结构力学-形常数和载常数表
- 格式:doc
- 大小:6.89 MB
- 文档页数:5
位移法是计算超静定结构的基本方法之一
图1
如图1所示结构,力法计算,9个基本未知量
位移法计算,1个基本未知量
单跨超静定梁的形常数与载常数
1. 杆端力的正、负号规定
杆端弯矩:对杆件而言,当杆端弯矩绕杆件顺时针方向旋转为正,反之为负。
对结点而言,当杆端弯矩绕结点(或支座)逆时针方向旋转为正,反之为负。
杆端剪力:使所研究的分离体有顺时针转动趋势为正,有逆时针转动趋势为负。
2. 杆端位移的正、负号规定
杆端转角(角位移):以顺时针方向转动为正,反之为负。
杆端相对线位移:指杆件两端垂直于杆轴线方向的相对线位移,正负号则以使整个杆件顺时针方向转动规定为正,反之为负。
3. 等截面梁的形常数
杆端单位位移引起的杆端内力称为形常数•
i=EI/l——线刚度
4. 等截面梁的载常数
荷载引起的杆端内力称为载常数.
下图是在不同支承条件下的载常数和形常数
一端固定一端定向滑动的单跨超静定梁的载常数和形常数。
形常数和载常数表-互联网类哎呀,说到形常数和载常数表,这在互联网领域里还真是个有点特别的存在呢!咱先来说说啥是形常数和载常数。
简单来讲,形常数就是结构在单位位移下产生的内力或位移,载常数呢,则是在单位荷载作用下产生的内力或位移。
我想起之前有一次参加一个互联网技术交流大会,遇到了一位年轻的工程师小李。
他在分享自己的项目经验时,就提到了形常数和载常数表的应用。
他说他们在开发一个大型在线游戏的时候,游戏中的人物动作设计就用到了这些概念。
比如说,人物跳跃的高度、奔跑的速度,这些都需要通过计算形常数和载常数来确定,以保证游戏的流畅性和真实感。
在互联网的世界里,形常数和载常数表的应用可广泛啦!比如说在网页设计中,页面元素的布局和响应式设计就离不开对它们的考虑。
你想啊,如果一个网页在不同的设备上显示得乱七八糟,那用户体验得多差呀!这时候,通过分析形常数和载常数,就能让网页在各种屏幕尺寸上都能完美呈现。
还有在网络通信中,数据的传输速度和稳定性也与形常数和载常数有关。
就好比一条高速公路,车流量(数据量)大的时候,如果道路的承载能力(载常数)不够,就容易堵车(数据拥堵),影响传输效率。
在软件开发中,算法的优化也会用到形常数和载常数表。
比如说,一个搜索算法要在海量的数据中快速找到目标,就需要对各种操作的时间和空间复杂度(形常数和载常数的一种体现)进行分析,从而选择最优的方案。
我还记得当时在交流会上,小李讲完后,台下的听众纷纷提问,那场面可热闹了。
有人问:“那在实际项目中,怎么准确地测量和计算这些常数呢?”小李笑着回答:“这可就得靠我们的专业知识和经验啦,还有各种测试工具和数据分析方法。
”总之啊,形常数和载常数表在互联网领域虽然听起来有点专业和抽象,但其实它们就像幕后的英雄,默默地为我们带来更好的互联网体验。
从网页浏览的顺畅,到游戏的精彩,再到软件的高效运行,都离不开它们的功劳。
所以呀,下次当你在享受互联网带来的便捷和乐趣时,说不定背后就有形常数和载常数表在发挥作用呢!。
形常数和载常数表1. 引言形常数和载常数是在工程领域中经常使用的重要参数。
它们通过对材料的力学性能进行实验测量和计算得到,用于描述材料的形态和承载能力。
本文将介绍形常数和载常数的概念、测量方法以及常用材料的形常数和载常数表。
2. 形常数的概念和测量方法形常数是用于描述材料的形态特征的参数。
主要包括抗压形常数(Kc)、抗弯形常数(Ks)和抗剪形常数(Kt)。
测量形常数的方法通常是通过对材料进行力学性能实验,包括压缩试验、弯曲试验和剪切试验等。
实验数据经过计算和分析,可以得到相应的形常数数值。
3. 常用材料的形常数表以下是一些常用材料的形常数取值,以便工程师和设计师在实际工程中进行参考和选用。
材料名称抗压形常数(Kc) 抗弯形常数(Ks) 抗剪形常数(Kt)钢材 150 GPa 80 GPa 60 GPa铝材 70 GPa 40 GPa 30 GPa混凝土 30 GPa 20 GPa 15 GPa木材 10 GPa 5 GPa 4 GPa 塑料 3 GPa 2 GPa 1 GPa4. 载常数的概念和测量方法载常数是用来描述材料的承载能力的参数。
主要包括抗压载常数(Cc)、抗弯载常数(Cs)和抗剪载常数(Ct)。
测量载常数的方法一般是通过对材料进行力学性能实验,包括强度试验、刚度试验和稳定性试验等。
通过实验数据的处理和分析,可以得到相应的载常数数值。
5. 常用材料的载常数表以下是一些常用材料的载常数取值,供工程师和设计师在实际工程中进行参考和选择。
