定理得中线AD,BE, CF共点.(2)假如 D,E,F 分别是△ ABC的内角均分线 AD,BE,CF与边 BC,CA,AB的交点,则由塞瓦定理的逆定理得角均分线AD, BE,CF共点.(3)设 D,E,F 分别是△ ABC的高 AD, BE,CF的垂足.(i)当△ ABC是锐角三角形时 ( 如图 3- 103) ,D,E,F 分别在 BC,CA,AB上,有BD=ccosB,DC=bcosC,CE=acosc,EA=ccosA,AF=bcosA,FB=acosB,所以由塞瓦定理的逆定理得高AD, BE,CF共点.(ii)当△ ABC是钝角三角形时,有BD=ccosB, DC=bcosC,CE=acosC,EA=ccos(180° -A)=-ccosA,AF=bcos(180° -A)=-bcosA,FB=acosB,所以由塞瓦定理的逆定理,得高AD,BE, CF共点.(iii)当△ ABC是直角三角形时,高 AD,BE,CF都经过直角极点,所以它们共点.例 4 在三角形 ABC的边上向外作正方形, A1,B1,C1是正方形的边BC,CA,AB的对边的中点,证明:直线 AA1,BB1,CC1订交于一点.证如图 3- 104.设直线 AA1,BB1,CC1与边 BC,CA,AB的交点分别为 A2,B2,C2,那么 BA2:A2C 等于从点 B 和 C 到边 AA1的垂线的长度之比,即此中∠θ =∠CBA1=∠ BCA1.同理将上述三式相乘得依据塞瓦定理的逆定理,得AA1,BB1,CC1共点.3.斯台沃特定理定理△ABC的边 BC上任取一点 D,若 BD=u, DC=v, AD=t,则证过 A 作 AE⊥ BC,E 为垂足 ( 如图 3- 105) ,设 DE=x,则有2 2 2 2-(u+x) 2 2 2,AE=b -(v -x) =c =t -x ( 若 E 在 BC的延伸线上,则 v-x 换成 x-v.) 于是得消去 x 得(u+v) 2=b2u+c2v-uv(u+v) ,这就是中线长公式.(2)当 AD是△ ABC的内角均分线时,由三角形的内角均分线的性质设 a+b+c=2p,得这就是内角均分线长公式.(3)当 AD是△ ABC的高时,2222 2AD=b -u =c -v .再由 u+v=a,解得所以若设 AD=h a,则这就是三角形的高线长公式.当 D 在 BC的延伸线上时,用 -v 取代 v,相同可得高线长线公式.这就是三角形的面积公式.伦公式例 5 如图 3- 106.在△ ABC中, c>b,AD是△ ABC的角均分线,E 在 BC上, BE=CD.求证:22 2AE-AD=(c -b) .证为方便起见,设 BD=u,DC=v,则 BE=v,EC=u.由斯台沃特定理得所以因为 AD是角均分线,所以于是4.托勒密定理托勒密 (Ptolemy ,约公元 85~165 年) 是古代天文学的集大成者.一般几何教科书中的“托勒密定理” ( 圆内接四边形的对边积之和等于对角线之积 ) ,实出自依巴谷 (Hipparchus) 之手,托勒密不过从他的书中摘出。
专项19 圆中利用转化思想求角度类型一 利用同弧或等弧转化圆周角与圆心角类型二 构造圆内接四边形转化角类型三 利用直径构造直角三角形转化角类型四 利用特殊数量关系构造特殊角转化角【考点1 利用同弧或等弧转化圆周角与圆心角】【典例1】(2021九上·无棣期末)如图,△ABC内接于⊙O,CD是⊙O的直径,∠BCD=56°,则∠A的度数是( )A.36ºB.34ºC.56ºD.78º【答案】B【解答】解:如图,连接BD,∵CD是⊙O的直径,∴∠DBC=90°,∵∠BCD=56°,∴∠BDC=90°−56°=34°,∵BC= BC,∴∠A=34°,故答案为:B【变式1-1】(2021九上·崂山期末)如图,点A ,B ,C 在⊙O 上,∠ACB=54°,则∠ABO 的度数是( )A .27°B .36°C .54°D .108°【答案】B 【解答】解:∵∠ACB =54°,AB =AB∴∠AOB =2∠ACB =108°,∵OB =OA ,∴∠ABO =∠BAO =12(180°﹣∠AOB )=36°,故答案为:B .【变式1-2】(2021九上·天桥期末)如图:点A ,B ,C 都在⊙O 上,且点C 在弦AB 所对的优弧上,若∠AOB =72°,则∠ACB 的度数是( )A .18°B .30°C .36°D .72°【答案】C 【解答】∵圆心角∠AOB 与圆周角∠ACB 均对着AB∴∠ACB =12∠AOB =12×72°=36°故答案为:C【变式1-3】(2021九上·西城期末)如图,点A ,B ,C 在⊙O 上,△OAB 是等边三角形,则∠ACB 的大小为( )A .60°B .40°C .30°D .20°【答案】C【解答】解:∵ΔOAB 为等边三角形,∴∠AOB=60°,∴∠ACB =12∠AOB =12×60°=30°.故答案为:C .【变式1-4】(2021九上·休宁月考)如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( )A .24°B .30°C .50°D .60°【答案】A 【解答】解:∵AC ∥OB ,∴∠BOC =∠ACO =48°,∵OA =OC ,∴∠OAC =∠ACO =48°,∵∠CAB =12∠BOC =24°,∴∠BAO =∠OAC ﹣∠CAB =24°.故答案为:A .【变式1-5】(2021九上·衢江月考)如图,在⊙O 中,AB =BC ,点D 在⊙O 上,∠CDB =25°,则∠AOB =( )A .45°B .50°C .55°D .60°【答案】B【解答】解:∵在⊙O中,AB=BC,点D在⊙O上,∠CDB=25°,∴∠AOB=2∠CDB=50°.故答案为:B.【考点2 构造圆内接四边形转化角】【典例2】(2021九上·哈尔滨月考)如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD的度数为( )A.64°B.128°C.20°D.116°【答案】B【解答】∵四边形ABCD内接于⊙O∴∠BAD+∠DCB=180°∵∠DCE+∠DCB=180°∴∠BAD=∠DCE=64°∵∠BOD、∠BAD对着圆中同一段弧∴∠BOD=2∠BAD=2×64°=128°故答案为:B【变式2-1】(2021九上·南开期中)如图,四边形ABCD为⊙O的内接四边形,若∠A=60°,则∠C等于( )A.30°B.60°C.120°D.300°【答案】C【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°.∴∠C=180°-60°=120°.故答案为:C.【变式2-2】(2021九上·禹城期中)如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为( )A.55°B.65°C.60°D.75°【答案】B【解答】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∠BDC=65°,∴∠ODB=∠ODC=12故答案为:B.【变式2-3】(2021九上·无棣期中)如图,PA,PB分别与⊙O相切于A,B两点,若∠C =65°,则∠P的度数为( )A.65°B.130°C.50°D.100°【解答】∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故答案为:C.【考点3 利用直径构造直角三角形转化角】【典例3】(2021九上·梅里斯期末)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( )A.32°B.58°C.64°D.116°【答案】A【解答】解:∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=58°,∴∠A=90°﹣58°=32°,∴∠BCD=∠A=32°.故答案为:A.【变式3-1】(2021九上·荆州月考)如图,AB是⊙O的直径,∠D=48°,则∠CAB=( )A.52°B.58°C.42°D.48°【答案】C【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠D=48°,∴∠ABC=48°,∴∠CAB=90°−48°=42°,故答案为:C.【变式3-2】(2021九上·越城期中)如图,已知AB是⊙O的直径,CD是弦,若∠BCD=24°,则∠ABD=( )A.54°B.56°C.64°D.66°【答案】D【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∠A=∠BCD=24°,∴∠ABD=90°﹣∠A=90°﹣24°=66°.故答案为:D.【变式3-3】(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是的中点,则∠ABE= .【答案】13°【解答】解:如图,连接DC,∵∠DBC=90°,∴DC是⊙O的直径,∵点B是的中点,∴∠BCD=∠BDC=45°,在Rt△ABC中,∠ABC=90°,∠A=32°,∴∠ACB=90°﹣32°=58°,∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,故答案为:13°.【考点4利用特殊数量关系构造特殊角转化角】【典例4】(2018•石家庄模拟)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5,则∠B的度数是( )A.30°B.45°C.50°D.60°【答案】D【解答】解:∵AD是⊙O的直径,∴∠ACD=90°.Rt△ACD中,AD=2r=10,AC=5.根据勾股定理,得:CD==5,∴CD=AD,∴∠DAC=30°,∴∠B=∠D=90°﹣30°=60°;故选:D.【变式4】(2021秋•无为市期中)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P 是优弧AMB上一点,则∠APB的度数为( )A.45°B.30°C.75°D.60°【答案】D【解答】解:连接OA,OB,过O作OD⊥AB于D,延长OD交⊙O于C,则∠ODA=∠ODB=90°,∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD=OC=OA=OB,∴∠OAB=∠OBA=30°,∴∠AOB=180°﹣∠OAB﹣∠OBA=120°,∴∠APB=AOB=60°,故选:D.1.(2021九上·禹城期中)如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为( )A.55°B.65°C.60°D.75°【答案】B【解答】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∠BDC=65°,∴∠ODB=∠ODC=12故答案为:B.2.