当前位置:文档之家› 全国初中(初一)数学竞赛辅导:第10讲-整式的乘法与除法

全国初中(初一)数学竞赛辅导:第10讲-整式的乘法与除法

全国初中(初一)数学竞赛辅导:第10讲-整式的乘法与除法
全国初中(初一)数学竞赛辅导:第10讲-整式的乘法与除法

全国初中(初一)数学竞赛辅导

第十讲整式的乘法与除法

中学代数中的整式是从数的概念基础上发展起来的,因而保留着许多数的特征,研究的内容与方法也很类似.例如,整式的四则运算就可以在许多方面与数的四则运算相类比;也像数的运算在算术中占有重要的地位一样,整式的运算也是代数中最基础的部分,它在化简、求值、恒等变形、解方程等问题中有着广泛的应用.通过整式的运算,同学们还可以在准确地理解整式的有关概念和法则的基础上,进一步提高自己的运算能力.为此,本讲着重介绍整式运算中的乘法和除法.

整式是多项式和单项式的总称.整式的乘除主要是多项式的乘除.下面先复习一下整式计算的常用公式,然后进行例题分析.

正整数指数幂的运算法则:

(1)a M· a n=a M+n; (2)(ab)n=a n b n;

(3)(a M)n=a Mn; (4)a M÷a n=a M-n(a≠0,m>n);

常用的乘法公式:

(1)(a+b)(a+b)=a2-b2;

(2)(a±b)2=a2±2ab+b2;

(4)(d±b)3=a3±3a2b+3ab2±b3;

(5)(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.

例1 求[x3-(x-1)2](x-1)展开后,x2项的系数.

解 [x3-(x-1)2](x-1)=x3(x-1)-(x-1)3.因为x2项只在-(x-1)3中出现,所以只要看-(x-1)3=(1-x)3中x2项的系数即可.根据乘法公式有

(1-x)3=1-3x+3x2-x3,

所以x2项的系数为3.

说明应用乘法公式的关键,是要理解公式中字母的广泛含义,对公式中的项数、次数、符号、系数,不要混淆,要达到正确、熟练、灵活运用的程度,这样会给解题带来极大便利.

(x-2)(x2-2x+4)-x(x+3)(x-3)+(2x-1)2.

解原式=(x3-2x2+4x-2x2+4x-8)-x(x2-9)+(4x2-4x+1)

=(x3-4x2+8x-8)-(x3-9x)+(4x2-4x+1)

=13x-7=9-7=2.

说明注意本例中(x-2)(x2-2x+4)≠x3-8.

例3化简(1+x)[1-x+x2-x3+…+(-x)n-1],其中n为大于1的整数.

解原式=1-x+x2-x3+…+(-x)n-1

+x-x2+x3+…-(-x)n-1+(-x)n

=1+(-x)n.

说明本例可推广为一个一般的形式:

(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=a n-b n.

例4 计算

(1)(a-b+c-d)(c-a-d-b);

(2)(x+2y)(x-2y)(x4-8x2y2+16y4).

分析与解 (1)这两个多项式对应项或者相同或者互为相反数,所以可考虑应用平方差公式,分别把相同项结合,相反项结合.

原式=[(c-b-d)+a][(c-b-d)-a]=(c-b-d)2-a2

=c2+b2+d2+2bd-2bc-2cd-a2.

(2)(x+2y)(x-2y)的结果是x2-4y2,这个结果与多项式x4-8x2y2+16y4相乘时,不能直接应用公式,但

x4-8x2y2+16y4=(x2-4y2)2

与前两个因式相乘的结果x2-4y2相乘时就可以利用立方差公式了.

原式=(x2-4y2)(x2-4y2)2=(x2-4y2)3

=(x2)3-3(x2)2(4y2)+3x2·(4y2)2-(4y2)3

=x6-12x4y2+48x2y4-64y6.

例5 设x,y,z为实数,且

(y-z)2+(x-y)2+(z-x)2

=(y+z-2x)2+(x+z-2y)2+(x+y-2z)2,

解先将已知条件化简:

左边=2x2+2y2+2z2-2xy-2yz-2xz,

右边=6x2+6y2+6z2-6xy-6yz-6xz.

所以已知条件变形为

2x2+2y2+2z2-2xy-2yz-2xz=0,

即(x-y)2+(x-z)2+(y-z)2=0.