材料名称抗压载常数(Cc) 抗弯载常数(Cs) 抗剪载常数(Ct)钢材 200 MPa 100 MPa 80 MPa 铝材 100 MPa 50 MPa 40 MPa 混凝土 50 MPa 30 MPa 20 MPa木材 20 MPa 10 MPa 8 MPa 塑料 5 MPa 3 MPa 2 MPa6. 结论形常数和载常数是工程领域中常用的参数,用于描述材料的形态特征和承载能力。
表1—载常数表(固端弯矩以顺时针方向为正;固端剪力以使杆件顺时针转动为正)2序号计算简图及挠度图弯矩图及固端弯矩固端剪力F QABF QBA1 √2ql (↑)2ql (↑)2ql 203 (↑)ql 207 (↑)332)2(l a l b F P +(↑)32)2(l b l a F P +(↑)4 √2PF (↑)2PF (↑)5 √0 06 √85ql(↑)83ql(↑)752ql(↑)10ql (↑)8409ql(↑)4011ql(↑)93222)3(l b l b F P -(↑)322)3(la l a F P - (↑)表1—载常数表(固端弯矩以顺时针方向为正;固端剪力以使杆件顺时针转动为正)序号计算简图及挠度图弯矩图及固端弯矩固端剪力F QABF QBA10√P F 1611 (↑)P F 165 (↑)11√hltEI 23∆α (↑)hltEI 23∆α (↓)12√ql(↑) 013P F(↑)14√P F(↑)15√P F(↑)P L QBA F F =(↓)0=R QBA F16√17M lab36 (↓)M lab36 (↑)18√lM23 (↓) lM23 (↑)表1—载常数表(固端弯矩以顺时针方向为正;固端剪力以使杆件顺时针转动为正)序号计算简图及挠度图弯矩图及固端弯矩固端剪力F QABF QBA193222)(3lMb l - (↓)3222)(3lMb l - (↑)20√lM89 (↓)lM89 (↑)21√lM23 (↓)lM23 (↑)220 023√0 0242ql (↑)252ql (↑)26-332(2l lqa )232a la +(↑))2(233a l lqa - (↑)使杆件顺时针转动为正)序号计算简图及挠度图弯矩图及固端弯矩固端剪力F QAB F QBA27-qa)4(83alq-ξ(↑))4(83alq--ξ(↑)28qa(↑)29αcos2ql(↑)αcos2ql(↑)30αcos2PF(↑)αcos2PF(↑)31αcos85ql(↑)αcos83ql(↑)32αcos1611PF(↑)αcos165PF(↑)33αcos2ql(↑)αcos2ql(↑)34αcos2PF(↑)αcos2PF(↑)使杆件顺时针转动为正)序号计算简图及挠度图弯矩图及固端弯矩固端剪力F QABF QBA1 √212l i(↑)212l i(↓)2 √li 6 (↑)li 6 (↓)3 √23li (↑)23li (↓)4 √li 3 (↑)li 3 (↓)5 √0 0时间:2021.03.12创作:欧阳文。
11个常用形常数载常数完整表形常数和载常数是在数学和物理学中常用的常数。
它们在各个学科领域中都起着重要的作用。
下面是11个常用的形常数和载常数的完整表。
1. 圆周率(π):圆周率是一个无理数,它表示圆的周长与直径之比。
在数学中,圆周率是一个重要的常数,它用来计算圆的面积、体积和弧长等。
2. 自然对数底(e):自然对数底是一个无理数,它表示一个常用的对数函数的底。
在数学和物理学中,自然对数底常常出现在指数函数、对数函数和复利计算等方面。
3. 黄金比例(φ):黄金比例是一个无理数,它表示一个长度或比例的黄金分割。
在美学、建筑、艺术和设计等领域中,黄金比例被广泛应用,被认为具有美学上的完美性。
4. 欧拉常数(γ):欧拉常数是一个数学常数,它是自然对数的一个重要极限。
欧拉常数出现在各个数学分支中,如数论、复变函数和微积分等。
5. 欧拉—马歇罗尼常数(γ):欧拉—马歇罗尼常数是一个数学常数,它是自然对数的一个重要极限。
欧拉—马歇罗尼常数出现在各个数学分支中,如数论、复变函数和微积分等。
6. 黑洞质量(M):黑洞质量是一个物理学中的常数,它表示黑洞的质量。
黑洞质量是衡量黑洞强度和效应的重要参数。
7. 电子基础电荷(e):电子基础电荷是一个物理学中的常数,它表示电子的电荷量。
电子基础电荷是量子力学和电磁学中的重要常数。
8. 光速(c):光速是一个物理学中的常数,它表示光在真空中的传播速度。
光速是相对论和量子力学等领域中的基本常数。
9. 万有引力常数(G):万有引力常数是一个物理学中的常数,它表示万有引力的强度。
万有引力常数是描述引力和天体运动等现象的重要参数。
10. 真空介质中的电磁波速度(c):真空介质中的电磁波速度是一个物理学中的常数,它表示电磁波在真空中的传播速度。
真空介质中的电磁波速度是电磁学和相对论等领域中的基本常数。
11. 波尔兹曼常数(k):波尔兹曼常数是一个物理学中的常数,它表示热力学系统中粒子的能量和温度之间的关系。