(2021九上·温州月考)如图,点A,B,C在⊙O上,若∠ACB=40°,则∠AOB的度数为( )A.40°B.45°C.50°D.80°【答案】D【解答】解:∵∠ACB=40°,∴∠AOB=2∠ACB=80°.故答案为:D3.(2021九上·东阳月考)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )A.75°B.60°C.45°D.30°【答案】B【解答】解:连接OC,∵OB=OC=OA,∠CBO=45°,∠CAO=15°,∴∠OCB=∠OBC=45°,∠OCA=∠OAC=15°,∴∠ACB=∠OCB﹣∠OCA=30°,∴∠AOB=2∠ACB=60°.故答案为:B.4.(2021九上·天门月考)如图,⊙O中,弦AB,CD相交于点P,∠A=40°,∠APD=75°,则∠B=( ).A.15°B.40°C.75°D.35°【答案】D【解答】解:∵∠A=40°,∠APD=75°,∴∠C=∠APD−∠A=35,∴∠B=∠C=35°.故答案为:D.5.(2021九上·鹿城期末)如图所示,A,B,C是⊙O上的三点,若∠O=58°,则∠C的度数为( )A.23°B.26°C.29°D.32°【答案】C【解答】解:∵∠AOB和∠C都对AB,∴∠C=12∠AOB=12×58°=29°.故答案为:C6.(2021九上·重庆月考)如图,已知在⊙O中,CD是⊙O的直径,点A、B在⊙O上,且AC=AB,若∠BCD=26°,则∠ABC的度数为( )A.26°B.27°C.28°D.32°【答案】D【解答】解:∵CD是直径,∴∠CAD=90°,∴∠ACD+∠ADC=90°,∵AC=AB,∴∠ACB=∠B,∵∠D=∠B,∴∠ACB=∠D,∴∠ACB+26°+∠D=90°,∴∠ACB=32°,∴∠ABC=∠ACB=32°,故答案为:D.7.(2021九上·龙沙期中)如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC的度数为( )A.60°B.50°C.40°D.30°【答案】A∠AOC=∠ADC【解答】∵12∴∠AOC=2∠ADC=2×30°=60°∵OC⊥AB∴AC=BC∴∠AOC=∠BOC∴∠BOC=∠AOC=60°故答案为:A.8.(2021九上·泰山期末)如图,ABCD是⊙O的内接四边形,且∠ABC=125°,那么∠AOC 等于( )A.125°B.120°C.110°D.130°【答案】C【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠ABC=180°∵∠ABC=125°∴∠D=180°-∠A=180°-125°=55°,由圆周角定理得,∠AOC=2∠D=110°,故答案为:C.9.(2021九上·宜春期末)如图,AE是四边形ABCD外接圆⊙O的直径,AD=CD,∠B=50°,则∠DAE的度数为( )A.50°B.55°C.60°D.65°【答案】D【解答】解:连接OC、OD,∵∠B=50°,∴∠AOC=2∠B=100°,∵AD=CD,∴AD=CD,∠AOC=50°,∴∠AOD=∠COD= 12∵OA=OD,∴∠OAD=∠ODA,∴∠DAE=(180°-50°)÷2=65°,故答案为:D.10.(2021九上·石景山期末)如图,四边形ABCD内接于⊙O,若四边形ABCO是菱形,则∠D的度数为( )A.45°B.60°C.90°D.120°【答案】B【解答】解:设∠ADC=α,∠ABC=β;∵四边形ABCO是菱形,∴∠ABC=∠AOC=β;∴∠ADC=12β;∵四边形ABCD为圆的内接四边形,∴α+β=180°,∴α+β=180°α=12β,解得:β=120°,α=60°,则∠ADC=60°,故答案为:B.11.(2021秋•泰安期末)如图,圆内接四边形ABCD的两组对边的延长线分别相交于点E,F,若∠E=30°,∠F=40°,则∠A=( )A.25°B.30°C.40°D.55°【答案】D【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠FBC,∵∠ADC=180°﹣∠A﹣∠F,∠FBC=∠A+∠E,∴180°﹣∠A﹣∠F=∠A+∠E,则2∠A=180°﹣(∠F+∠E)=110°,解得,∠A=55°,故选:D.12.(2021•汉台区一模)如图,△ABC内接于⊙O,BD是⊙O的直径.若∠DBC=33°,则∠A等于( )A.33°B.57°C.67°D.66°【答案】B【解答】解:连接CD,如图,∵BD是⊙O的直径,∴∠BCD=90°,而∠DBC=33°,∴∠D=90°﹣33°=57°,∴∠A=∠D=57°.故选:B.13.(2022•凤山县模拟)如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为( )A.50°B.55°C.60°D.65°【答案】D【解答】解:连接AD,∵OA=OD,∠AOD=50°,∴∠ADO==65°.∵AO∥DC,∴∠ODC=∠AOC=50°,∴∠ADC=∠ADO+∠ODC=115°,∴∠B=180°﹣∠ADC=65°.故选:D.14.(2022•南宁一模)如图,A、B、C是⊙O上的三个点,若∠AOC=100°,则∠ABC=( )A.100°B.110°C.120°D.130°【答案】D【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选:D.15.(2022•曲周县模拟)如图,AB是⊙O的直径,点C在⊙O上,CD平分∠ACB交⊙O于点D,若∠ABC=30°,则∠CAD的度数为( )A.100°B.105°C.110°D.120°【答案】B【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠ABC=90°﹣30°=60°,∵CD平分∠ACB,∴∠BCD=45°,∵∠BAD=∠BCD=45°,∴∠CAD=∠BAC+∠BAD=60°+45°=105°.故选:B.。
2019-2020 北京初中数学竞赛 九年级 圆的专题(含答案)1. 求证:若半径为R 的圆内接四边形对角线垂直,则以对角线交点到四边射影为顶点的四边形有内切圆,且此圆半径不大于2R.解析 如图,已知圆内接四边形ABCD ,AC BD ⊥,垂足为P ,P 在AB 、BC 、CD 、DA 上的射影分别为E 、F 、G 、H ,则由几组四点共圆易知sin sin sin 2AC BDEH FG AP BAD CP BCD AC BAD R⋅+=∠+⋅∠=∠∠=,同理EF HG +也是此值,因此四边形EFGH 有内切圆.CFGPH DBEA由于FEP CBD CAD HEP ∠=∠=∠=∠,故EP 平分FEH ∠,同理HP 、GP 、FP 平分另外3个角,P 为四边形EFGH 的内心.于是内切圆半径sin sin sin 2ADr PF PFG PF ACD PF PC ACB R=⋅∠=⋅∠=⋅=⋅∠⋅2224222AD PC AB AD PC PA R RR R R R ⋅⋅⋅==≤=.取到等号仅当P 为圆心时.2. 如图(a),已知O e 的直径为AB ,1O e 过点O ,且与O e 内切于点B .C 为O e 上的点,OC 与1O e 交于点D ,且满足OD CD >,点E 在线段OD 上,使得D 为线段CE 的中点,连结BE 并延长,与1O e 交于点F ,求证:BOC △∽1DO F △.(b)(a)O 1AOBM E CD F O 1OB E CD F解析 如图(b),连结BD ,因为OB 为1O e 的直径,所以90ODB ∠=︒,结合DC DE =,可得BDE △≌BDC △.设BC 与1O e 交于点M ,连结OM ,则90OMB ∠=︒,于是OM 平分COB ∠,从而有 122222BOC DOM DBM DBC DBE DBF DO F ∠=∠=∠=∠=∠=∠=∠.又因为BOC ∠,1DO F ∠分别是等腰BOC △,1DO F △的顶角,所以BOC △∽1DO F △.3. I 是ABC △的内心,线段AI 延长交ABC △的外接圆于D ,若3AB =,4AC =,且IBC DBC S S =△△,求BC .解析 如图,设BC 与AD 交于E ,则IE ED x ==,2BD CD ID x ===,又设AE y =,由于在等腰三角形BCD 中,有熟知的结论22BD DE BE CE AE ED -=⋅=⋅,此即23x yx =,3y x =,故2AB AC AI BC IE +==,72BC =.lE DCBA4. 在平面上给定等腰三角形ABC ,其中AB AC =,试在平面上找到所有符合要求的点M ,使ABM △、ACM △都是等腰三角形.解析 要使ABM △为等腰三角形,M 必定在AB 的垂直平分线上,或在以A 、B 为圆心、AB 为半径的圆上.ACM △亦然.这样得到3个圆A e 、B e 、C e .M 6M 5M 4M3M 2M 1B'C'CB A在A e 上除了B 、C 及其对径点B '、C ',其余的点都符合要求.此外,还有6个点,即AB 中垂线与Ce 的两个交点1M 、2M ,AC 的中垂线与B e 的两个交点3M 、4M ,B e 与C e 的另一个交点6M (不是A ),两条中垂线的交点5M (即ABC △之外心),如图.何时1M 在直线AB 上或A 、C 、2M 共线,此时A ∠是三边长分别为1:2:2的等腰三角形的底角,此时1M 、2M 、3M 、4M 均不符合要求;又120A ∠=︒时,六点变一点,且在A e 上,120A ∠>︒时,只有5M 与6M 两点.评注 读者可考虑ABC △为不等边三角形时的情形.5. 已知:ABC △中,AB AC =,AD 是高,P 为AC 上任一点,PC 的中垂线RQ 交AD 于R ,求证:RPB DAC ∠=∠.解析 如图,易知RP RC RB ==,R 为PBC △外心,2180BRP C BAC ∠=∠=︒-∠,故A 、B 、R 、P 共圆,于是RPB BAD DAC ∠=∠=∠.P QRCDBA6. D 、E 、F 分别在ABC △的边BC 、CA 、AB 上,则AEF △、BFD △、CDE △的外接圆共点. 解析 如图,设AEF △、BFD △的外接圆除F 之外,还交于P ,连结PD 、PE 、PF ,则PEC AFP BDP ∠=∠=∠,故E 、P 、D 、C 共圆,证毕.题12.2.2CDBPEFA7. 平面上有一条光线穿过该平面上的一圆,打在一条直径上并发生反射,最后穿出圆去,求证:这条光线与圆的两个交点、与直径的接触点以及圆心,该四点共圆.