因为x,y,z均为实数,所以x=y=z.所以

说明本例中多次使用完全平方公式,但使用技巧上有所区别,请仔细琢磨,灵活运用公式,会给解题带来益处.

我们把形如

a n x n+a n-1x n-1+…+a1x+a0

(n为非负整数)的代数式称为关于x的一元多项式,常用f(x),

g(x),…表示一元多项式.

多项式的除法比较复杂,为简单起见,我们只研究一元多项式的除法.像整数除法一样,一元多项式的除法,也有整除、商式、余式的概念.一般地,一个一元多项式f(x)除以另一个一元多项式g(x)时,总存在一个商式q(x)与一个余式r(x),使得f(x)=g(x)q(x)+r(x)成立,其中r(x)的次数小于g(x)的次数.特别地,当r(x)=0时,称f(x)能被g(x)整除.

例6 设g(x)=3x2-2x+1,f(x)=x3-3x2-x-1,求用g(x)去除f(x)所得的商q(x)及余式r(x).

解法1 用普通的竖式除法

解法2 用待定系数法.

由于f(x)为3次多项式,首项系数为1,而g(x)为2次,首

r(x)= bx+ c.

根据f(x)=q(x)g(x)+r(x),得

x3-3x2-x-1

比较两端系数,得

例7 试确定a和b,使x4+ax2-bx+2能被x2+3x+2整除.

解由于x2+3x+2=(x+1)(x+2),因此,若设

f(x)=x4+ax2-bx+2,

假如f(x)能被x2+3x+2整除,则x+1和x+2必是f(x)的因式,因此,当x=-1时,f(-1)=0,即

1+a+b+2=0,①

当x=-2时,f(-2)=0,即

16+4a+2b+2=0,②

由①,②联立,则有

练习十

1.计算:

(1)(a- 2b+c)(a+2b-c)-(a+2b+c)2;

(2)(x+y)4(x-y)4;

(3)(a+b+c)(a2+b2+c2-ab-ac-bc).

2.化简:

(1)(2x-y+z-2c+m)(m+y-2x-2c-z);

(2)(a+3b)(a2-3ab+9b2)-(a-3b)(a2+3ab+9b2);

(3)(x+y)2(y+z-x)(z+x-y)+(x-y)2(x+y+z)×(x+y-z).

3.已知z2=x2+y2,化简

(x+y+z)(x-y+z)(-x+y+z)(x+y-z).

4.设f(x)=2x3+3x2-x+2,求f(x)除以x2-2x+3所得的商式和余式.本资料来源于《七彩教育网》

《整式的乘法经典习题--大全※》

二、填空题: 22 2 2 5 3 单项式与单项式相乘 、选择题 1. 计算x 2 y 2( xy 3)2的结果是() 1 4. 计算 2xy ( -x 2y 2z) ( 3x 3y 3)的结果是() 2 A. 3x 6y 6z B. 3x 6y 6z C. 3x 5y 5z D. 3x 5y 5z 5. 计算(a 2b)3 2a 2b ( 3a 2b)2 的结果为() A. 17a 6b 3 B. 18a 6b 3 C. 17a 6b 3 D. 18a 6b 3 6. x 的m 次方的5倍与x 2的7倍的积为() A. 12x 2m B. 35x 2m C. 35x m 2 D. m 2 12x 7. ( 2x 3y 4)3 ( x 2 yc)2 等于( ) A. 8x 13y 14c 2 B. C 13 14 8x y c 2 C. 8x 36 24 2 y c D. c 36 24 2 8x y c 3 m 1 m n 8. x y x 2n 2 y 9 9 x y , 则4m 3n () A. 8 B. 9 C. 10 D. 无法确定 9. 计算(3x 2) ( 2x 3m y n )( y m )的结果是() 3 4m mn 11 2m 2 m 3m 2 m n 11 5m n .3x y B. x y C. 2x y D. (x y) 3 3 10. 下列计算错误的是() A. (a 2)3 ( a 3)2 a 12 B. ( ab 2)2 ( a 2b 3) a 4b 7 C. (2xy n ) ( 3x n y)2 18x 2n 1 y n 2 D. ( xy 2)( yz 2)( zx 2) x 3 y 3z 3 A A. x 5y 10 B. x 4y 8 C. x 5y 8 D. x 6 12 y 2. A. 3. 1 2 3 (x y) 2 3 6 3 x y 16 (2.5 103)3 12 2 (-x 2y)2 ( 4 x 2y)计算结果为 B. 0 C. x 6y 3 D. 5x 6y 3 12 A. 6 1013 B. 0.8 102)2计算结果是 6 1013 C. 2 1013 D. 14 10