解析 如图,设这条光线为APB ,EOF 是题设中的直径,延长AP 至O e 于C ,则BPF APE CPF ∠=∠=∠,B 与C 关于EF 对称.于是BPO △≌CPO △.这样一来,便有OBP OCP OAP ∠=∠=∠,于是A 、O 、P 、B 四点共圆.题12.2.3POCFB EA评注 本题亦可利用圆心角证.8. 已知P 为ABC △外接圆的»BC上一点,则P 在直线AB 、BC 、CA 的射影L 、M 、N 共线. 解析 如图,连结LM 、MN ,BP ,CP ,则由L 、M 、P 、B 共圆,M 、P 、N 、C 共圆及A 、B 、P 、C 共圆,得9090180LMP NMP LMB PCN LPB ABP ∠+∠=∠+︒+∠=∠+∠+︒=︒,故L 、M 、N 共线.P NM L CBA评注 此线称为西摩松线.反之,若三垂足共线,则P 在ABC △外接圆上.9. 四边形ABCD 对角线交于O ,AO CO BO DO ⋅=⋅,O 在AB 、BC 、CD 、DA 上的垂足分别是E 、F 、G 、H ,求证:EF GH EH FG +=+. 解析 如图,易知A 、B 、C 、D 共圆.CGFODBHEA由A 、E 、O 、H 共圆,得sin EH AO A =(A ∠即BAD ∠,余同),同理sin FG CO C == sin(180)sin CO A CO A ︒-=⋅,故sin EH FG AC A +=,同理sin EF GH BD B +=.而sin sin AC BDB A=,于是上述结论成立. 评注 读者不妨研究由EF GH EH FG +=+能否得出A 、B 、C 、D 共圆. 10. 已知凸四边形ABCD ,2BAC BDC ∠=∠,2CAD CBD ∠=∠,求证: AB AC AD ==.解析 如图,1180()1802BCD CBD CDB BAD ∠=︒-∠+∠=︒-∠,故180BCD BAD ∠+∠>︒,作BCD △外接圆,A 在圆内、延长CA 至圆于P .连结PB 、PD ,则P 、B 、C 、D 四点共圆. DCBAP于是12APD CBD CAD ∠=∠=∠,故APD ADP ∠=∠,PA AD =,同理PA AB =.A 为PBD △外心,也即BCD △之外心,于是AB AC AD ==.11. 设圆内接ABC △的垂心为H ,P 为圆周上任一点,求证:PH 被P 关于该三角形的西摩松线平分.解析 如图,不妨设P 在»BC上.P 在直线AB 、BC 上的射影分别是M 、N ,MN 即为西摩松线.AL 是高,延长后交圆于D ,PN 延长后交圆于Q ,连结PD 、QA 、CD 、BP .则HCB BAD DCB ∠=∠=∠,得HL LD =. ①CEDP LNH R M BAQ又易知M 、N 、P 、B 共圆,因此ENP ABP AQP ∠=∠=∠,故MN AQ ∥.又作HR AQ ∥,于是由四边形AQPD 为等腰梯形,知四边形HRPD 也是等腰梯形,于是由①知BC 垂直平分HD ,从而BC 垂直平分RP .由PN NR =及MNE RH ∥,知MN 必将PH 平分.12. 已知MON 为O e 直径,S 在ON 上,弦ASB MN ⊥,P 在¼BM上,PS 延长后交圆于Q ,PN 交AB 于R ,求证:QS RN <.解析 如图,连结MP 、MR ,知M 、S 、R 、P 共圆,于是RN SN QSMR SP MS==,于是1RN MR QS MS =>.NB13. 已知锐角三角形ABC 中,AB AC >,AD BC ⊥于D ,G 、F 分别在AB 、AC 上,GC 、BF 、AD交于H ,若G 、B 、C 、F 共圆,则H 为ABC △之垂心.解析 如图,易知BD CD >,今在BD 上找一点E ,使ED CD =,连结AE 、HE ,则E 与C 关于AD 对称.于是由对称及G 、B 、C 、F 共圆,得ABH ACH AEH ∠=∠=∠,于是A 、B 、E 、H 共圆,故BAD HEC HCE ∠=∠=∠,于是90AGH HDC ∠=∠=︒,H 为垂心.HCDEBF GA14. 已知ABC △与ACD △均为正三角形,过D 任作一直线,分别交BA 、BC 延长线于E 、F ,CE 与AF 交于G ,求证:GB 平分AGC ∠.FCBGDAE解析 设AB BC AC a ===,AE x =,CF y =,由AD BF ∥,CD BE ∥,则x y x a y a+=++ 1ED DF EF EF +=,去分母整理得2xy a =.此即AE ACAC CF=,又120EAC ACF ∠=︒=∠,故EAC △∽ACF △,60AGE GAC ACG GAC AFC ∠=∠+∠=∠+∠=︒,故A 、B 、C 、G 共圆,60AGB ACB BAC ∠=∠=︒=∠= CGB ∠.15. 设圆内接四边形ABCD ,AB 、DC 延长交于E ,AD 、BC 延长交于F ,EF 中点为G ,AG 与圆又交于K ,求证:C 、E 、F 、K 四点共圆.解析 如图,延长AG 一倍至J ,作平行四边形AEJF .连结CK ,则CEJ ADE AKC ∠=∠=∠,于是E 、C 、K 、J 共圆,或K 在CEJ △的外接圆上.FG EKCDB又180180EJF EAF BCD ECF ∠=∠=︒-∠=︒-∠,故E 、C 、F 、J 共圆,或F 亦在CEJ △的外接圆上.于是C 、E 、J 、F 、K 五点共圆,结论成立.16. AD 、BE 是锐角三角形ABC 的高,D 、E 是垂足,D 在AB 、AC 上的射影分别是M 、N ,E 在BC 、AB 上的射影分别是P 、Q ,求证:QN PM =.解析 如图,连结ED 、PN ,则易知NPC DEC ABC ∠=∠=∠,故NP AB ∥.P D CNE B MQ A欲证四边形MPNQ 为等腰梯形,只需证MN PQ =即可. 由于A 、M 、D 、N 共圆,AD 为直径,故sin 2ABCS AD BC MN AD A R R⋅=⋅==△,R 为ABC △外接圆半径,同理PQ 也是此值,因此结论成立.17. 过两定点A 、B 的圆与定圆交于P 、Q ,求证:AP AQBP BQ⋅⋅为定值.解析 如图,延长(或不延长)AP 、BQ ,可与定圆再分别交于M 、N 两点,则由四点共圆知180BAP PQN M ∠=∠=︒-∠,故AB MN ∥.NQB MP A于是四边形ABNM 为梯形,sin sin AM A BN B =(A ∠即BAP ∠,余类似);又由定圆性质知AP AM ⋅为定值,BQ BN ⋅亦为定值,故AP AM BQ BN ⋅⋅为定值,此即sin sin AP B BQ A ⋅⋅为定值.但由正弦定理,sin sin B AQA BP=,于是AP AQ BP BQ⋅⋅为定值.18. 直角三角形ABC 中,E 、F 分别是直角边AB 、AC 上的任意点,自A 向BC 、CE 、EF 、FB 引垂线,垂足分别是M 、N 、P 、Q .证明:M 、N 、P 、Q 四点共圆. 解析 因A 、E 、N 、P 共圆,故CNP EAP AFP ∠=∠=∠,因A 、N 、M 、C 共圆,故CNM CAM ∠=∠,又A 、B 、M 、Q 共圆,故MQB MAB ∠=∠,由A 、P 、Q 、F 共圆,得PQB FAP ∠=∠.所以()()()()MNP MQP CNM CNP MQB PQB CAM AFP MAB FAP ∠+∠=∠+∠+∠+∠=∠+∠+∠+∠=()()9090180CAM MAB AFP FAP ∠+∠+∠+∠=︒+︒=︒.故M 、N 、P 、Q 共圆.PQ NCMBFEA19. ABCD 是圆内接四边形,AC 是圆的直径,BD AC ⊥,AC 与BD 的交点为E ,F 在DA 的延长线上,连结BF ,G 在BA 的延长线上,使得DG BF ∥,H 在GF 的延长线上,CH GF ⊥.证明:B 、E 、F 、H 四点共圆.解析 如图,连结BH 、EF 、CG .因为BAF △∽GAD △,所以FA DAAB AG=, DEA BH FG又因为ABE △∽ACD △,所以 AB ACEA DA =, 从而得 FA ACEA AG=. 因为FAE CAG ∠=∠,所以FAE △∽CAG △,于是FEA CGA ∠=∠.由题设知,90CBG CHG ∠=∠=︒,所以B 、C 、G 、H 四点共圆,得BHC BGC ∠=∠.于是 90BHF BEF BHC BEF ∠+∠=∠+︒+∠ 90BGC BEF =∠+︒+∠ 90FEA BEF =∠+︒+∠ 180=︒,所以,B 、E 、F 、H 四点共圆.20. 四边形ABCD 内接于圆,P 是AB 的中点,PE AD ⊥,PF BC ⊥,PG CD ⊥,E ,F ,G 为垂足,M 是线段PG 和EF 的交点,求证:ME MF =.解析 如图,作1AF BC ⊥,1BE AD ⊥(1E 、1F 为垂足),则1112PE AB PF ==.设PG 与11E F 交于K ,因A 、B 、1F 、1E 共圆,所以11180CF E A C ∠=∠=︒-∠,因此11E F CD ∥,11PK E F ⊥,K 是11E F 的中点(因11PE F △为等腰三角形),故PEKF 为平行四边形(因P 、E 、K 、F 为四边形11ABF E 各边中点),因此ME MF =.F 1E 1F M E KC GD评注 本题亦可用面积法快速解决.21. ABC △中,AD 、AE 分别是高和中线,且都在三角形内部,求证:若DAB CAE ∠=∠,则ABC△或者是等腰三角形,或者是直角三角形.解析 如图,D 与E 无非是三种位置关系,由对称性,可归结为两种:D 与E 重合,或D 位于E 的左侧.D FA若D 与E 重合时,ABC △显然为等腰三角形.若D 在E 的左侧,设AB 中点为F ,连接FD 、FE .则EF 为中位线,由条件,知 AEF CAE DAB ADF ∠=∠=∠=∠,故A 、F 、D 、E 共圆,于是 90BAC BAE EAC FDB ADF ∠=∠+∠=∠+∠=︒.22. 设A 、B 、C 、D 、E 是单位半圆上依次五点,AE 是直径,且AB a =,BC b =,CD c =,DE d =,证明:22224a b c d abc bcd +++++<.解析 如图,连接CA 、CE ,则AC CE ⊥,设CAE α∠=,CEA β∠=,则由四点共圆及余弦定理,有:βαAEDCB2224AE AC CE ==+22222cos 2cos a b ab c d cd βα=+++++2222a b c d ab CE cd AC =++++⋅+⋅,由于ABC ∠,90CDE ∠>︒,故CE CE c >=,AC BC b >=,代入,即得 22224a b c d abc bcd >+++++.23. 