全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

全国初中数学竞赛辅导(八年级)教学案全集第二十六讲含参数的一元二次方程的整数根问题 对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法. 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x+72=0 有两个不相等的正整数根. 解法1首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得 由于x1,x2是正整数,所以 m-1=1,2,3,6,m+1=1,2,3,4,6,12, 解得m=2.这时x1=6,x2=4. 解法2首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知 所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即 m2=3,4,5,7,9,10,13,19,25,37,73, 只有m2=4,9,25才有可能,即m=±2,±3,±5. 经检验,只有m=2时方程才有两个不同的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是

这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2 已知关于x的方程 a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数根,求a的值. 分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a≠0,所以 所以 所以只要a是3或5的约数即可,即a=1,3,5. 例3设m是不为零的整数,关于x的二次方程 mx2-(m-1)x+1=0 有有理根,求m的值. 解一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令 Δ=(m-1)2-4m=n2, 其中n是非负整数,于是 m2-6m+1=n2,

17.整式的乘法与除法(含答案)-

17.整式的乘法与除法 知识纵横 指数运算律是整式乘除的基础,有以下4个:a m·a n=a m+n,(a m)n=a nm,(ab)n=a n b n,a m÷a n=a m-n,学习指数运算律应注意: 1.运算律成立的条件; 2.运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式; 3.运算律的正向运用、逆向运用、综合运用. 多项式除以多项式是整式除法的延拓与发展,?方法与多位数除以多位数的演算方法相似,基本步骤是: 1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位; 2.确定商式,竖式演算式,同类项上下对齐; 3.演算到余式为零或余式的次数小于除式的次数为止. 例题求解 【例1】(1)如果x2+x-1=0,则x3+2x2+3=________. (第14届“希望杯”邀请赛试题) (2) (“祖冲之杯”邀请赛试题)把(x2-x+1)6展开后得a12x12+a11x11+……+a2x2+a1x+a0, 则a12+a10+a8+a6+a4+a2+a0=_______. 思路点拨(1)把高次项用低次多项式表示;(2)我们很难将(x2-x+1)6的展开式写出,因此想通过展开式去求出每一个系数是不实际的,事实上,上列等式在x的允许值范围内取任何一个值代入计算,等式都成立,考虑用赋值法解. 解:(1)4 提示:x2=1-x,原式=x·x-2+2x3+3=x(1-x)+2x2+3=x2+x+3=1-x+x+3=4. (2)365 提示:令x=1,由已知等式得a12+a11+…+a2+a1+a0=1 ① 令x=-1,由已知等式得a12-a11+…+a2-a1+a0=729 ② ①+②,得2(a12+a10+…+a2+a0)=730,即a12+a10+…+a2+a0=365