已知四边形ABCD 内接于圆,点E 、F 分别为AB 、CD 上的动点,且满足AE CFEB FD=,又点P 在EF 上且满足PE ABPF CD=,证明:APD △与BPC △的面积之比与点E 、F 无关. 解析 如图,不妨设AD 、BC 延长后交于S ,由四点共圆知ABS CSF △∽△,又E 、F 分别是对应点,故ASE CSF △∽△.于是ES AS AB PEFS CS CD PF===,于是SP 平分ESF ∠进而平分ASB ∠,于是P 至AD 、BC 距离相等,APD BPC S ADS BC=△△,与E 、F 无关.(图中SE 、SF 、SP 未画出.)PSCF D BE AAD BC ∥时,结论不变.24. AB 是圆O 的直径,C 为AB 延长线上的一点,过点C 作圆O 的割线,与圆O 交于D 、E 两点,OF是BOD △的外接圆1O 的直径,连接CF 并延长交圆1O 于点G .求证:O 、A 、E 、G 四点共圆. 解析 如图,连接AD 、DG 、GA 、GO 、DB 、EA 、EO .A因为OF 是等腰DOB △的外接圆的直径,所以OF 平分DOB ∠,即2DOB DOF ∠=∠.又12DAB DOB ∠=∠,所以DAB DOF ∠=∠.又DGF DOF ∠=∠,所以DAB DGF ∠=∠,因此,G 、A 、C 、D 四点共圆.所以AGC ADC ∠=∠.而90AGC AGO OGF AGO ∠=∠+∠=∠+︒,90ADC ADB BDC BDC ∠=∠+∠=︒+∠,因此AGO BDC ∠=∠.因为B 、D 、E 、A 四点共圆,所以BDC EAO ∠=,又OA OE =,所以EAO AEO ∠=∠.从而AGO AEO ∠=∠,所以,O 、A 、E 、G 四点共圆.25. 已知ABC △中,AD BC ⊥于D ,DM AC ⊥于M ,DB AB ⊥于N ,NM 与BC 延长线交于E ,求证:111CD BD DE-=. 解析 如图,延长DM ,作EF DM ⊥于F ,由FDE CAD ∠=∠,知AMD DFE ADC △∽△∽△,所以DM EF AD DE =,DF ADEF CD=,又由A 、N 、D 、M 四点共圆,得NAD NMD ∠=∠,从而MEF ABD △∽△,从而MF AD EF BD =,因此AD AD DF MF DM AD CD BD EF EF EF DE -=-==,于是111CD BD DE-=. NMBDCEFA26. 凸四边形ABCD 中,ABD α∠=,CBD β∠=,若sin sin sin()AB BC BD βααβ+=+,则A 、B 、C 、D 共圆.解析 如图,不妨设ABC △外接圆交直线BD 于D '.βαD'CBDA由托勒密定理得AB CD BC AD AC BD '''⋅+⋅=⋅两边同除以外接圆直径,得sin sin sin()AB BC BD βααβ'+=+,于是由条件BD BD '=(因为sin()0αβ+≠),故D 与D '重合,即A 、B 、C 、D 共圆.。
2018中考数学辅导:解析灵活的圆中角资料图1资料图2资料图3角是几何图形中最重要的元素,是判断三角形全等、三角形相似的重要条件,而圆的旋转不变性和对称性,又赋予了角极强的灵活性,使得角之间的相互转化成为了解题的关键要素。
下面主要介绍圆心角、圆周角、圆内接四边形的外角与内对角之间的相互转化问题。
特别指出在理解圆中角时,要注意角的顶点与圆的位置关系、角的两边与圆的位置关系;在运用圆中角时,要关注弧的中介作用。
基本图形如下:(1)一条弧所对的圆周角等于它所对圆心角的一半;(2)同弧或等弧所对的圆周角相等;(3)直径所对的圆周角是90°;(4)圆内接四边形外角等于内对角;(5)圆内接四边形,一条边所对的两个圆周角相等;(6)如图,像∠APB这样顶点在圆内,两边都与圆相交的角我们定义为圆内角,由三角形外角的性质可以得到∠APB=∠ADB+∠CBD,即圆内角可以通过圆周角进行转换,实质上∠APB=■(弧AB的度数+弧CD的度数);(7)如图,像∠APB这样顶点在圆外,两边都与圆相交的角我们定义为圆外角,由三角形外角的性质可以得到∠APB=∠ADB-∠CBD,即圆外角可以通过圆周角进行转换,实质上∠APB=■(弧AB的度数弧-CD的度数)。
例1.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为()A.28°B.56°C.60°D.62°此题为2009年天津市中考题数学选择第9题,具体解法为连结OB,△OAB为以圆心为顶点的等腰三角形,则∠OAB=∠OBA=28°,所以∠AOB=124°,结合基本图形(1),所以∠C=62°。
例2.已知,O是△ABC的外心,∠BOC=130°,求∠A的度数。
解:分两种情况讨论:(1)当O在△ABC内部时:∠A=■∠BOC=■×130°=65°(2)当O在△ABC外部时:由∠BOC=130°,得劣弧■的度数130°,则■的度数=360°-130°=230°∴∠A=115°综上所述∠A=65°或115°此题意在考查基本图形(1)及圆中一条弦所对的圆周角有两种情况,提醒同学们特别注意由圆的特性导致的双解题型。
第十八讲圆的基天性质到定点 (圆心 )等于定长 (半径 )的点的会合叫圆,圆常被人们当作是最完满的事物,圆的图形在人类进度中打下深深的烙印.圆的基天性质有:一是与圆有关的基本观点与关系,如弦、弧、弦心距、圆心角、圆周角等;二是圆的对称性,圆既是一个轴对称图形,又是一中心对称图形.用圆的基天性质解题应注意:1.娴熟运用垂径定理及推论进行计算和证明;2.认识弧的特征及中介作用;3.擅长促成同圆或等圆中不一样名称等量关系的转变.熟习以下基本图形、基本结论:【例题求解】【例 1】在半径为 1 的⊙ O 中,弦 AB 、AC 的长分别为 3 和 2 ,则∠BAC度数为.作出协助线,解直角三角形,注意AB 与 AC 有不一样的地点关系.注:由圆的对称性可引出很多重要定理,垂径定理是此中比较重要的一个,它交流了线段、角与圆弧的关系,应用的一般方法是结构直角三角形,常与勾股定理和解直角三角形知识结合起来.圆是一个对称图形,注意圆的对称性,可提升解与圆有关问题周祥性.【例 2】如图,用 3 个边长为 1 的正方形构成一个对称图形,则能将其完整覆盖的圆的最小半径为 ( )A . 2B . 5 C.5D.5 172 4 16思路点拨所作最小圆圆心应在对称轴上,且最小圆应尽可能经过圆形的某些极点,经过设未知数求解.⌒⌒【例 3】如图,已知点 A 、B、C、D 按序在⊙ O 上,AB=BD ,BM ⊥AC 于 M ,求证:AM=DC+CM .思路点拨用截长 (截 AM) 或补短 (延伸 DC) 证明,将问题转变成线段相等的证明,证题的重点是促进不一样量的相互变换并打破它.⌒【例 4】如图甲,⊙ O的直径为AB,过半径OA 的中点 G 作弦 C E ⊥AB ,在 CB 上取一点 D ,分别作直线 CD、 ED ,交直线 AB 于点 F, M .(1) 求∠ COA 和∠ FDM 的度数;(2) 求证:△ FDM ∽△ COM ;⌒(3) 如图乙,若将垂足 G 改取为半径 OB 上随意一点,点CD 、D 改取在 EB 上,仍作直线ED ,分别交直线 AB 于点 F、M ,试判断:此时能否有△FDM ∽△ COM? 证明你的结论.思路点拨(1) 在 Rt△COG 中,利用 OG= 1OA= 1 OC; (2)证明∠ COM= ∠ FDM ,∠ CMO= 2 2∠FMD ; (3) 利用图甲的启迪思虑.注:擅长促成同圆或等圆中不一样名称的相互转变是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题供给新的解题思路,而在解与圆有关问题经常用到直线形的知识与方法(主假如指全等与相像).【例 5】已知:在△ ABC 中, AD 为∠ BAC 的均分线,以 C 为圆心, CD 为半径的半圆交 BC 的延伸线于点 E,交 AD 于点 F,交 AE 于点 M ,且∠ B= ∠CAE , EF: FD= 4:3.(1)求证: AF = DF;(2)求∠ AED 的余弦值;(3)假如 BD = 10,求△ ABC 的面积.(1) 证明∠ ADE =∠ DAE ;(2) 作 AN ⊥BE 于 N ,cos∠AED =EN,设 FE=4x, FDAE=3x ,利用有关知识把有关线段用 x 的代数式表示; (3)找寻相像三角形,运用比率线段求出 x 的值.注:本例的解答,需运用相像三角形、等腰三角形的判断、面积方法、代数化等知识方法思想,综合运用直线形有关知识方法思想是解与圆有关问题的重点.学历训练1.D 是半径为5cm 的⊙ O 内一点,且 OD= 3cm,则过点 D 的全部弦中,最小弦AB=.2.阅读下边资料:对于平面图形A,假如存在一个圆,使图形 A 上的随意一点到圆心的距离都不大于这个圆的半径,则称图形 A 被这个圆所覆盖.对于平面图形 A ,假如存在两个或两个以上的圆,使图形 A 上的随意一点到此中某个圆的圆心的距离都不大于这个圆的半径,则称图形 A 被这些圆所覆盖.比如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答以下问题:(1) 边长为 lcm 的正方形被一个半径为r 的圆所覆盖, r 的最小值是cm;(2) 边长为 lcm 的等边三角形被一个半径为r 的圆所覆盖, r 的最小值是cm;(3) 长为 2cm,宽为 lcm 的矩形被两个半径都为r 的圆所覆盖, r 的最小值是cm.(2003 年南京市中考题 )3.世界上由于有了圆的图案,万物才显得富裕活力,以下来自现实生活的图形中都有圆:它们看上去多么漂亮与和睦,这正是由于圆拥有轴对称和中心对称性.(1) 请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下边三个图的代号a, b, c 填空 ).(2)请你在下边的两个圆中,按要求分别画出与上边图案不重复的图案(草图 ) (用尺规画或徒手画均可,但要尽可能正确些,雅观些).a.是轴对称图形但不是中心对称图形.b.既是轴对称图形又是中心对称图形.4.如图, AB 是⊙ O 的直径, CD 是弦,若AB=10cm , CD = 8cm,那么 A 、B 两点到直线CD 的距离之和为()A .12cm B. 10cm C. 8cm D .6cm5.一栽花边是由如图的弓形构成的,ACB 的半径为 5,弦 AB = 8,则弓形的高 CD 为 ()A .2B .5C .3D .16236.如图,在三个等圆上各自有一条劣弧⌒ ⌒ ⌒ ⌒ ⌒ ⌒与AB 、CD 、EF ,假如 AB+CD=EF ,那么 AB+CDE 的大小关系是( )A .AB+CD = EFB . AB+CD=FC . AB+CD<EFD .不可以确立7.