整式的乘法计算题

整式的乘法计算题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

一、计算 1.a 2·(-a)5·(-3a)3 2.[(a m )n ] p 3.(-mn)2(-m 2n) 3 4.(-a 2b)3·(-ab 2) 5.(-3ab)·(-a 2c)·6ab 2 6.(-ab)3·(-a 2b)·(-a 2b 4c)2 7.(3m-n)(m-2n). 8.(x+2y)(5a+3b). 9.5x(x 2+2x+1)-(2x+3)(x-5) 10. (-2x -5)(2x -5) 11. -(2x 2+3y )(3y -2x 2) 12. (a -5) 2-(a +6)(a -6) 13. (2x -3y )(3y +2x )-(4y - 3x )(3x +4y ) 14. 3(2x +1)(2x -1)-2(3x +2)(2-3x ) 15. (31x +y )(31x -y )(91x 2+y 2) 16. )1)(1)(1)(1(42x x x x ++-+ 二、基础训练 1.多项式8x 3y 2-12xy 3 z 的公因式是_________. 2.多项式-6ab 2+18a 2b 2-12a 3b 2 c 的公因式是( ) A .-6ab 2c B .-ab 2 C .-6ab 2 D .-6a 3b 2c 3.下列用提公因式法因式分解正确的是( ) A .12abc-9a 2b 2 =3abc (4-3ab ) B .3x 2 y-3xy+6y=3y (x 2-x+2y ) C .-a 2 +ab-ac=-a (a-b+c ) D .x 2y+5xy-y=y (x 2+5x ) 4.下列多项式应提取公因式5a 2 b 的是( ) A .15a 2b-20a 2b 2 B .30a 2b 3-15ab 4-10a 3b 2 C .10a 2b-20a 2b 3+50a 4b D .5a 2b 4 -10a 3b 3+15a 4b 2 5.下列因式分解不正确的是( ) A .-2ab 2+4a 2b=2ab (-b+2a ) B .3m (a-b )-9n (b-a )=3(a-b )(m+3n ) C .-5ab+15a 2bx+25ab 3 y=-5ab (-3ax-5b 2y ); D .3ay 2 -6ay-3a=3a (y 2-2y-1) 6.填空题: (1)ma+mb+mc=m (________); (2)多项式32p 2q 3-8pq 4 m 的公因式是_________; (3)3a 2 -6ab+a=_________(3a-6b+1);(4)因式分解:km+kn=_________; (5)-15a 2+5a=________(3a-1); (6)计算:21××=_________. 7.用提取公因式法分解因式: (1)8ab 2-16a 3b 3; (2)-15xy-5x 2; (3)a 3b 3+a 2b 2 -ab ; (4)-3a 3m-6a 2 m+12am . 8.因式分解:-(a-b )mn-a+b . 三、提高训练 9.多项式m (n-2)-m 2(2-n )因式分解等于( ) A .(n-2)(m+m 2 ) B .(n-2)(m-m 2 ) C .m (n-2)(m+1) D .m (n-2)(m-1) 10.将多项式a (x-y )+2by-2bx 分解因式,正确的结果是( ) A .(x-y )(-a+2b ) B .(x-y ) (a+2b )

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

七年级下册第一章同底数幂的乘法除法及幂的乘方与积的乘方、整式的乘法

同底数幂的乘法除法及幂的乘方与积的乘方、整式的乘法 一、选择题 1. 等于() A. B. C. D. 2. 等于() A. B. C. D. a 3. 等于() A. B. C. D. 4. ,则值为() A. –2 B. C. 675 D. 225 5. 的运算结果是() A. B. C. D. 6. 计算的结果是() A. B. C.

同底数幂的乘法除法及幂的乘方与积的乘方、整式的乘法 D. 7. 若,则m、n、k为() A. 6,3,1 B. 3,6,1 C. 3,1,1 D. 2,1,1 8. 若(x+2)(x-5),则常数p、q的值为() A. p=- 3 ,q=10 B. p=-3,q=-10 C. p=7,q=-10 D. p=7,q=10 9. 如果的乘积中不含x的二次项,那么常数m 的值为() A. 0 B. C. - D. 二、填空题 1. =(),()= 2. 当y()时, 3. 若,若=(),=() 4. (1.3)=(),=()

同底数幂的乘法除法及幂的乘方与积的乘方、整式的乘法 5. =() 6. ()=,=() 7. =(),=()(用科 学记数法表示) 三、计算 1. 2. 3. 4. 5. 6. 7. 如果,求m的值 8. 化简求值,其中,a=-2,b=。 9. 解方程(3x+8)(2x-1)=3x(2x+5) 【试题答案】 一、选择题 1. B 2. B 3. A 4. B 5. A

同底数幂的乘法除法及幂的乘方与积的乘方、整式的乘法 6. D 7. A 8. B 9. C 二、填空题 1. 4 2. ≠-1 3. , 4. -1.69, 5. 6. -3a 7. 三、计算 1. 2. 3. 4. 5. 6. 7. m=-2 8. 0 9. x=-4

整式的乘法习题(含详细解析答案)