电脑 CPU 芯片由一种叫 “单晶硅” 的资料制成, 未切割前的单晶硅资料是一种薄形圆片, 叫“晶圆片” .现为了生产某种 CPU 芯片,需要长、宽都是 1cm 的正方形小硅片若干.如果晶圆片的直径为10. 05cm ,问:一张这种晶圆片可否切割出所需尺寸的小硅片66 张 ?请说明你的方法和原因 (不计切割消耗 ).8.如图,已知⊙ O 的两条半径 ⌒ 2 2 2OA 与 OB 相互垂直, C 为 AmB 上的一点, 且 AB +OB =BC ,求∠ OAC 的度数.9.可是圆心的直线 l 交⊙ O 于 C 、D 两点, AB 是⊙ O 的直径, AE ⊥ l ,垂足为 E ,BF ⊥ l ,垂足为 F .(1) 在下边三个圆中分别补画出知足上述条件的拥有不一样地点关系的图形;(2) 请你察看 (1) 中所绘图形,写出一个各图都拥有的两条线段相等的结论 (不再标明其余字母,找结论的过程中所连协助线不可以出此刻结论中,不写推理过程);(3) 请你选择 (1) 中的一个图形,证明 (2) 所得出的结论.10.以 AB 为直径作一个半圆,圆心为O, C 是半圆上一点,且 OC2= AC × BC ,则∠ CAB= .⌒11.如图,把正三角形 ABC 的外接圆对折,使点,则A 落在 BC 的中点 A ′上,若 BC=5折痕在△ ABC 内的部分 DE 长为.12.如图,已知 AB 为⊙ O 的弦,直径 MN 与 AB 订交于⊙ O 内, MC ⊥AB 于 C,ND ⊥ AB于 D,若 MN=20 ,AB= 8 6 ,则 MC—ND= .⌒13.如图,已知⊙O 的半径为R,C、D 是直径 AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在 AB 上,则 CP+PD 的最小值为.14.如图 1,在平面上,给定了半径为 r 的圆 O,对于随意点 P,在射线 OP 上取一点 P′,使得OP× OP′ =r2,这种把点 P 变成点 P′的变换叫作反演变换,点 P 与点 P′叫做互为反演点.(1) 如图 2,⊙ O 内外各有一点 A 和 B,它们的反演点分别为 A ′和 B′,求证:∠ A′ =∠B ;(2)假如一个图形上各点经过反演变换获得的反演点构成另一个图形,那么这两个图形叫做互为反演图形.①选择:假如不经过点O 的直线与⊙ O 订交,那么它对于⊙O 的反演图形是 ()A .一个圆B .一条直线C.一条线段 D .两条射线②填空:假如直线l 与⊙O相切,那么它对于⊙O 的反演图形是,该图形与圆O 的地点关系是.15.如图,已知四边形ABCD 内接于直径为 3 的圆 O,对角线AC BD 的交点为P, AB=BD ,且 PC=0. 6,求四边形ABCD 的周长.⌒16.如图,已知圆内接△ ABC 中,AB>AC ,D 为 BAC 的中点,DE ⊥AB ×AC .是直径,对角线AC 和于 E,求证:BD 2-AD 2=AB 17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径起码是多少?(不考虑其余要素,精准到 0. 1cm)18.如图,直径为 13 的⊙ O ′,经过原点 O ,而且与 x 轴、 y 轴分别交于 A 、B 两点,线段OA 、 OB(OA>OB) 的长分别是方程 x 2 kx 60 0 的两根.(1) 求线段 OA 、 OB 的长;(2) ⌒ 2已知点 C 在劣弧 OA 上,连接BC 交 OA 于 D ,当 OC =CD × CB 时,求 C 点坐标; (3) 在⊙ O ,上能否存在点 P ,使 S △POD =S △ ABD ?若存在,求出 P 点坐标;若不存在,请说明原因.参照答案第十九讲转变灵巧的圆中角角是几何图形中最重要的元素,证明两直线地点关系、运用全等三角形法、相像三角形法都要波及角,而圆的特点,给予角极强的活性,使得角能灵巧地相互转变.依据圆心角与圆周角的倍半关系,可实现圆心角与圆周角的转变;由同弧或等弧所对的圆周角相等,可将圆周角在大小不变的状况下,改变极点在圆上的地点进行研究;由圆内接四边形的对角互补和外角等于内对角,可将与圆有关的角相互联系起来.熟习以下基本图形、基本结论.注:依据极点、角的两边与圆的地点关系,我们定义了圆心角与圆周角,近似地,当角的顶点在圆外或圆内,我们能够定义圆外角与圆内角,这两类角分别与它们的所夹弧度数有如何的关系 ?读者可自行作一番商讨.【例题求解】【例 1】如图,直线AB 与⊙ O 订交于 A , B 再点,点O 在 AB 上,点 C 在⊙ O 上,且∠AOC = 40°,点 E 是直线 AB 上一个动点 (与点 O 不重合 ),直线 EC 交⊙ O 于另一点D,则使 DE=DO 的点正共有个.思路点拨在直线 AB 上使 DE=DO 的动点 E 与⊙ O 有如何的地点关系?分点 E 在 AB 上 (E 在⊙ O 内 )、在 BA 或 AB 的延伸线上 (E 点在⊙ O 外 )三种状况考虑,经过角度的计算,确立 E 点地点、存在的个数.注:弧是联系与圆有关的角的中介,“由弧到角,由角看弧”是促进与圆有关的角相互转变的基本方法.【例 2】 如图,已知△ ABC 为等腰直角三形, D 为斜边 BC 的中点,经过点 A 、D 的⊙ O 与边 AB 、AC 、BC 分别订交于点 E 、F 、M ,对于以下五个结论: ①∠ FMC=45 °;② AE+AF =AB ;③ ED BA;④ 2BM 2=BF × BA ;⑤四边形 AEMF 为矩形.此中正确结论的个数是EFBC ()A .2 个B .3 个C .4 个D .5 个思路点拨 充足运用与圆有关的角, 找寻特别三角形、 特别四边形、 相像三角形, 逐个考证.注:多重选择单项选择化是最近几年出现的一种新题型,解这种问题, 需把条件重组与整合,发掘隐 合条件,作深入的研究,方能作出小正确的选择. 【例 3】如图,已知四边形ABCD 外接⊙ O 的半径为 5,对角线 AC 与 BD 的交点为E ,且 AB 2=AE × AC , BD = 8,求△ ABD 的面积. 思路点拨 由条件出发,利用相像三角形、圆中角可推得 A 为弧 BD 中点,这是解本例的关键.【例 4】 如图,已知 AB 是⊙ O ⊥AB 于 D(AD<DB) ,点 E 是 AB AF 与直线 CD 交于点 G .(1) 求证: AC 2=AG ×AF ;的直径, C 是⊙ O 上的一点,连接 AC ,过点 C 作直线 CD 上随意一点 (点 D 、 B 除外 ),直线 CE 交⊙ O 于点 F ,连接(2)若点 E 是 AD( 点 A 除外 )上随意一点,上述结论能否仍旧建立?若建立.请画出图形并赐予证明;若不建立,请说明原因.思路点拨(1) 作出圆中常用协助线证明△ACG ∽△ AFC ;( 2)判断上述结论在E 点运动的状况下能否建立,依题意正确画出图形是重点.注:结构直径上 90°的圆周角,是解与圆有关问题的常用协助线,这样就为勾股定理的运用、相像三角形的判断创建了条件.【例 5】如图,圆内接六边形ABCDEF 知足 AB=CD=EF ,且对角线 AD 、BE、CF 订交于一点 Q,设 AD 与 CF 的交点为 P.求证:( 1)QD AC; (2) CP AC 2 .PE CE 2 ED EC思路点拨解本例的重点在于运用与圆有关的角,能发现多对相像三角形.CP QC(1) 证明△ QDE∽△ ACF ;(2) 易证,经过其余三角形相像并联合(1) 把特别规问题PE DE的证明转变成惯例问题的证明.注:有些几何问题固然表面与圆没关,可是若能发现隐含的圆,特别是能发现共圆的四点,就能运用圆的丰富性质为解题服务,确立四点共圆的主要方法有:(1)利用圆的定义判断;(2)利用圆内接四边形性质的抗命题判断.学历训练1.一条弦把圆分红2: 3 两部分,那么这条弦所对的圆周角的度数为.2.如图, AB 是⊙ O 的直径, C、D 、E 都是⊙ O 上的一点,则∠1+∠2=.3.如图, AB 是⊙ O 的直径,弦CD⊥AB , F 是 CG 的中点,延伸AF 交⊙ O 于 E, CF=2 ,AF=3 ,则 EF 的长为.4.如图,已知△ ABC 内接于⊙ O,AB+AC=12 ,AD ⊥ BC 于 D ,AD = 3,设⊙ O 的半径为y ,AB 的长为 x ,用 x 的代数式表示y , y =.5.如图, ABCD 是⊙ O 的内接四边形,延伸BC 到 E,已知∠ BCD :∠ ECD= 3: 2,那么∠BOD 等于 ()A .120°B . 136°C. 144°D. 150°6.如图,⊙ O 中,弦 AD ∥ BC , DA=DC ,∠ AOC=160 °,则∠ BOC 等于 ()A . 20°B. 30°C. 40° D . 50°7.如图, BC 为半圆 O 的直径, A 、D 为半圆 O 上两点, AB= 3 , BC=2 ,则∠ D 的度数为()A . 60°B. 120°C.135°D. 150°8.如图,⊙ O 的直径 AB 垂直于弦 CD ,点 P 是弧 AC 上一点 (点 P 不与 A、 C 两点重合 ),连接PC、PD、PA、AD ,点 E 在 AP 的延伸线上, PD 与 AB 交于点 F.给出以下四个结论:2 ⌒ ⌒ 2①CH =AH × BH ;② AD=AC ;③ AD =DF × DP;④∠EPC=∠ APD ,此中正确的个数是 ()A .1B . 2 C. 3 D. 49.如图,已知 B 正是△ ABC 的外接圆 O 的直径, CD 是△ ABC 的高.(1)求证: AC · BC=BE · CD;(2)已知 CD=6 ,AD=3 , BD=8 ,求⊙ O 的直径 BE 的长.10.如图,已知 AD 是△ ABC 外角∠ EAC 的均分线,交 BC 的延伸线于点 D,延伸 DA 交△ABC的外接圆于点 F,连接 FB, FC.(1)求证: FB=FC ;(2)求证: FB2 =FAFD ;(3)若 AB 是△ ABC 的外接圆的直径,∠ EAC=120 °, BC=6cm ,求 AD 的长.11.如图, B 、C 是线段 AD 的两个三均分点,P 是以 BC 为直径的圆周上的随意一点(B、C 点除外 ),则 tan∠APB · tan∠ CPD=.12.如图,在圆内接四边形ABCD 中, AB=AD ,∠ BAD=60 °, AC= a ,则四边形ABCD 的面积为.13.如图,圆内接四边形ABCD 中,∠ A = 60°,∠ B = 90°, AD=3 ,CD=2 ,则 BC=.⌒14.如图, AB 是半圆的直径, D 是 AC 的中点,∠ B=40°,则∠ A 等于()A . 60°B .50°C. 80°D. 70°15.如图,已知 ABCD 是一个以 AD 为直径的圆内接四边形,AB=5 ,PC=4,分别延伸 AB 和 DC,它们订交于 P,若∠ APD=60 °,则⊙ O 的面积为 ( )A . 25πB .16πC. 15πD . 13π(2001年绍兴市比赛题)16.如图, AD 是 Rt△ ABC 的斜边 BC 上的高, AB=AC 别订交于点 E、F,弦 EF 与 AD 订交于点 G,则图中与△,过 A 、D 两点的圆与AB 、AC 分GDE 相像的三角形的个数为()A.5B.4C.3D.217.如图,已知四边形ABCD 外接圆⊙ O 的半径为2,对角线 AC 与 BD 的交点为E,AE=EC ,AB= 2 AE,且BD= 2 3,求四边形ABCD 的面积.18.如图,已知ABCD 为⊙ O 的内接四边形, E 是 BD 上的一点,且有∠BAE= ∠ DAC .求证: (1) △ ABE ∽△ ACD ; (2)ABDC+AD · B C = AC · BD .19.如图,已知 P 是⊙ O 直径 AB 延伸线上的一点,直线 PCD 交⊙ O 于 C、D 两点,弦 DF ⊥AB于点 H, CF 交 AB 于点 E.(1) 求证: PA· PB=PO ·PE; (2) 若 DE ⊥ CF,∠ P=15 °,⊙ O 的半径为2,求弦 CF 的长.20 .如图,△ABC内接于⊙O , BC=4 , S△ABC = 6 3 ,∠ B 为锐角,且对于x 的方程⌒x2 4x cos B 1 0 有两个相等的实数根, D 是劣弧 AC 上任一点 (点 D 不与点 A 、 C 重合 ), DE 均分∠ ADC ,交⊙ O 于点 E,交 AC 于点 F.(1)求∠ B 的度数;(2)求 CE 的长;(3) 求证: DA 、DC 的长是方程y 2DE y DE DF0 的两个实数根.参照答案。
3 九年级思维拓展:圆中计算和证明➢ 知识点睛1. 几何综合问题的处理思路(1) 标注条件,合理转化 (2) 组合特征,分析结构 (3) 由因导果,执果索因2. 圆中常见思考角度(1) 遇圆上的点,连半径(依据圆的定义,圆上的点的特征及形成因素)①连半径,得等腰,等腰(等边)三角形中转移角;②与垂径定理等组合,设半径、利用几何特征表达、列方程求解.(2) 遇弦①知(求)弦长,作垂线,连半径,垂径定理配合勾股定理求解(核心是利用直角三角形); ②弦相等,找弧传角.(3) 遇角①有角找弧,由弧看角;②有直径找直角,由直角找直径.(4) 有切线,连半径.※※注:圆综合问题,往往先从圆的角度来分析,再将其看作三角形、四边形背景下的条件.3. 边与角的常见思考角度(1) 边长、角度的量化与转化①当遇到边长、角度间的和差倍分关系时,往往考虑量化方式来进行研究.比如寻求角度关系常借助平行、互余(补)、外角、圆心角、圆周角等;比如遇到三角形相似, 会考虑设份数为未知数来进行表达.②借助等边对等角(等角对等边)或三角函数值的定义来实现、边角信息的转化;如 1: :2 与 30°直角三角形的关系.圆背景下往往借助四组量关系定理进行相等线段、相等圆心角、相等弧之间的转化.(2) 边长、角的常见求解方式——要求边或角,考虑其所在的三角形或者转移到条件集中的三角形中。
①勾股定理;②利用相似对应边成比例列方程;③解三角形;④面积、周长等信息....➢精讲精练第一部分:正多边形与圆1.(2020·河北中考说明P20;2014·葫芦岛)如图,用两根等长的金属丝,各自首尾相接,分别围成正方形ABCD 和扇形A1D1C1,使A1D1=AD,D1C1=DC,正方形面积为P,扇形面积为Q,那么P 和Q 的关系是()A.P<Q B.P=Q C.P>Q D.无法确定B E第1 题第2 题2.(2018·唐山模拟;2016·巴中)如图,将边长为3 的正六边形铁丝框ABCDEF 变形为以点A 为圆心,AB 为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为.3.(2018·唐山模拟)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚2 次后点B 的对应点B2 的坐标是;翻滚100 次后AB 中点M 经过的路径长为.O1第3 题第4 题4.已知正六边形ABCDEF 在平面直角坐标系中的位置如图所示,A(-2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,则经过2 020 次翻转之后,点B 的坐标是.5.(2016·唐山模拟)如图,边长为1 的正五边形ABCDE,顶点A、B 在半径为1 的圆上,其它各点在圆内,将正五边形ABCDE 绕点A 逆时针旋转,当点E 第一次落在圆上时,则点C 转过的度数为.第5 题第6 题6.(2019·孝感)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利第二部分:圆上的点的特征应用(形成因素分析,依据定义连半径)7. (2019·鄂尔多斯)如图,△ABC 中,AB =AC ,以 AB 为直径的⊙O 分别与 BC ,AC 交于点 D , E ,连接 DE ,过点 D 作 DF ⊥AC 于点 F .若 AB =6,∠CDF =15°,则阴影部分的面积是.D第 7 题第 8 题8. 如图,有一张矩形纸片 ABCD ,其中 AD =6cm ,以 AD 为直径的半圆,正好与对边 BC 相切.将矩形纸片 ABCD 沿 DE 折叠,使点 A 落在 BC 边上的点 A′处,则图中阴影部分的面积为 .︵9. (2020·中考说明 P73)如图,四边形 OABC 为菱形,点 B ,C 在以点 O 为圆心的EF 上,若 OA =3,∠1=∠2,则 S 扇形 OEF = .BO 2A1EFCB第 9 题第 10 题10. (2019·苏州)如图,扇形 OAB 中,∠AOB =90°,P 为弧 AB 上的一点,过点 P 作 PC ⊥OA , 垂足为 C ,PC 与 AB 交于点 D .若 PD =2,CD =1,则该扇形的半径长为.11. (2020·中考说明 P72)如图,AB 为⊙O 的一固定直径,它把⊙O 分成上,下两个半圆,自上半圆上一点 C 作弦 CD ⊥AB ,∠OCD 的平分线交⊙O 于点 P ,当点 C 在上半圆(不包括 A ,B 两点)上移动时,点 P ()A. 到 CD 的距离保持不变 B .位置不变 C .等分弧 BDD .随 C 点移动而移动CAO BD第 11 题第 12 题12. (2019·泰州)如图,⊙O 的半径为 5,点 P 在⊙O 上,点 A 在⊙O 内,且 AP =3,过点 A 作 AP 的垂线交⊙O 于点 B ,C .设 PB =x ,PC =y ,则 y 与 x 的函数表达式为.P D第三部分:垂径定理、圆中量化计算13. (2018·嘉兴)如图,量角器的 0 度刻度线为 AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点 C ,直尺另一边交量角器于点 A ,D ,量得 AD =10 cm ,点 D 在量角器上的读数为 60°,则该直尺的宽度为cm .B第 13 题 第 14 题14.(2019·襄阳)如图,AD 是⊙O 的直径,BC 是弦,四边形 OBCD 是平行四边形,AC 与 OB 相交于点 P ,下列结论错误的是()A.A P =2OPB .CD =2OPC .OB ⊥ACD .AC 平分 OB15. (2020·中考说明 P29)将球放在一个圆柱形玻璃杯的杯口上,图中所示是其轴截面的示意图.杯口内径 AB 为⊙O 的弦,AB =6cm ,⊙O 的直径 DE ⊥AB 于点 C ,测得 tan ∠DAB = 5,求该3球的直径.︵16. (2020·中考说明;2018·莱芜)如图,正方形 ABCD 的边长为 2a ,E 为 BC 边的中点, AE , ︵DE 的圆心分别在边 AB ,CD 上,这两段圆弧在正方形内交于点 F ,则 E ,F 间的距离为 .DCEAB第 16 题第 17 题17. (2019·潍坊)如图,四边形 ABCD 内接于⊙O ,AB 为直径,AD =CD .过点 D 作 DE ⊥AB 于点 E ,连接 AC 交 DE 于点 F .若 sin ∠CAB = 3,DF =5,则 BC 的长为( )5FE O13 2 BDB B 1ADB B 1B 2ADD 1C 2 C 1BOCE18. (2020·中考说明;2018·金华)如图 1 是小明制作的一副弓箭,点 A ,D 分别是弓臂 BAC 与弓弦 BC 的中点,弓弦 BC =60 cm .沿 AD 方向拉动弓弦的过程中,假设弓臂 BAC 始终保持圆弧形,弓弦不伸长.如图 2,当弓箭从自然状态的点 D 拉到点 D 1 时,有 AD 1=30 cm , ∠B 1D 1C 1=120°.(1) 图 2 中,弓臂两端 B 1,C 1 的距离为cm ;(2) 如图 3,将弓箭继续拉到点 D 2,使弓臂 B 2AC 2 为半圆,则 D 1D 2 的长为cm .A D 2图 1图 2图 3第四部分:由角看弧,由弧找角,圆的内接四边形对角互补19. (2019·台州)如图,AC 是圆内接四边形 ABCD 的一条对角线,点 D 关于 AC 的对称点 E 在边 BC 上,连接 AE .若∠ABC =64°,则∠BAE 的度数为 . B AEODACDDE BC 第 19 题 第 20 题第 21 题︵ ︵20. (2020·路北区模拟)如图,点 A ,B ,C ,D ,E 都是⊙O 上的点, AC = AE ,∠B =122°,则 ∠D =( )A .58°B .116°C .122°D .128°21. (2019·十堰)如图,四边形 ABCD 内接于⊙O ,AE ⊥CB 交 CB 的延长线于点 E ,若 BA 平分 ∠DBE ,AD =5, CE ,则 AE =.22. (2020·中考说明 P72;2018·锦州)如图,在△ABC 中,∠ACB =90°,过 B ,C 两点的⊙O 交 AC 于点 D ,交 AB 于点 E ,连接 EO 并延长交⊙O 于点 F ,连接 BF ,CF .若∠EDC =135°,CF =2 ,则 AE 2+BE 2 的值为( ) AA .8B .12C .16D D .20BCDF C GA E B23. 如图,△ABC 内接于⊙O 且 AB =AC ,延长 BC 至点 D ,使 CD =CA , 连接 AD 交⊙O 于点 E ,连接 BE ,CE .(1) 求证:△ABE ≌△CDE ; (2) 填空:①当∠ABC 的度数为时,四边形 AOCE 是菱形; ②若 AE =3,EF =2,则 DE 的长为.D24. (2020·中考说明 P74;2018·湘潭)如图,AB 是以 O 为圆心的半圆的直径,半径 CO ⊥AO ,︵点 M 是AB 上的动点,且不与点 A ,C ,B 重合,直线 AM 交直线 OC 于点 D ,连接 OM 与 CM . (1) 若半圆的半径为 10.①当∠AOM =60°时,求 DM 的长;②当 AM =12 时,求 DM 的长.