整式的乘法测试 1.列各式中计算结果是x2-6x+5的是( ) A.(x-2)(x-3) B.(x-6)(x+1) C.(x-1)(x-5) D.(x+6)(x-1) 2.下列各式计算正确的是( ) A.2x+3x=5 B.2x?3x=6 C.(2x)3=8 D.5x6÷x3=5x2 3.下列各式计算正确的是( ) A.2x(3x-2)=5x2-4x B.(2y+3x)(3x-2y)=9x2-4y2 C.(x+2)2=x2+2x+4 D.(x+2)(2x-1)=2x2+5x-2 4.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( ) A.p=q B.p+q=0 C.pq=1 D.pq=2 5.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( ) A.m=5,n=6 B.m=1,n=-6 C.m=1,n=6 D.m=5,n=-6 6.计算:(x-3)(x+4)=_____. 7.若x2+px+6=(x+q)(x-3),则pq=_____. 8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30; (1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系? (2)根据以上各式呈现的规律,用公式表示出来;

(3)试用你写的公式,直接写出下列两式的结果; ①(a+99)(a-100)=_____;②(y-500)(y-81)=_____. 9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____ 根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____. 11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____. 12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论. 13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张. 14.计算: (1)(5mn2-4m2n)(-2mn) (2)(x+7)(x-6)-(x-2)(x+1) 15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.

全国初中数学竞赛辅导(八年级)教学案全集第21讲 分类与讨论

全国初中数学竞赛辅导(八年级)教学案全集 第二十一讲分类与讨论 分类在数学中是常见的,让我们先从一个简单的例子开始. 有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数? 因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论. 任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个. 上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论. 分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论. 例1求方程 x2-│2x-1│-4=0 的实根. x2+2x-1-4=0,

x 2-2x +1-4=0, x 1=3,x 2=-1. 说明 在去绝对值时,常常要分类讨论. 例2 解方程x 2-[x]=2,其中[x]是不超过x 的最大整数. 解 由[x]的定义,可得 x ≥[x]=x 2-2, 所以 x 2-x -2≤0, 解此不等式得 -1≤x ≤2. 现把x 的取值范围分成4个小区间(分类)来进行求解. (1)当-1≤x ≤0时,原方程为 x 2-(-1)=2, 所以x=-1(因x=1不满足-1≤x <0). (2)当0≤x <1时,原方程为 x 2=2. (3)当1≤x <2时,原方程为 x 2-1=2, 所以 (4)当x=2时,满足原方程.

-初中数学竞赛辅导讲座19讲(全套)

初中数学竞赛辅导讲座19讲(全套) 第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002

整式的乘法同步练习题解析

测试1 整式的乘法 会进行整式的乘法计算. 课堂学习检测 一、填空题 1.(1)单项式相乘,把它们的________分别相乘,对于只在一个单项式里含有的字母,则 ________. (2)单项式与多项式相乘,就是用单项式去乘________,再把所得的积________. (3)多项式与多项式相乘,先用________乘以________,再把所得的积________. 2.直接写出结果: (1)5y ·(-4xy 2)=________;(2)(-x 2y )3·(-3xy 2z )=________; (3)(-2a 2b )(ab 2-a 2b +a 2)=________; (4)=-?-+-)2 1()864(2 2x x x ________; (5)(3a +b )(a -2b )=________;(6)(x +5)(x -1)=________. 二、选择题 3.下列算式中正确的是( ) A .3a 3·2a 2=6a 6 B .2x 3·4x 5=8x 8 C .3x ·3x 4=9x 4 D .5y 7·5y 3=10y 10 4.(-10)·(-0.3×102)·(0.4×105)等于( ) A .1.2×108 B .-0.12×107 C .1.2×107 D .-0.12×108 5.下面计算正确的是( ) A .(2a +b )(2a -b )=2a 2-b 2 B .(-a -b )(a +b )=a 2-b 2 C .(a -3b )(3a -b )=3a 2-10ab +3b 2 D .(a -b )(a 2-ab +b 2)=a 3-b 3 6.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( ) A .6 B .2m -8 C .2m D .-2m 三、计算题 7.)2 1 ).(43).(32(222z xy z yz x -- 8.[4(a -b )m - 1]·[-3(a -b )2m ] 9.2(a 2b 2-ab +1)+3ab (1-ab ) 10.2a 2-a (2a -5b )-b (5a -b ) 11.-(-x )2·(-2x 2y )3+2x 2(x 6y 3-1) 12.)2 1 4)(221(-+x x 13.(0.1m -0.2n )(0.3m +0.4n ) 14.(x 2+xy +y 2)(x -y )

【精品】全国初中数学竞赛辅导(初三分册全套

全国初中数学竞赛辅导(初三分册)全套

第一讲分式方程(组)的解法 分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根. 例1 解方程 解令y=x2+2x-8,那么原方程为 去分母得 y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0, y2-4xy-45x2=0, (y+5x)(y-9x)=0, 所以 y=9x或y=-5x.