(2) 探究:在点 M 运动的过程中,∠DMC 的大小是否为定值?若是,求出该定值;若不是,请说明理由.DA O B第五部分:外心、内心25. (2016·台湾)图中的矩形 ABCD 中,E 为 AB 的中点,有一圆过 C ,D ,E 三点,且此圆分别与 AD ,BC 相交于 P ,Q 两点.甲、乙两人想找到此圆的圆心 O ,其作法如下:(甲)作∠DEC 的角平分线 L ,作 DE 的中垂线,交 L 于 O 点,则 O 即为所求;(乙)连接 PC ,QD ,两线段交于一点 O ,则 O 即为所求.对于甲、乙两人的作法,下列判断何者正确?( )A. 两人皆正确 B .两人皆错误 C .甲正确,乙错误 D .甲错误,乙正确第 25 题 第 26 题26. (2018·无锡)如图,矩形 ABCD 中,G 是 BC 的中点,过 A ,D ,G 三点的圆 O 与边 AB ,CD 分别交于点 E ,点 F .给出下列说法:(1)AC 与 BD 的交点是圆 O 的圆心;(2)AF 与 DE 的交CMDEE27. (2017·泰州)如图,在平面直角坐标系 xOy 中,点 A ,B ,P 的坐标分别为(1,0),(2,5),(4,2).若点 C 在第一象限内,且横坐标、纵坐标均为整数,P 是△ABC 的外心,则点 C 的坐标为.第 26 题 第 27 题 28. (2019·宿迁改编)如图∠MAN =60°,若△ABC 的顶点 B 在射线 AM 上,且 AB =2,点 C 在射线 AN 上运动,当△ABC 的外心在其内部时,BC 的取值范围是.29. 如图,在△ABC 中,AB =AC =4,D 、E 分别是 AB ,AC 的中点,∠BAC =40°.(1) 若 DE =m ,求 BC 的长度(用含 m 的代数式表示);(2) 如图,将△ADE 绕点 A 顺时针旋转,旋转角为 α(0°<α<180°),连接 BD ,CE ,判断 BD 与CE 的数量关系,并说明理由;(3) 在(2)的条件下,当△ABD 的外心在三角形的外部时,请直接写出 α 的取值范围.AADBB C30. (2019·台湾)如图,有一三角形 ABC 的顶点 B ,C 皆在直线 l 上,且其内心为 I .今固定点C ,将此三角形依顺时针方向旋转,使得新三角形 A′B′C 的顶点 A′落在 l 上,且其内心为 I′.若 ∠A <∠B <∠C ,则下列叙述何者正确?()A. IC 和 I′A′平行,II′和 L 平行B .IC 和 I′A′平行,II′和 L 不平行 C .IC 和 I′A′不平行,II′和 L 平行D .IC 和 I′A′不平行,II′和 L 不平行l31. (2016·台湾)如图,正六边形 ABCDEF 中,P ,Q 两点分别为△ACF , △CEF 的内心.若 AF =2,则 PQ 的长度为何?.第 31 题第 32 题32. (2018·荆门)如图,在平面直角坐标系 xOy 中,A (4,0),B (0,3),C (4,3),I 是△ABC 的内心,将△ABC 绕原点逆时针旋转 90°后,I 的对应点 I′的坐标为 .33. (2020·中考说明 P67;2018·娄底)如图,P 是△ABC 的内心,连接 PA ,PB ,PC ,△PAB ,△PBC ,△P AC 的面积分别为 S 1,S 2,S 3,则 S 1S 2+S 3.(填“<”或“=”或“>”)CB第 33 题第 34 题34. (2018·烟台)如图,四边形 ABCD 内接于⊙O ,点 I 是△ABC 的内心,∠AIC =124°,点 E 在 AD 的延长线上,则∠CDE 的度数为.35. (2019·河北)如图,△ABC 和△ADE 中,AB =AD =6,BC =DE ,∠B =∠D =30°,边 AD ,BC 交于点 P (不与点 B ,C 重合),点 B ,E 在 AD 异侧.I 为△APC 的内心.(1) 求证:∠BAD =∠CAE ;(2) 设 AP =x ,请用含 x 的式子表示 PD ,并求 PD 的最大值;(3) 当 AB ⊥AC 时,∠AIC 的取值范围为 m °<∠AIC <n °,分别直.接.写出 m ,n 的值. AEAD备用图图1PPIBCFEA36. (2018·威海)如图,在扇形 CAB 中,CD ⊥AB ,垂足为 D ,⊙E 是 △ACD 的内切圆,连接 AE ,BE ,则∠AEB 的度数为.C第 36 题第 37 题37. (2019·淄博)如图,抛物线 y =-x 2+2x +3 与 x 轴交于 A ,B 两点,与 y 轴交于点 C .若在第一象限的抛物线下方有一动点 D ,满足 DA =OA ,过 D 作 DG ⊥x 轴于点 G ,设△ADG 的内心为 I , 则 CI 的最小值为.38. (2019·安徽模拟)如图,在△ABC 和△ABD 中,AB =AC =AD ,AC ⊥AD ,AE ⊥BC 于点 E ,AE 的反向延长线交 BD 于点 F ,连接 CD .则线段 BF ,DF ,CD 三者之间的数量关系为()A.A F -DF = CDB .BF +DF = CDC .BF 2+ DF 2= CD 2D .无法确定BADC D 第 38 题第 39 题39. (2019·荆门)如图,△ABC 内心为 I ,连接 AI 并延长交△ABC 的外接圆于 D ,则线段 DI 与DB 的关系是( )A .DI =DBB .DI >DBC .DI <DBD .不确定40. (2019·襄阳)如图,点 E 是△ABC 的内心,AE 的延长线和△ABC 的外接圆⊙O 相交于点 D , 过 D 作直线 DG ∥BC .(1)求证:DG 是⊙O 的切线;(2)若 DE =6, BC 6 ︵,求优弧BAC 的长.AO EBC E3 yCDIBOGA xIBC41. (2019·北京)在平面内,给定不在同一直线上的点 A ,B ,C ,如图所示.点 O 到点 A ,B ,C 的距离均等于 a (a 为常数),到点 O 的距离等于 a 的所有点组成图形 G , ∠ABC 的平分线交图形 G 于点 D ,连接 AD ,CD .(1) 求证:AD =CD ;(2) 过点 D 作 DE ⊥BA ,垂足为 E ,作 DF ⊥BC ,垂足为 F ,延长 DF 交图形 G 于点 M ,连接CM .若 AD =CM ,求直线 DE 与图形 G 的公共点个数.ABC42. (2019·葫芦岛)如图,点 M 是矩形 ABCD 的边 AD 延长线上一点,以 AM 为直径的⊙O 交矩形对角线 AC 于点 F ,在线段 CD 上取一点 E ,连接 EF ,使 EC =EF .(1) 求证:EF 是⊙O 的切线;(2) 若 cos ∠CAD = 3,AF =6,MD =2,求 FC 的长.5︵ ︵43. (2018·葫芦岛)如图,AB 是⊙O 的直径, AC = BC ,E 是 OB 的中点,连接 CE 并延长到点 F ,使 EF =CE .连接 AF 交⊙O 于点 D ,连接 BD ,BF .(1) 求证:直线 BF 是⊙O 的切线; (2) 若 OB =2,求 BD 的长.EOD BCDCOP44. (2019·兰州)如图,Rt △ABC 内接于⊙O ,∠ACB =90°,BC =2.将斜边 AB 绕点 A 顺时针旋转一定的角度得到 AD ,过点 D 作 DE ⊥AC 于点 E ,∠DAE =∠ABC , DE =1,连接 DO 交⊙O 于点 F .(1) 求证:AD 是⊙O 的切线;(2) 连接 FC 交 AB 于点 G ,连接 FB .求证:FG 2=GO ·GB .45. (2020·中考说明 P74;2017·贵港)如图,在菱形 ABCD 中,点 P 在对角线 AC 上,且 PA =PD ,⊙O 是△PAD 的外接圆.(1) 求证:AB 是⊙O 的切线; (2) 若 AC =8,tan ∠BAC =2 ,求⊙O 的半径.246. (2019·鄂州)如图,PA 是⊙O 的切线,切点为 A ,AC 是⊙O 的直径,连接 OP 交⊙O 于 E .过 A 点作 AB ⊥PO 于点 D ,交⊙O 于 B ,连接 BC ,PB .(1) 求证:PB 是⊙O 的切线; (2) 求证:E 为△PAB 的内心; (3) 若 cos ∠PAB =10 ,BC =1,求 PO 的长.10APFF47.(2019·呼和浩特)如图,以Rt△ABC 的直角边AB 为直径的⊙O 交斜边AC 于点D,过点D 作⊙O 的切线与BC 交于点E,弦DM 与AB 垂直,垂足为H.(1)求证:E 为BC 的中点;(2)若⊙O 的面积为12π,两个三角形△AHD 和△BMH 的外接圆面积之比为3,求△DEC 的内切圆面积S1 和四边形OBED 的外接圆面积S2 的比.EB48.(2019·广东)如图1,在△ABC 中,AB=AC,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D,连接AD 交BC 于点E,延长DC 至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF 是⊙O 的切线;(3)如图2,若点G 是△ACD 的内心,BC·BE=25,求BG 的长.图1 图23 9 3 49 34 3 【参考答案】 1.B ; 2.18;3.(2,0);44π + 68π ; 3 4.(4040, 2 ); 5.12°; 6.0.14;7. 3π - ;8. 3π - ;9. 3π; 10.5; 11.B ; 12.13.y =30 ; x;14.A ;15. 34 ;5 16. 3a ;2 17.C ;18.(1) 30 19.52°; 20.B ;;(2)10-10 ;21. 2 ; 22.C ;23.(1)略;(2)60°; 9;224.(1)①10;② 14;(2)45°;325.A ; 26.(2)(3);27.(6,5),(7,4)或(1,4);5 333 53 4 55 3 3 2 29.(1)2m ;(2)BD =CE ;(3)0°<BC <60°或 90°<BC <180°; 30.C ;31. 2 - 2 ;32.(-2,3); 33.<; 34.68°;35.(1)略;(2)3;(3)105;150; 36.135°; 37.3 10 - 3 2 ;238. C ; 39. A ;40.(1)略;(2)8π; 41.(1)略;(2)1 个;42. (1)略;(2) 22;343. (1)略;(2) ;44. (1)略;(2)略;45. (1)略;(2) ;46. (1)略;(2)略;(3)5; 47. (1)略;(2) 1;1248. (1)略;(2)略;(3)5;。
第十九讲转化灵活的圆中角
角是几何图形中最重要的元素,证明两直线位置关系、运用全等三角形法、相似三角形法都要涉及角,而圆的特征,赋予角极强的活性,使得角能灵活地互相转化.
根据圆心角与圆周角的倍半关系,可实现圆心角与圆周角的转化;由同弧或等弧所对的圆周角相等,可将圆周角在大小不变的情况下,改变顶点在圆上的位置进行探索;由圆内接四边形的对角互补和外角等于内对角,可将与圆有关的角互相联系起来.
熟悉以下基本图形、基本结论.
注:根据顶点、角的两边与圆的位置关系,我们定义了圆心角与圆周角,类似地,当角的顶点在圆外或圆内,我们可以定义圆外角与圆内角,这两类角分别与它们的所夹弧度数有怎样的关系?读者可自行作一番探讨.
【例题求解】
【例1】如图,直线AB 与⊙O 相交于A ,B 再点,点O 在AB 上,点C 在⊙O 上,且∠AOC =40°,点E 是直线AB 上一个动点(与点O 不重合),直线EC 交⊙O 于另一点D ,则使DE=DO 的点正共有个.
思路点拨在直线AB 上使DE=DO 的动点E 与⊙O 有怎样的位置关系?
分点E 在AB 上(E 在⊙O 内)、在BA 或AB 的延长线上(E 点在⊙O 外)三种情况考虑,通过角度的计算,确定E 点位置、存在的个数.
注:弧是联系与圆有关的角的中介,“由弧到角,由角看弧”是促使与圆有关的角相互转化的基本方法.
【例2】如图,已知△ABC 为等腰直角三形,D 为斜边BC 的中点,经过点A 、D 的⊙O 与边AB 、AC 、BC 分别相交于点E 、F 、M ,对于如下五个结论:①∠FMC=45°;②AE+AF =AB ;③
BC
BA EF ED ;④2BM 2=BF ×BA ;⑤四边形AEMF 为矩形.其中正确结论的个数是(
)A .2个B .3个C .4个D .5个思路点拨充分运用与圆有关的角,寻找特殊三角形、特殊四边形、相似三角形,逐一验证.
注:多重选择单选化是近年出现的一种新题型,解这类问题,需把条件重组与整合,挖掘隐合条件,作深入的探究,方能作出小正确的选择.
【例3】如图,已知四边形ABCD 外接⊙O 的半径为5,对角线AC 与BD 的交点为E ,且AB 2=AE
×AC ,BD =8,求△ABD 的面积.
思路点拨由条件出发,利用相似三角形、圆中角可推得A 为弧BD 中点,这是解本例的关键.
【例4】如图,已知AB 是⊙O 的直径,C 是⊙O 上的一点,连结AC ,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是AB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F ,连结AF 与直线CD 交于点G .
(1)求证:AC 2=AG ×AF ;
(2)若点E 是AD(点A 除外)上任意一点,上述结论是否仍然成立?若成立.请画出图形并给予证明;若不成立,请说明理由.
思路点拨(1)作出圆中常用辅助线证明△ACG ∽△AFC ;
(2)判断上述结论在E 点运动的情况下是否成立,依题意准确画出图形是关键.
注:构造直径上90°的圆周角,是解与圆相关问题的常用辅助线,这样就为勾股定理的运用、相似三角形的判定创造了条件.
【例5】如图,圆内接六边形ABCDEF 满足AB=CD=EF ,且对角线AD 、BE 、CF 相交于一点Q ,设AD 与CF 的交点为P .
求证:(1)EC AC ED QD =;(2)2
2CE AC PE CP =.思路点拨解本例的关键在于运用与圆相关的角,能发现多对相似三角形.
(1)证明△QDE ∽△ACF ;(2)易证
DE
QC PE CP =,通过其他三角形相似并结合(1)把非常规问题的证明转化
为常规问题的证明.注:有些几何问题虽然表面与圆无关,但是若能发现隐含的圆,尤其是能发现共圆的四点,就能运用圆的丰富性质为解题服务,确定四点共圆的主要方法有:
(1)利用圆的定义判定;
(2)利用圆内接四边形性质的逆命题判定.
学历训练
1.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为.2.如图,AB
是⊙O
的直径,C 、D 、E 都是⊙O 上的一点,则∠1+∠2=.
3.如图,AB 是⊙O 的直径,弦CD ⊥AB ,F 是CG 的中点,延长AF 交⊙O 于E ,CF=2,AF=3,则EF 的长为.
4.如图,已知△ABC 内接于⊙O ,AB+AC=12,AD ⊥BC 于D ,AD =3,设⊙O 的半径为y ,AB 的长为x ,用x 的代数式表示y ,y =.
5.如图,ABCD 是⊙O 的内接四边形,延长BC 到E ,已知∠BCD :∠ECD =3:2,那么∠BOD 等于(
)
A .120°
B .136°
C .144°
D .150°
6.如图,⊙O 中,弦AD ∥BC ,DA=DC ,∠AOC=160°,则∠BOC 等于()
A .20°
B .30°
C .40°
D .50°7.如图,BC 为半圆O 的直径,A 、D 为半圆O 上两点,AB=3,BC=2,则∠D 的度数为()
A .60°
B .120°
C .135°
D .150°
8.如图,⊙O 的直径AB 垂直于弦CD ,点P 是弧AC 上一点(点P 不与A 、C 两点重合),连结PC 、PD 、PA 、AD ,点E 在AP 的延长线上,PD 与AB 交于点F .给出下列四个结论:①CH 2=AH ×BH ;②AD=AC ;③AD 2=DF ×DP ;④∠EPC=∠APD ,其中正确的个数是()
A .1
B .2
C .3
D .4
9.如图,已知B 正是△ABC 的外接圆O 的直径,CD 是△ABC 的高.
(1)求证:AC ·BC=BE ·CD ;
(2)已知CD=6,AD=3,BD=8,求⊙O 的直径BE 的长.
10.如图,已知AD 是△ABC 外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连结FB ,FC .
(1)求证:FB=FC ;
⌒⌒
(2)求证:FB 2=FAFD ;
(3)若AB 是△ABC 的外接圆的直径,∠EAC=120°,BC=6cm ,求AD 的长.
11.如图,B 、C 是线段AD 的两个三等分点,P 是以BC 为直径的圆周上的任意一点(B 、C 点除外),则tan ∠APB ·tan ∠CPD=.12.如图,在圆内接四边形ABCD
中,
AB=AD
,∠BAD=60°,AC=a ,则四边形ABCD 的面积为.
13.如图,圆内接四边形ABCD 中,∠A =60°,∠B =90°,AD=3,CD=2,则BC=
.
14.如图,AB 是半圆的直径,D 是AC
的中点,∠B=40°,则∠A 等于()A .60°B .50°C .80°D .70°15.如图,已知ABCD 是一个以AD 为直径的圆内接四边形,AB=5,PC=4,分别延长AB 和DC ,它们相交于P ,若∠APD=60°,则⊙O 的面积为()
A .25π
B .16π
C .15π
D .13π
(2001年绍兴市竞赛题)
16.如图,AD 是Rt △ABC 的斜边BC 上的高,AB=AC ,过A 、D 两点的圆与AB 、AC 分别相交于点E 、F ,弦EF 与AD 相交于点G ,则图中与△GDE 相似的三角形的个数为()
A .5
B .4
C .3
D .2
17.如图,已知四边形ABCD 外接圆⊙O 的半径为2,对角线AC 与BD 的交点为E ,AE=EC ,AB=2AE ,且BD=32,求四边形ABCD 的面积.
18.如图,已知ABCD 为⊙O 的内接四边形,E 是BD 上的一点,且有∠BAE=∠DAC .
求证:(1)△ABE ∽△ACD ;(2)ABDC+AD ·B C =AC ·BD .
19.如图,已知P 是⊙O 直径AB 延长线上的一点,直线PCD 交⊙O 于C 、D 两点,弦DF ⊥AB 于点⌒
H ,CF 交AB 于点E .
(1)求证:PA ·PB=PO ·PE ;(2)若DE ⊥CF ,∠P=15°,⊙O 的半径为2,求弦CF 的长.
20.如图,△ABC 内接于⊙O ,BC=4,S △ABC =3
6,∠B 为锐角,且关于x 的方程01cos 42=+-B x x 有
两个相等的实数根,D 是劣弧AC 上任一点(点D 不与点A 、C 重合),DE 平分∠ADC ,交⊙O 于点E ,
交AC 于点F .
(1)求∠B 的度数;
(2)求CE 的长;
(3)求证:DA 、DC 的长是方程02=⋅+⋅-DF DE y DE y 的两个实数根.
参考答案⌒。