由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1. 经检验,它们都是原方程的根. 例2 解方程 y2-18y+72=0, 所以 y1=6或y2=12. x2-2x+6=0.此方程无实数根. x2-8x+12=0,

所以 x1=2或x2=6. 经检验,x1=2,x2=6是原方程的实数根. 例3 解方程 分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为 整理得 去分母、整理得 x+9=0,x=-9. 经检验知,x=-9是原方程的根. 例4 解方程

分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为 即 所以 ((x+6)(x+7)=(x+2)(x+3). 例5 解方程 分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

整式的乘法专题复习一

整式的乘法复习专题一(幂的运算) 知识点一:同底幂的乘法和除法 a m ?a n =a m+n ; a m ÷a n =a m-n 延伸:a m ?a n ?a p =a m+n+p 逆用:a m+n =a m ?a n ;a m-n =a m ÷a n 底数互为相反数的转化:1 21 222)(;)(---=-=-n n n n a a a a 针对性练习: 1. 102·107= ; a·a 3·a 4= ; x n+1·x n-1=_____; 52()()x x -÷-=______;10234 x x x x ÷÷÷ =______. 2. x 3·x· =x 5; x 4n ·_____=x 6n ; (-y)2·_____=y 4;÷8 a =3 a ; 3. 若a x =2,a y =3,则a x+y =_____;a x÷y =_____. 4. 已知x m+2=2,x n-2=6,则x m+n =_____. 5. x·____=-x 7; (-a 4)·a 3=____; (-a)4·a 3=____; -a 4·a 2=____; 6. (a -b)·(b -a)2·(b -a)3 = ; 7. 若5x =2,5y =3,则5x+y =_____; 5x+2=_____; 5x+y+1=_____; y x -5= ;1 5-y = . 8. 若x m-2·x 3m =x 6,求m 2-2m+2的值 9. 计算:x 2·2x 5-(-x 3) ·x 4+x 6·(-x) 知识点二:负指数和零指数: p p p a a a ?? ? ??==-11(a≠0);10=a (a≠0). 针对性练习: 1. 2 2-= ;2 ) 2(--= ;221- -??? ??= ;2 21-?? ? ??= . 2. 0 )2(-= ;0 2= ;0 73-?? ? ??= ;()0 1π-= . 3. 若0 (2)x -=1,则x . 4. 已知2 (1) 1x x +-=,且x 是整数,则x= . 知识点三:幂的乘方和积的乘方 () mn n m a a =;()m m m b a ab =. 逆用:()() m n n m mn a a a ==;()m m m ab b a =? 针对性练习: 1. 221()3ab c -=________,23()n a a ? =_________. 2. 5237()()p q p q ????+?+???? = ,23( )4n n n n a b =. 3. 3() 214()a a a ?=; 221()()n n x y xy -? =__________. 4. 100100 1()(3)3?- =_________; =?2012201388 1-)(_________。 5. 若a 2323=,则a= ;若4312882n ?=,则n=_________. 6. 若2,3n n x y ==,则()n xy =_______,23()n x y =________. 7. 若5x =2,5y =3,则5x+y =____; 52x+2=____; 53x+2y =____;1 25 -x = . 8. 计算8 23 32 ()()[()]p p p -?-?-的结果是( ) 9. 已知55 44 33 2,3,4a b c ===,则a 、b 、c 的大小关系是( ) A.b>c>a B.a>b>c C.c>a>b D.a

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

初一奥数第10讲 整式的乘法与除法

第十讲 整式的乘法与除法 中学代数中的整式是从数的概念基础上发展起来的,因而保留着许多数的特征,研究的内容与方法也很类似.例如,整式的四则运算就可以在许多方面与数的四则运算相类比;也像数的运算在算术中占有重要的地位一样,整式的运算也是代数中最基础的部分,它在化简、求值、恒等变形、解方程等问题中有着广泛的应用.通过整式的运算,同学们还可以在准确地理解整式的有关概念和法则的基础上,进一步提高自己的运算能力.为此,本讲着重介绍整式运算中的乘法和除法. 整式是多项式和单项式的总称.整式的乘除主要是多项式的乘除.下面先复习一下整式计算的常用公式,然后进行例题分析. 正整数指数幂的运算法则: (1)n m n m a a a +?=; (2) ()n n n a b a b ?=; (3) ()n m n m a a ?=; (4) m n m n a a a -÷=(α≠0,μ>ν); 常用的乘法公式: (1)(α+β)(α+β)=α2-β2; (2)(α±β)2=α2±2αβ+β2; (4)(δ±β)3=α3±3α2β+3αβ2±β3; (5)(α+β+χ)2=α2+β2+χ2+2αβ+2βχ+2χα. 例1 求[ξ3-(ξ-1)2](ξ-1)展开后,ξ2项的系数 . 解 [ξ3-(ξ-1)2](ξ-1)=ξ3(ξ-1)-(ξ-1)3.因为ξ2项只在-(ξ-1)3中出现,所以只要看-(ξ-1)3=(1-ξ)3中ξ2项的系数即可.根据乘法公式有 (1-ξ)3=1-3ξ+3ξ2-ξ3, 所以ξ2项的系数为3. 说明 应用乘法公式的关键,是要理解公式中字母的广泛含义,对公式中的项数、次数、符号、系数,不要混淆,要达到正确、熟练、灵活运用的程度,这样会给解题带来极大便利. (ξ-2)(ξ2 -2ξ+4)-ξ(ξ+3)(ξ-3)+(2ξ-1)2 . 解 原式=(ξ3-2ξ2+4ξ-2ξ2+4ξ-8)-ξ(ξ2-9)+(4ξ2-4ξ+1) =(ξ3-4ξ2+8ξ-8)-(ξ3-9ξ)+(4ξ2-4ξ+1) =13ξ-7=9-7=2. 说明 注意本例中(ξ-2)(ξ2-2ξ+4)≠ξ3-8. 例3 化简(1+ξ)[1-ξ+ξ2-ξ3+…+(-ξ)ν-1],其中ν为大于1的整数. 解 原式=1-ξ+ξ2-ξ3+…+(-ξ)ν-1 +ξ-ξ2+ξ3+…-(-ξ)ν-1+(-ξ)ν =1+(-ξ)ν. 说明 本例可推广为一个一般的形式: (α-β)(αν-1+αν-2β+…+αβν-2+βν-1)=αν-βν. 例4 计算 (1)(α-β+χ-δ)(χ-α-δ-β); (2)(ξ+2ψ)(ξ-2ψ)(ξ4-8ξ2ψ2+16ψ4).

整式的乘法(练习题)

一、选择题。 1.下列计算正确的是( ) A.2a 2·2a 2=4a 2 B.2x 2·2x 3=2x 5 C.x ·y=(xy)4 D.(-3x)2=9x 2 2.若3,5m n a a ==,则m n a +等于( ) A.8 B.15 C.45 D.75 3.(-x 2y 3)3·(-x 2y 2)的结果是( ) A.-x 7y 13 B.x 3y 3 C.-x 8y 13 D.-x 7y 5 4.(x+4y)(x-5y)的结果是( ) A.x 2-9xy-20y 2 B.x 2+xy-20y 2 C.x 2-xy-20y 2 D.x 2-20y 2 5.如果(ax-b)(x+2)=x 2-4,那么( ) A.a=1,b=-2 B.a=-1,b=-2; C.a=1,b=2 D.a=-1,b=2 6.化简代数式(x-3)(x-4)-(x-1)(x-3)的结果是( ) A.-11x+15 B.-11x-15; C.-3x-9 D.-3x+9 7.若(x +4)(x -2)= q px x ++2,则p 、q 的值是( ) A 、2,8 B 、-2,-8 C 、-2,8 D 、2,-8 8.计算(2a -3b)(2b+3a)的结果是( ). A.4a 2-9b 2 B.6a 2-5ab -6b 2 C.6a 2-5ab+6b 2 D.6a 2-15ab+6b 2 二 计算: (1)()12222+---m m m (2)(-4a-1)(-4a+1) (3)(x-y+1)(x+y+1) (4) ()()()x y y x y x +--+222 三 解方程

- - -x x x + (2= )5 )(1 ( )1 17

相关主题
文本预览
相关文档 最新文档